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Abstract—We explore machine learning for accurately pre-
dicting imminent disk failures and hence providing proactive
fault tolerance for modern storage systems. Current disk failure
prediction approaches are mostly offline and assume that the
disk logs required for training learning models are available a
priori. However, in large-scale disk deployment, disk logs are
often continuously generated as an evolving data stream, in which
the statistical patterns vary over time (also known as concept
drift). Such a challenge motivates the need of online techniques
that perform training and prediction on the incoming stream of
disk logs in real time, while being adaptive to concept drift.

We present STREAMDFP, a general stream mining framework
for disk failure prediction with concept-drift adaptation. We
start with a measurement study and demonstrate the existence
of concept drift on various disk models based on the datasets
from Backblaze and Alibaba Cloud. Motivated by our study,
we design STREAMDFP with three key techniques, namely (i)
online labeling, (ii) concept-drift-aware training, and (iii) general
prediction, with a primary objective of making STREAMDFP
support various machine learning algorithms as a general frame-
work. Our evaluation shows that STREAMDFP improves the
prediction accuracy significantly compared to without concept-
drift adaptation under various settings, and achieves reasonably
high stream processing performance.

I. INTRODUCTION

Maintaining storage reliability is a critical yet challenging
requirement for modern cloud-scale data centers, typically
composed of thousands to millions of disks [32], [44]. In large-
scale disk deployment, disk failures are prevalent [11], [42];
more severely, sector error bursts [6], [41] and correlated disk
failures (e.g., cluster-wide power outages) [5], [14] can cause
the simultaneous crashes of all replicas of a data chunk, leading
to data loss and unavailable services. Although traditional
redundancy mechanisms, such as replication and RAID, are
widely used for data protection, they are no longer sufficient for
providing strong reliability guarantees in the face of prevalent
and correlated failures [32].

To complement existing redundancy mechanisms, we explore
the prediction of imminent disk failures based on machine
learning as a proactive fault tolerance mechanism to pinpoint
and replace soon-to-fail disks, before the actual disk failures
happen. In particular, various machine learning algorithms
(e.g., [11], [29]-[31], [33], [43], [44], [46]) are shown to
achieve highly accurate prediction. Such algorithms capture disk
logs with performance and reliability statistics (e.g., SMART
(Self-Monitoring, Analysis and Reporting Technology)) as the
training data from a set of disks with known labels (i.e., healthy
or failed). They train a prediction model using the training
data, and use the trained prediction model to predict if any
unknown disk (i.e., no label) will remain healthy or become
failed in near future. Evaluation on production workloads (e.g.,
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SMART logs from Backblaze [1]) justifies the effectiveness of
machine learning; for example, over 95% of failed disks can
be predicted in advance with a very small false positive rate
[11], [29], [33], [46].

Existing disk failure prediction schemes are mostly offline,
meaning that all training data must be available in advance
before training any prediction model. On the other hand, in
practice, disk logs are continuously generated from disks
over time. With the enormous scale of the disk population in
production environments, it is infeasible to keep all past data for
training, rendering offline approaches inadequate for long-term
use. Recent work [43] explores online disk failure prediction
based on the Online Random Forests (ORF) algorithm, by
labeling the healthy and failed disk samples and updating the
prediction model on the fly. We believe that online prediction
is essential for large-scale disk deployment.

However, how to generalize online disk failure prediction for
various machine learning algorithms remains unexplored and
non-trivial. As different disk models are subject to reliability
heterogeneity [28], it is impractical to identify the ‘“best”
learning algorithm that applies to all disk models. More
importantly, the statistical patterns of disk logs are varying over
time (e.g., due to the aging of disks, or the additions/removals
of disks in production). Such a phenomenon, known as concept
drift [19], implies that we must carefully identify the proper
window of samples for training: if we choose too few samples,
we do not have sufficient samples to build an accurate prediction
model; if we choose too many samples, the prediction model
may be disturbed by the old samples that no longer correctly
capture the failure characteristics of the current pool of disks
due to concept drift.

This motivates us to regard disk failure prediction as a stream
mining problem. By viewing disk logs as an evolving stream
of time-series samples, we process the samples through the
following steps in real time: (i) train the prediction model
incrementally over the stream of samples, (ii) detect concept
drift and adapt the prediction model using a properly tuned
number of samples, and (iii) predict the failure status of any
unknown disk. Prior work has proposed algorithms on adapting
machine learning to concept drift in stream mining (Section II).
An open question is to support and customize various machine
learning algorithms with concept-drift adaptation for a diverse
mix of disk models in disk failure prediction.

We propose STREAMDFP, a general stream mining frame-
work for disk failure prediction with concept-drift adaptation.
STREAMDFP is designed to support a variety of machine
learning algorithms (rather than specific algorithms), based
on three key techniques: (i) online labeling, which labels the



samples for a disk on the fly; (ii) concept-drift-aware training,
which incorporates concept-drift adaptation when training a
prediction model; and (iii) general prediction, which supports
both classification (i.e., whether a disk will fail in near future)
and regression (i.e., how likely a disk will fail in near future).
To summarize, this paper makes the following contributions:

« We motivate our work via an extensive measurement study
on five SMART datasets, four from the public Backblaze
dataset [1] and one from Alibaba Cloud; the latter has a much
larger disk population than the total of the four Backblaze
datasets. We demonstrate not only the existence of concept
drift in all five datasets, but also the variation of concept-
drift existence across healthy/failed disks, disk models, and
SMART attributes.

« We present the complete design of STREAMDFP as a
general stream mining framework that extracts features, labels
samples, and trains a prediction model, all in real-time.

« We implement a complete prototype of STREAMDFP based
on Massive Online Analysis (MOA) [10].

« We evaluate both prediction accuracy and stream processing
performance of nine decision-tree-based algorithms on our
five datasets. STREAMDFP increases the precision, recall,
and F1-score by 27.5-71.8%, 15.7-37.4%, and 26.8-53.2%,
respectively, through concept-drift adaptation. It also supports
fast stream processing: it performs training and prediction
in 13.5 seconds on the daily SMART data of 37K disks.
We now open-source our STREAMDFP prototype that can

be used for the validation on the public Backblaze dataset at

http://adslab.cse.cuhk.edu.hk/software/streamdfp.

II. BACKGROUND

In this section, we provide background details on disk failure
prediction and stream mining.

A. Disk Failure Prediction

Our goal is to predict imminent disk failures over a collection
of disks in production based on SMART statistics. SMART is a
widely adopted disk monitoring tool for collecting performance
and reliability statistics of a disk. Modern disks include
SMART in their firmware. With SMART enabled, a disk
periodically reports various numerical values (called attributes)
on operational status and error information. Some SMART
attributes provide useful indicators for soon-to-fail disks. For
example, RAIDShield [32] suggests to proactively replace a
disk in production whose reallocated sector count (i.e., the
attribute SMART-5) exceeds 200. However, checking SMART
attributes against thresholds for disk failure prediction is
highly error-prone, as its accuracy heavily depends on how the
thresholds are configured. In this work, we explore the use of
machine learning in disk failure prediction.

Specifically, we formulate our disk failure prediction as a
stream mining problem, by viewing the SMART attributes
emitted by disks as a stream of samples over a time series.
For each disk ¢, where ¢ is a unique disk identifier, we denote
the SMART attributes emitted by disk ¢ at time ¢ as a vector
xi (called the input variable), and denote the failure status

of disk 7 at time ¢ as a scalar variable y; (called the target
variable). We assume that the SMART attributes are generated
at the granularity of days, so each time ¢ refers to a particular
day. We feed x! into a prediction model (denoted by M) to
predict the future failure status of disk 7 (denoted by 7¢) (e.g.,
within the next 30 days). As the true output for yi is known,
we update M over time with (x¢,y!) (called a labeled sample).
We also refer to the samples that correspond to the failed disks
and healthy disks as positive samples and negative samples,
respectively.

In practice, we collect SMART attributes and predict failures
over a collection of disks simultaneously at each time point.
For brevity of discussion, we omit the superscript ¢ and use x;
and y; to refer to the SMART attributes and the failure status
of the whole collection of disks, respectively.

We consider two types of prediction: (i) classification, in
which we predict if disk 7 is either failed or healthy in the
future, and ! is equal to either 1 or 0, respectively; and (ii)
regression, in which we predict the likelihood that disk i is
failed, and set y} as some continuous value between 0 and 1.

B. Concept Drift

Concept drift [19] describes the phenomenon that the
relationship between the input variables and the target variable
continuously changes over time. Mathematically, let ¢, and
t; be two time points in a stream (assuming ty < t;), and
p(x¢,y:) be the joint probability of x; and y; at time ¢. We
say that concept drift occurs if p(X¢y,Yt,) 7 P(Xey, Yt ); i
this case, the prediction model M can no longer accurately
map X, t0 Y, .

In our problem setting, we focus on detecting the concept
drift in p(y.|x;) (i.e., the posterior probability of the target
variable y; given the input variable x;), as it describes the
change of our prediction results. Based on the Bayesian decision
theory, we can express p(y:|x:) = %, where p(x;)
is the marginal probability of x;, p(y:) is the prior probability
of y, and p(x¢|y:) is the conditional probability of x; given
y¢. Thus, the change of p(y.|x;) can be characterized as the
changes in the components p(y:), p(x:), and p(x:|y:). We
measure the changes in such components (Section III-B). Our
goal is to adapt the prediction model M with p(y|x¢).

C. Change Detection

We perform change detection in stream mining to identify the
existence of concept drift in p(y;|x;). Specifically, we define
the absolute error, denoted by €, at time t as € = |§i — v,
where i and y! denote the predicted and true output for disk i
at time ¢, respectively. We take a stream of €.’s over a time
window as input in change detection.

We can apply different change detectors. For example,
ADaptive sliding WINdow (ADWIN) [8] keeps a variable-
size sliding detection window of the most recent samples.
It partitions the detection window into two sub-windows
and monitors each of their average values. If the two sub-
windows have significantly different average values (based
on the Hoeffding bound [23]), then it implies that a change



[ Category Algorithm | Change detector ]
Classification | Hoeffding tree (HT) [16] None
tree Hoeffding adaptive tree (HAT) [9] ADWIN [8]
Regression Fast incremental model trees with | PH test [35]
tree drift detection (FIMT-DD) [26]
Oza’s bagging (Bag) [37] None
Oza’s boosting (Boost) [37] None
Ensemble Online random forests (RF) [20] None
learning Bagging with ADWIN (BA) [9] ADWIN [8]
Boosting-like  online ensemble | DDM [18]
(BOLE) [15]
Adaptive random forests (ARF) [20] | ADWIN [8]

TABLE I: Overview of incremental learning algorithms.

happens, and ADWIN drops the older sub-window and replaces
the detection window with the newer sub-window. Other change
detectors include the Page-Hinckley (PH) test [38] and the Drift
Detection Model (DDM) [18].

D. Incremental Learning Algorithms

To support adaptive disk failure prediction, we consider
several state-of-the-art incremental learning algorithms that
perform prediction on an input data stream and continuously
update the prediction model using the labeled samples. Table I
summarizes the incremental learning algorithms that we con-
sider in the paper. Such algorithms all build on decision trees to
train the prediction model for classification or regression. We
can classify them into two categories: single decision trees and
ensemble learning. Instead of advocating a specific incremental
learning algorithm for prediction, whose effectiveness highly
varies across disk brands and models (Section I), we focus on
supporting general incremental learning algorithms for disk
failure prediction.

Single decision trees. Several incremental learning algorithms
maintain a single decision tree for prediction. The Hoeffding
Tree (HT) [16] recursively updates the tree structure using
a small subset of labeled samples and decides how many
labeled samples are modeled by each tree node using the
Hoeffding bound [23]. The Hoeffding Adaptive Tree (HAT)
[9] builds on HT and associates ADWIN with each tree node.
If ADWIN detects concept drift at a tree node, HAT creates
an alternate tree rooted at the tree node and trains it separately.
If the original tree has a larger error than the alternate tree, it
will be replaced by the alternate tree. Both HT and HAT are
designed for classification. On the other hand, FIMT-DD [26]
is a regression tree that uses the PH test [35] as the change
detector at each tree node. It has similar operations of creating
and managing alternate trees like HT and HAT.

Ensemble learning. Single decision trees are limited in both
diversity and lookahead ability for large amounts of data [39].
Ensemble learning is proposed to combine multiple decision
trees as base learners in prediction. Classical (offline) ensemble
learning methods include bagging [12], which draws random
samples with replacements during training to improve the
overall accuracy; boosting [17], which trains prediction models
iteratively by increasing the weights for less accurate learners to
improve the overall accuracy; and random forests [13], which

train multiple base learners on re-sampled data (similar to
bagging) and randomly select subsets of attributes for tree
updates. To support online ensemble learning, we adopt Oza’s
online versions of bagging and boosting [37] and the online
random forests in [20], such that they update the prediction
models based on incoming labeled samples; however, these
online methods do not address concept drift.

Bagging with ADWIN (BA) [9], Boosting-like online ensem-
ble (BOLE) [15], and Adaptive Random Forests (ARF) [20]
add concept-drift adaptation to the online versions of bagging,
boosting, and random forests, respectively. Their key idea is
to associate a change detector with each decision tree in an
ensemble of trees. If a tree has concept drift detected, it will
be removed and substituted by a new tree root (e.g., in BA
and BOLE) or a newly trained tree (e.g., in ARF).

III. MEASUREMENT ANALYSIS

In this section, we present a measurement study of the
existence of concept drift on production datasets.

A. Datasets

Our analysis builds on five SMART datasets collected from
two independent sources, as shown in Table II. Our datasets
are diverse, covering different disk models, manufacturers, and
production environments. Thus, they allow us to validate the
generality of our findings.

The first group of datasets is collected and made publicly
available by Backblaze [1], which has released SMART datasets
for various hard disk drive models in its data centers since
2013. Here, we select the datasets namely D1, D2, D3, and D4,
on four disk models that are among the largest disk populations
with the highest disk failure rates. Note that the disk models
are also selected and evaluated by prior studies [11], [33], [43].

The remaining dataset is a private SMART dataset collected
in Alibaba Cloud. The dataset, namely D35, belongs to a specific
hard disk drive model with around 250 K disks, which are at
least 6x as many as D2 and D3 and nearly 55x as many as
D1 and D4. However, it only has around 1,000 failures (even
fewer than those of D1 and D2), implying that the dataset is
highly imbalanced as the failure rate is extremely low.

Table III provides an overview of the collected SMART
attributes. The datasets span 29 SMART attributes in total.
Each collected SMART attribute includes both the raw and
normalized values.

B. Measurement of Concept Drift

We now study the existence of concept drift in each dataset.
Recall from Section II-B that the change of p(y;|x;) can be
characterized through the three components p(y;), p(x;), and
p(X¢t|y:). In the following, we measure the changes of each
component to motivate the need of adapting to the change
of p(y:|x;) in our disk failure prediction problem'. Here, we
focus on binary classification (i.e., a disk is healthy or failed).

INote that the changes of all three components do not necessarily imply
the change of p(y:¢|x¢). However, we claim that this is unlikely, and our
evaluation in Section V shows that adapting to the change of p(y:|x¢) is
critical to improve the prediction accuracy.



[ Dataset ID | Disk model [[ Capacity [ Disk count [ # failures | Period | Duration (months) |
D1 Seagate ST3000DMO001 3TB 4,516 1,269 2014-01-31 to 2015-10-31 21
D2 Seagate ST4000DMO00 4TB 37,015 3,275 2013-05-10 to 2018-12-31 68
D3 Seagate ST12000NMO0007 12TB 35,462 740 2017-09-06 to 2019-06-30 22
D4 Hitachi HDS722020ALA330 2TB 4,601 226 2013-04-10 to 2016-12-31 45
D5 Private disk model of Alibaba Cloud 6TB ~250K ~1,000 2019-01-01 to 2019-05-31 5
TABLE II: Overview of datasets.
[ ID_| SMART attribute name || DI [ D2 [ D3 | D4 [ D5 | the same probability distribution. We measure the p-value, such
S1 Read error rate tffn [ rn [ rfn | rfn | rfn h | hat i ller th hreshold |
2 Throughput performance — — R I e that a p—V.a ue.t at 1s smaller than .a threshold (currently set
S3~ | Spin-up time fn | rfn | rjn | rn | r]n as 5%) will reject the null hypothesis. Here, we measure how
S4 | Start/stop count fin | rjn | rjn | rjn | rjn many SMART attributes have changed distributions (i.e., their
S5 Reallocated sector count rim [ rjn | rjn | rjn | r|n null hypotheses are rejected).
S7 Seek error rate rn [ rjn | rjn | rjn | r|n . . .
S8 | Scok time performance T - T - Ton [ = We set the granul'arlty of time periods for the Backblaze
S9 | Power-on hours rn [ rn [ rjn | tfn | r]n datasets as years, while that for the dataset D5 as months. Note
2:(2) E}Pin retry ICOUm rn | rjn | rjn | tjn | rjn that our datasets are imbalanced, with much fewer failed disks
ower cycle count rin rin rin rin rin . .
ST83 T SATA downshift error sount T rm T fn T = T =1 = than healthy disks. Thus, .we.downsample the.: h?altl.ly disks
S184 | End-to-end error P P I P P to prevent them from dominating the overall distributions (we
S187 | Reported uncorrectable errors || rfn [ r[n | rjn | = [ 1[n also apply downsampling in our prediction; see Section IV-D).
S188 | Command timeout fn | rin | rjn | - |10 Specifically, for failed disks, we take all their (positive) samples
S189 | High fly writes rin | rln — - r|n . iod. while for healthy disk 1 ke thei
ST90 | Airflow temperature T Tt T o T = 1o over a' time period, while for healthy 1s. S, we (?n y take their
S191 | G-sense error rate n | fn | = | — | rn (negative) samples at the last day of a time period.
S192 | Power-off retract count fn [ tn | rn | rn | rln Table IV shows the number of SMART attributes with
S193 | Load cycle count fn | mn | rn | rin | rn changed distributions in p(x;) over the total number of SMART
S194 | Temperature celsius rln [ rjn | rjn | rjn | r|n . . 1l i di h h £
S195 | Hardware ECC recovered T =Tt = T1h attrlbut.es being collected (we will discuss the ¢ anges o
S196 | Reallocation event count — | = - [ | - p(x¢|failed) and p(x;|healthy) later). We see that a significant
g}g; Current Peftl)clling sector fn | tn | rn | rn | r|n fraction of SMART attributes has changed distributions. For
Uncorrectable sector count rn n rn rn rn . .
S199 T UltraDMA CRC srror count P e R o R example, ]?2 bas more than half of the SMART attributes with
S200 | Write error rate — - [ n [ - = changed distributions.
S240 | Head flying hours th [tn [ ffn [ = [ r/n We further study the changes of several critical SMART
5241 | Total LBAs written fn | rn frin | — | fn attributes defined by Backblaze, which provide strong indicators
S242 | Total LBAs read rn | rjn | rjn — rln

“r”: Raw value; “n”: Normalized value.
~ The SMART attribute is not collected or the value is not provided.

TABLE III: Overview of collected SMART attributes.

Measurement of p(y.). To understand the change of p(y:),
we measure the percentage of failed disks over time (i.e., the
percentage of yi = 1 over the whole collection of disks) for
each dataset. Given the long duration of each Backblaze dataset,
we conduct the measurement on D1, D2, D3, and D4 on a
monthly basis; on the other hand, we conduct the measurement
on D5 on a daily basis.

Figure 1 shows the results. The percentage of failed disks
highly oscillates over time. For example, the percentages of
failed disks of D1 and D4 can reach as high as 9.7% and 9.1%,
respectively; for D3, its daily percentage of failed disks ranges
from O to 0.09%. One main reason for the highly varying
failure rates is that new disks are kept being added, or old
disks are kept being retired, over the entire measurement span,
so the number of healthy disks varies significantly.

Measurement of p(x;). We now measure the change of p(x;).

Here, we use the two-sample Kolmogorov-Smirnov (KS) test
[34] to measure the change of each SMART attribute (based on
its raw values) in p(x;). Specifically, we compare the samples
in two time periods, denoted by ¢y and ¢; under the null
hypothesis that the samples of ¢y and ¢, are both drawn from

for disk failures [3]. Table V shows the presence of changed
distributions for each critical SMART attribute based on the KS
test. We observe the change of p(x;) for D1 and D2 in S187
and S188 for most time periods. However, D3, D4, and D5 do
not show a change of p(x;) in all critical SMART attributes,
meaning that the change mainly appears in other non-critical
SMART attributes.

Measurement of p(x;|y;). Finally, we study the change in
p(x¢|y:). We consider two conditional probability distributions,
p(x¢|healthy) and p(x;|failed), for healthy and failed disks,
respectively. We revisit Tables IV and V on the changed
distributions across the SMART attributes.

From Table IV, a significant fraction of SMART attributes
(e.g., at least one-fourth for D2) has changed distributions
for healthy and failed disks. However, in D2 and D4, failed
disks generally have more SMART attributes with changed
distributions than healthy disks, but in D1, D3, and D5, it is
opposite. Thus, the effects of changed distributions vary across
disk models.

From Table V, failed disks generally show changed distribu-
tions in some of the critical SMART attributes (and in all critical
SMART attributes for D2 from 2014 to 2015). One reason is
that failed disks tend to show various failure symptoms on
different critical SMART attributes (which measure the error
counts), so the distributions of the critical SMART attributes
also have high variations. However, the changed behaviors
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Fig. 1: Percentage of failed disks of each dataset in each month (for D1, D2, D3, and D4) or each day (for D5) in the whole duration.

D1 Total || p(x:) | p(x¢|healthy) | p(x¢[failed) D1 S5 | S10 | S184 | S187 S188 S197 | S198
2014 vs. 2015 24 15 10 8 2014 vs. 2015 O1 | Ottt i it
D2 Total || p(x:) | p(x¢|healthy) | p(x¢|failed) D2 S5 | S10 | S184 | S187 S188 S197 | S198
2013 vs. 2014 5 2 2 2 2013 vs. 2014 — — — — i —
2014 vs. 2015 24 15 8 16 2014 vs. 2015 i i i i Ottt i i
2015 vs. 2016 24 15 7 10 2015 vs. 2016 | I i O i i
2016 vs. 2017 24 14 6 8 2016 vs. 2017 i Ot i i
2017 vs. 2018 24 14 7 8 2017 vs. 2018 i i O i i
D3 Total || p(x¢) | p(x¢|healthy) | p(x¢[failed) D3 S5 | S10 | S184 | S187 | S188 | S197 | S198
2017 vs. 2018 22 13 13 8 2017 vs. 2018 it -
2018 vs. 2019 22 14 13 11 2018 vs. 2019 it - I il
D4 Total || p(x:) | p(x¢|healthy) | p(x¢|failed) D4 S5 | S10 | S184 | S187 S188 S197 | S198
2013 vs. 2014 5 2 1 1 2013 vs. 2014 — — — — —
2014 vs. 2015 17 6 4 5 2014 vs. 2015 it — — — i
2015 vs. 2016 17 6 4 3 2015 vs. 2016 — — —
D5 Total || p(x:) | p(x¢|healthy) | p(x¢|failed) D5 S5 | S10 | S184 | S187 S188 S197 | S198
Jan. vs. Feb. 24 13 13 1 Jan. vs. Feb.
Feb. vs. Mar. 24 13 13 4 Feb. vs. Mar.
Mar. vs. Apr. 24 13 11 15 Mar. vs. Apr.
Apr. vs. May 24 13 13 13 Apr. vs. May

“Total”: total number of collected SMART attributes; “p(x¢)”,
“p(x¢|healthy)”, “p(x¢|failed)”: numbers of SMART attributes with
changed distributions. Note that ST4 and HD2 only collect five
SMART attributes (S1, S5, S9, S194, and S197) in 2013.

TABLE IV: Number of SMART attributes with changed distributions.

across different disk models are highly varying for different
critical SMART attributes.

Summary. Our measurement study shows two major observa-
tions. First, we observe the presence of changed distributions
in p(y:), p(x¢), and p(x¢|y:), indicating that the change of
p(y+|x:) (i.e., concept drift) also likely exists. Second, the
changed behaviors cannot be readily predicted, as they vary
across healthy and failed disks, disk models, as well as SMART
attributes. Thus, the mechanism for adapting to concept drift
needs to be generally applicable for various changed behaviors.

IV. DESIGN

We present the design of STREAMDFP, a general stream
mining framework for disk failure prediction with concept-
drift adaptation. Specifically, STREAMDFP aims to address
the following challenges:

e Online labeling. Unlike offline learning, STREAMDFP
accesses a stream of samples from a collection of disks
and labels the samples on the fly. It should accurately label
the samples as either positive (for failed disks) or negative
(for healthy disks) based on the current disk failure patterns.

o Concept-drift-aware training. STREAMDFP builds on a
number of incremental learning algorithms with concept-
drift adaptation (Section II-D). It should accurately detect
and adapt to concept drift in training a prediction model
specifically for disk failure prediction.

O p(x¢) shows a changed distribution.

T p(x |healthy) shows a changed distribution.

¥ p(x¢|failed) shows a changed distribution.

~ The SMART attribute is not collected.

TABLE V: Changed distributions for critical SMART attributes.

¢ General prediction. STREAMDFP treats disk failure pre-
diction as both classification and regression problems. For
classification, STREAMDFP directly answers if an unknown
disk will remain healthy or will be failed in near future. For
regression, STREAMDFP should determine the likelihood
that an unknown disk will fail.

A. Architectural Overview

Figure 2 shows the architecture of STREAMDFP. Specifically,
STREAMDPEFP takes a stream of samples on each day as input. It
extracts SMART attributes as learning features (Section IV-B).
It configures a sliding window to buffer the recent samples
and disk failure status, and then labels the disks on the fly
(Section IV-C). It downsamples the negative samples and feeds
the labeled samples into the prediction model for training.
With change detection enabled, STREAMDFP detects concept
drift explicitly during training and adapts the prediction model
to concept drift. (Section IV-D). In the prediction phase, it
uses the prediction model to output the prediction results
(for both classification and regression) for an unknown disk
(Section IV-E).

B. Feature Extraction

Given an input stream of samples, STREAMDFP extracts the
SMART attributes of each sample as the learning features for
prediction model training. Here, we use all collected SMART
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Fig. 2: Architecture of STREAMDFP.

attributes in Table III (including raw and normalized values)
as learning features, instead of choosing a subset of SMART
attributes based on historical disk logs like [43]. In practice,
we may have no or only few historical disk logs for feature
selection. Even though historical disk logs are available for
us to identify the representative SMART attributes for failure
characterization, the selected attributes may vary over time
due to the changing distributions of the SMART attributes
(Section III-B). Thus, for simplicity, we take all collected
SMART attributes as learning features. Note that we can also
leverage the statistical distributions of the SMART attributes
for feature selection [44]; we pose this as future work.

C. Buffering and Online Labeling

STREAMDFP needs to label the samples on the fly before
feeding them into training. A straightforward approach is to
label a disk sample as positive once the corresponding disk is
diagnosed as failed, or as negative otherwise. However, a disk
often does not fail immediately; instead, a soon-to-fail disk has
actually shown failure symptoms (e.g., a sharp increase in the
reallocated sector count [32]). Thus, STREAMDFP also labels
the samples of soon-to-fail disks as positive (in addition to the
disk samples of actual failed disks), so as to better reflect the
disk failure characteristics. A side benefit is that the proportion
of positive samples also increases, which mitigates the well-
known data imbalance issue in disk failure prediction [11],
[33] as failed disks often account for a very small fraction over
the entire disk population. A key challenge is how to label the
samples of soon-to-fail disks on the fly.

STREAMDFP buffers the recently received samples for
online labeling. Specifically, it configures a sliding time window,
denoted by W, to buffer the samples of a sufficiently long
recent period (30 days in our case), as well as the number of
extra labeled days before the disk failure occurs, denoted by
Dy, If a failed disk is found, STREAMDEFP labels the samples
within D, before the failure as positive (by default, all samples
before failures are negative). Note that the number of samples
within Dy, may be less than the length of Dy when W is not
full or limited samples are collected before a disk failure. By
default, we set Dy = 20 days, while we evaluate the sensitivity
of Dy, to the prediction accuracy in Section V. Note that Dy,
is a configurable parameter.

Algorithm details. Algorithm 1 shows the pseudo-code on

online labeling (while buffering is done before the algorithm).
It takes the inputs of the current day ¢, W, and Dyp.

Algorithm 1 Online Labeling

1: procedure MAIN(¢, W, Dy)
2 for each failed disk 7 on day ¢ do

3 Find y* = time-series failure status of disk 4 in W
4 if classification then

5: Sety; =1 forall t' € [t — Dp,t]
6

7

8

else if regression then

for each day ' =t — Dy, to t do
t—t’

Set yZ/ =1- Dr+1

9: end for
10: end if

11: end for

12: end procedure

We update the labels of the samples of all failed disks within
Dy,. We label the samples of soon-to-fail disks for classification
and regression separately (Lines 2-11). For classification, we
set the target variable y{, = 1 for all ¢ € [t— Dy, t] (Lines 4-5).
For regression, we update the labels as the failure probabilities.
Here, we take a simple approach by modeling the failure
probability as a linear function that increases over time, starting
from y!, = ﬁ att! =t—Dptoy, =1latt =t (e,
when the failure occurs) (Lines 6-10).

D. Downsampling and Training

STREAMDEFP trains a prediction model based on the
labeled samples. Before training, it is critical to mitigate the
data imbalance issue [11], [33] for accurate prediction. In
addition to labeling more samples as positive for soon-to-fail
disks (Section IV-C), STREAMDFP downsamples the negative
samples to increase the proportion of positive samples. After
downsampling, STREAMDFP attaches a change detector to the
prediction model to adapt to concept drift.

Algorithm details. Algorithm 2 shows the pseudo-code on
downsampling and training. It takes the inputs of the current
day t, W, and M.

STREAMDFP downsamples the negative samples in a two-
phase process. It first selects a subset of samples in W,
including all positive samples and the negative samples in the
recent days (currently set as seven days to preserve sufficient
negative samples), into W’ (Line 2). It further downsamples
the negative samples via Poisson sampling, which is commonly
used in ensemble learning algorithms [20], [37] and online
disk failure prediction [43]. We borrow the approach in [43] by
customizing the hyper-parameters of the Poisson distribution,
denoted by A, and A, for the negative and positive samples,
respectively. For each decision tree 7" € M, we generate a
weight £ from the respective Poisson distribution of either
negative or positive samples, where k specifies the frequency
that the sample is updated in the prediction model (Lines 5-9).
Since a larger hyper-parameter implies a larger weight, we
ensure that A, > )\, to ensure that the positive samples weigh
more in the prediction model. More precisely, our evaluation
varies A, and A, based on the given false positive rate for
each incremental learning algorithm (Section V). Note that we
do not claim the novelty of this approach.



Algorithm 2 Downsampling and Training

Algorithm 3 STREAMDFP

1: procedure MAIN(t, W, M)
2: Select all positive samples and the negative samples in the
recent seven days from WV into W’

3 for each (xi,y;) € W' do

4 for each decision tree T' € M do

5: if y; == O then > negative samples
6: Set k = Poisson(A\,)

7: else > positive samples
8: Set k = Poisson(Ap)

9: end if

10: if k>0 them

11: TRAIN(T, X3, yi, k)

12: Set §; = PREDICT(x;)

13: if DETECTCHANGE(T, §;, y;) then

14: Update T'

15: end if

16: end if

17: end for

18: end for

19: end procedure

For each incremental learning algorithm, STREAMDFP
extends the corresponding prediction model M with a change
detector (e.g., ADWIN [8], PH test [35], and DDM [18])
(Section II-C). STREAMDFP associates the change detector
with each decision tree 7' € M (recall that M is composed
of either a single decision tree or multiple decision trees
in ensemble learning (Section II-D)). Specifically, if £ > 0,
STREAMDFP first trains 7" with a labeled sample (x%, ) and
weight k (Line 11) and then performs the prediction to obtain !
(Line 12). It compares the predicted output 4! and the labeled
target variable y; to detect if concept drift exists (Line 13); if
so, T' is updated accordingly based on the incremental learning
algorithm (e.g., ARF [20] replaces 1" with a new decision tree
trained by recent samples).

E. Prediction

STREAMDFP supports both classification and regression in
prediction. For classification, it predicts whether a disk failure
will occur, while for regression, it returns the failure probability
of a disk within the near future. In particular, for regression,
based on how we label a sample as positive (Section IV-C),
the product (1 — 9{)(Dy, + 1) can be viewed as the predicted
residual lifetime of the disk.

Note that during training (Section IV-D), we call prediction
once to detect concept drift (see Line 12 of Algorithm 2).
However, we still need to call the prediction again after training,
so that the prediction output is based on the updated prediction
model due to concept drift.

F. Putting It All Together

Algorithm 3 shows the entire workflow of STREAMDFP.
We first initialize YW and M (Lines 1-2). For each day ¢, if
W is full, we slide W by one day (Lines 4-6). We then buffer
the samples for online labeling as follows. We extract the
learning features to x; from all disks and buffer (x;, y;) into
W (Lines 7-8). We call Algorithm 1 to label samples in W

1: Initialize W = empty sliding time window
2: Initialize M = prediction model
3: for each day ¢ do

4 if W is full then

5: Slide one day for W

6: end if

7: Extract learning features to x; from all disks

8: Buffer (x¢, y:) into W

9: Call Algorithm 1 (online labeling) to label samples in W

10: Call Algorithm 2 (downsampling and training) to train M
using W

11: if W is full then

12: Set §: = M(x¢)

13: end if

14: end for

and Algorithm 2 to train M using W (Lines 9-10). Finally,
if W is full, it implies that we have buffered enough labeled
samples for training and M is warmed up, and hence we use
M with x; to output the prediction results g; (Lines 11-13).

G. Implementation Details

We implement a STREAMDFP prototype in two parts. The
first part is implemented in Python (with around 750 LoC),
in which STREAMDFP performs feature extraction, buffering,
online labeling, the first phase of downsampling (i.e., selecting
a subset of samples from V), and finally writes the processed
data into a local file system. The second part is written in
Java (with around 900 LoC), in which STREAMDFP reads the
processed data from the local file system and feeds each sample
into the second phase of downsampling (i.e., Poisson sampling)
and training. We realize all incremental learning algorithms
and change detectors in Table I using Massive Online Analysis
(MOA) [10]. The complete STREAMDFP prototype forms a
stream processing pipeline.

V. EVALUATION

We present trace-driven evaluation results on the prediction
accuracy and stream processing performance of STREAMDFP.
We summarize our findings as follows.

« Enabling concept-drift adaptation in STREAMDFP increases
the classification accuracy for different incremental learn-
ing algorithms, although the highest accuracy among the
algorithms varies across datasets. STREAMDFP also makes
earlier prediction of disk failures. (Exp#1)

¢ Online labeling with extra labeled days improves the overall
prediction accuracy in most cases, while the number of extra
labeled days can be flexibly tuned via STREAMDFP. (Exp#2)

o STREAMDFP can accurately predict the likelihood of disk
failures under regression. (Exp#3)

o STREAMDFP maintains the accuracy gains through concept-
drift adaptation for various thresholds of false positive rates.
(Exp#4)

o STREAMDFP takes within 13.5 seconds per day for process-
ing 37 K disks in D2, making it viable for practical stream
processing usage. (Exp#5)



A. Methodology

Recall that we use all SMART attributes in Table III as
learning features for each dataset (Section IV-B). However,
for the Backblaze datasets (i.e., D1 to D4), we find that the
SMART attributes are not all available at the first day of
the collection period, and the datasets have very different

collection durations, ranging from 21 to 68 months (Table II)).

For consistent comparisons, we select the same 460 days of
samples from each Backblaze dataset for evaluation. To ensure
that all SMART attributes are available, we set the start date
of each dataset as 2014-02-15 for D1, 2015-01-01 for D2,
2018-02-01 for D3, and 2014-09-01 for D4. For the Alibaba
Cloud dataset (i.e., DS), we select all 150 days of samples in
our evaluation.

For each dataset, we first warm-up the prediction model
from scratch using the first 30 days of samples, same as the
length of W (Section IV-C). We then predict disk failures in
the next 30 days on a daily basis, and evaluate the accuracy
for each day of prediction. Thus, the total durations of our

evaluation last for 400 days for D1 to D4 and 90 days for D5.

Metrics. Our evaluation addresses both classification and
regression. For classification, we consider the following metrics:

o Precision: The fraction of actual failed disks being predicted
over all (correctly or falsely) predicted failed disks.
e Recall: The fraction of actual failed disks being predicted

over all actual failed disks.

o Fl-score: 2% prep}sion Xrecall )
precision-recall

For regression, we convert the disk failure likelihood reported
by STREAMDFP into the number of days of residual lifetime
for more intuitive evaluation. We report the average relative
errors of the residual lifetime (ARE), defined as the average
relative errors of the predicted residual lifetime with respect
to the actual residual lifetime over all actual failed disks (we
exclude the falsely predicted failed disks for this metric). If the
ARE is positive, then it implies that the predicted likelihood
of disk failures is larger than the actual likelihood and the
residual lifetime is shorter than the actual one, and vice versa.

Default setup. We set the default extra labeled days Dy, as
20 days, while we evaluate the impact of Dy, in Exp#2. For
fair comparisons, when we evaluate the classification accuracy
metrics, we fix the threshold of the average false positive rate
(FPR) over the evaluation period for each algorithm; on each
day, we compute the FPR as the fraction of falsely predicted
failed disks over the total number of healthy disks in the next
30 days. For D1 to D4, we set the default FPR threshold as 1%
as in [43], while for D5, we set the default FPR threshold as
0.3%; we evaluate the impact on the accuracy for different FPR
thresholds in Exp#4. For ensemble learning (Section II-D), we
fix 30 decision trees, although including more decision trees
(e.g., 100 trees) does not make significant improvements. For
other parameters, we choose the default values as in MOA
[10] (Section IV-G).

In our experiments, we plot the averaged results over five
runs, including the error bars with the minimum and maximum
results across all five runs.

B. Results

Exp#1 (Effectiveness of concept-drift adaptation). We first
consider the eight classification algorithms in Table I (except the
regression algorithm FIMT-DD, which is evaluated in Exp#3).
We divide the algorithms into four pairs corresponding to before
and after enabling concept-drift adaptation (i.e., HT vs. HAT,
Bag vs. BA, Boost vs. BOLE, and RF vs. ARF). For D5, we
focus on two pairs of ensemble learning algorithms, i.e., Bag
vs. BA and RF vs. ARF, since they can parallelize the training
of decision trees for fast execution.

Figure 3 shows the results of the precision, recall, and F1-
score for different datasets. Concept-drift adaptation improves
the overall Fl-score for each pair of algorithms in all datasets,
by up to 26.8%, 53.2%, 48.8%, 35.5%, and 49.9% for D1,
D2, D3, D4, and D5, respectively, while the improvements
of precision and recall are up to 27.5-71.8% and 15.7-37.4%
across the datasets, respectively. We observe that concept-drift
adaptation mainly improves the precision, while preserving the
recall, in most cases; the only exceptions are the decreasing
recall in BA (for D2 and D3) and ARF (for D2), as well as
the decreasing precision in BOLE for D3, mainly because of
the trade-off between the precision and recall.

Overall, ARF achieves the highest F1-score for D1, while BA
achieves the highest F1-score for D2, D3, D4, and D5. Thus, it
is difficult to identify the “best” algorithm for different datasets.
This conforms to the main design goal of STREAMDFP that it
supports various incremental learning algorithms as a general
framework rather than a specific algorithm.

Table VI further evaluates the average number of days ahead
of a disk failure when the prediction is made (i.e., the duration
from the day when a disk is predicted as failed to the day when
the disk failure occurs). Here, we only consider the failed disks
that are correctly predicted. The algorithms with concept-drift
adaptation can predict disk failures earlier than those without
concept-drift adaptation, by up to 2.9, 2.0, 1.8, 1.2, and 3.9
days for D1, D2, D3, D4, and D5, respectively. The reason is
that concept-drift adaptation achieves better characterization
of the failure patterns, thereby making earlier prediction.

Exp#2 (Sensitivity of extra labeled days). We study how the
extra labeled days Dy affects the accuracy. We vary D, from
zero to 30 days; the zero days mean that we only label the
samples as positive on the day when the failure occurs. Here,
we focus on D2 and D4, which are derived from different disk
manufacturers, and the three ensemble learning algorithms with
concept-drift adaptation, i.e., BA, BOLE, and ARF.

Figure 4 shows the prediction accuracy versus Dy,. In general,
introducing extra labeled days (i.e., Dy > 0) increases the
prediction accuracy especially for ARF in both D2 and D4
(by 23.4% and 19.9% F1-score, respectively) and BOLE in
D2 (by 23.9% Fl-score) when D; = 20 days (our default
setup). However, for D4, a smaller Dy for BOLE and BA
achieves higher prediction accuracy. For example, the top two
Fl-scores are 63.4% and 61.8% for BA are on zero and five
days, respectively. This implies that the optimal value of Dy,
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Fig. 3: Exp#1 (Effectiveness of concept-drift adaptation).
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regression (in terms of ARE) with the regression tree FIMT-DD. 128 ] < 128
Figure 5 shows the ARE results for all datasets. Throughout g & | s 60
the evaluation period, the means of ARE are -0.0014, -0.27, § 40 4 § 40
0.13, 0.29, and 0.58 (in days), while the standard deviations of 28 . e 28

ARE are 3.0, 2.4, 3.2, 5.6, and 2.7 (in days), for D1, D2, D3,
D4, and D5, respectively. The results indicate that the predicted
likelihood of disk failures is close to the actual likelihood. Also,
the maximum absolute values of ARE for D1, D2, D3, and
D5 are smaller than 9, 6, 8, and 6 days, respectively. On the
other hand, the ARE for D4 is up to +20 days. The reason
is that failure symptoms (e.g., sector errors) before failures
for D4 last longer than those for other disk models due to the
older average age [2], making the predicted residual lifetime
for D4 much shorter than the actual one (i.e., the ARE is a
large positive value).

Exp#4 (Impact of FPR thresholds). Machine learning models
can be configured with a higher recall through increasing
the FPR threshold (and vice versa). We study how different
FPR thresholds affect the prediction accuracy, and examine if
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Fig. 4: Exp#2 (Sensitivity of extra label days). Here, we focus on
D2 and D4.

concept-drift adaptation still achieves accuracy gains. We focus
on D2 as the representative dataset and bagging (including Bag
and BA) as the representative algorithms.

Figure 6 shows the prediction accuracy of Bag and BA for
D2 versus the FPR threshold (varied from 0.5% to 2.0%). BA
improves the precision and Fl-score of Bag by 64.0-71.8%
and 32.5-63.3%, respectively, while its recall is less than Bag
by 10.5% when the FPR is 0.5% but becomes higher than Bag
by 6.3% when the FPR is 2.0%. It shows that BA improves
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the precision and F1-score significantly, while preserving the
recall. We also emphasize that the relative differences between
Bag and BA are consistent with our findings in Exp#1. We
make similar observations for other datasets and algorithms
under different FPR thresholds.

Exp#5 (Execution performance of STREAMDFP). We eval-
uate the stream processing performance of STREAMDFP. We
focus on D2, which has the largest disk population (with around
37K disks) among all Backblaze datasets we consider. Note
that for DS, since it is executed on a production server at
Alibaba Cloud, we cannot reveal the hardware setting of the
server for our performance evaluation of STREAMDFP.

We measure the execution time of STREAMDFP on a local
server equipped with a quad-core 3.4 GHz Intel Core i5-7500,
32GiB RAM, and a Toshiba DTO1ACA100 7200 RPM 1 TiB
SATA hard disk. We run STREAMDFP to predict disk failures
in 400 days using the BA algorithm (which achieves the highest
Fl-score), and report the average execution time of one day.
We use single-thread execution for feature extraction, buffering,
online labeling, and prediction for each arriving sample; for
training, we enable multi-threading (with 4 threads) for BA in
MOA [10] to parallelize training across all tree learners.

Table VII shows a breakdown of the per-day execution time
of STREAMDEFP for D2, while the standard deviations of all
five runs are in brackets. The most time-consuming step is
training, while prediction is fast. This is expected, as training
has complicated computation in growing multiple trees with
the samples in recent days. Nevertheless, the execution time for
training remains acceptable in practice. Overall, STREAMDFP
performs training and prediction within 13.5 seconds on the
daily SMART data of 37 K disks. We believe that STREAMDFP
meets the performance need in large-scale disk deployment.

VI. RELATED WORK

Field studies have analyzed the failure characteristics in
production storage environments. Examples include disk re-
placement rates [40], [42], latent sector errors [6], [41], storage

we show the average per-day execution time of STREAMDFP for D2;
the numbers in brackets are standard deviations of all five runs.

subsystem failures [27], data corruption [7], and disk failure
degradations [24]. In particular, these studies characterize the
statistical behaviors of disk failures, such as failure arrival
rates [42], failure correlations [6], [7], [27], [40]-[42], and
degradation signatures [24]. We complement the above field
studies by showing the existence of concept drift in disk failures
from a stream mining perspective. We validate our findings
with the datasets from Backblaze [1] and Alibaba Cloud.

There have been extensive studies on disk failure prediction.
Traditional prediction approaches are based on statistical
techniques, such as Bayesian classifiers [21], hypothesis tests
[25], support vector machines [36], Markov models [45], and
rule-based methods [4], [32]. Recent studies improve the
prediction accuracy via machine learning algorithms, such
as back-propagation neural networks [46], decision trees [29],
gradient boost regression trees [30], [31], and random forests
[33]. RODMAN [22] studies data preprocessing to improve
the prediction accuracy for general machine-learning-based
disk failure prediction approaches. Some studies show how
disk failure prediction facilitates disk replacements [11] and
scrubbing [33], as well as improves cloud service availability
[44]. All the above studies are based on offline prediction and
assume that all training data is available in advance.

The closest related work to ours is [43], which applies
Online Random Forests (ORF) to disk failure classification
and automatically updates labels based on incoming SMART
attributes. However, STREAMDFP considers an inherently
different perspective from ORF-based classification [43]: while
ORF-based prediction focuses on online learning and tackles
the aging issue in the prediction model, STREAMDFP focuses
on stream mining and adapts the prediction model to concept
drift in data streams. STREAMDFP addresses the following
issues that are not considered in [43]: (i) providing a general
framework that supports various stream mining algorithms
(instead of ORF only) and customizes them with concept-drift
adaptation; (ii) considering both classification and regression
(instead of classification only); and (iii) validating its correct-
ness in a significantly larger production dataset in Alibaba
Cloud in addition to the Backblaze dataset.



VII. CONCLUSION

We present STREAMDFP, a general stream mining frame-
work for disk failure prediction with concept-drift adaptation.
STREAMDFP is motivated by the existence of concept drift,
backed by our measurement study on five SMART datasets
from Backblaze and Alibaba Cloud. It also supports a variety
of incremental learning algorithms. Our evaluation of nine
decision-tree-based algorithms on the five SMART datasets
shows that concept-drift adaptation improves the prediction
accuracy significantly. STREAMDFP also achieves high stream
processing performance that is suitable for practical use.
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