
Accelerating Sub-Block Erase in 3D NAND Flash Memory

Hongbin Gong∗, Zhirong Shen∗, Jiwu Shu∗†,
∗Xiamen University, †Tsinghua University

23020201153744@stu.xmu.edu.cn, {shenzr,jwshu}@xmu.edu.cn

Abstract—3D flash memory removes scaling limitations of
planar flash memory, yet it is still plagued by the tedious GC
process due to the “big block problem”. In this paper, we propose
SpeedupGC, a framework that incorporates the characteristics
of data updates into existing sub-block erase designs. The main
idea of SpeedupGC is to guide the hotly-updated data to
the blocks that are about to be erased, so as to speculatively
produce more invalid pages and suppress the relocation overhead.
We conduct extensive trace-driven experiments, showing that
SpeedupGC can averagely reduce 64.7% of the GC latency,
21.8% of the read latency, 17.7% of the write latency, and
11.5% of the write amplification when compared to state-of-the-
art designs.

I. INTRODUCTION

Conventional 2D (or planar) NAND flash memory is now
heavily plagued by the scaling limits to achieve the growth of
storage capacity [18], as simply squeezing more information
bits into a flash cell is hard to compensate the increasing
raw bit error rate. As an alternative, 3D NAND flash memory
(also called 3D flash memory for short) paves a new way to
break the scaling barrier of the planar flash memory through
vertically stacking flash layers [13], [14]. While achieving
larger storage capacity, the “big block” problem of the 3D flash
memory exacerbates the GC efficiency [23]. Generally, when
a GC operation is launched, the controller will select a victim
block (i.e., the block selected to be erased), relocate the valid
pages (i.e., the flash pages storing valid data) of this block, and
finally erase the entire block to make room for future reusage.
Hence, the relocation latency and the erase latency of the
victim blocks collectively contribute to the overall GC latency.
As the big block in a 3D flash memory probably contains a
large number of valid pages, the relocation latency may be
increased.

In view of this, the sub-block erase [8], [21], [22] is
proposed for reducing the relocation latency during the GC
operation. The main idea is to partition a block into multiple
equal-sized sub-blocks and perform GC operations at the sub-
block level, such that only those valid pages of the victim sub-
blocks are required to be migrated (as opposed to migrating all
the valid pages of the entire block in the conventional GC oper-
ations). We carefully examine existing sub-block erase designs
and find that most of them mainly consider (i) the realization
of the sub-block erase via electronic designs [8], [21], [22]

Corresponding author: Zhirong Shen (shenzr@xmu.edu.cn). This work
is supported by Natural Science Foundation of China (No. 62072381,
61832011), CCF-Tencent Open Fund WeBank Special Fund, CCF-Huawei
Innovation Research Plan (CCF2021-admin-270-202102), Zhejiang Lab
(2021KF0AB01), and Xiamen Youth Innovation Fund (3502Z20206052).

and (ii) the selection of the appropriate victim sub-blocks for
gaining high GC efficiency [5], [6], [19]. Nevertheless, how
to leverage the characteristics of data updates to facilitate the
efficiency of the sub-block erase is largely unexplored.

Our motivation is that storage systems often exhibit highly
skewed access characteristics [2], [4]. Hence, by guiding the
hotly-updated data (i.e., the data that are frequently updated in
a short space of time) to the sub-blocks that are more likely
to be erased, we can speculatively decrease the number of
valid pages resided on the victim sub-blocks, hence short-
ening the relocation process (see Section II-B). We design
SpeedupGC, a general framework that can incorporate the
characteristics of data updates into existing sub-block erase
designs. SpeedupGC first classifies the updated data and the
flash blocks based on the hotness degrees and the recycle
benefits 1 (i.e., the space that can be reclaimed per time
unit), respectively. It then directs the data with larger hotness
degrees to the sub-blocks that are believed to gain more recycle
benefits. SpeedupGC also migrates the valid pages based
on the hotness degrees of the corresponding data. To the
best of our knowledge, SpeedupGC is the first work that
incorporates the update characteristics into existing sub-block
erase designs. To summarize, our contributions include:

• We analyze a wide range of real-world traces and demon-
strate that the GC performance can be remarkably im-
proved by taking the characteristics of data updates into
consideration (Section II-B).

• We design SpeedupGC, a general framework that can
seamlessly incorporate the characteristics of data up-
dates into a variety of sub-block erase approaches.
SpeedupGC carefully chooses the destination of the
updated data based on both the hotness degrees and the
recycle benefits of blocks (Section III).

• We implement SpeedupGC in the SSDsim simulator
[11] and conduct extensive evaluations with real-world
traces, showing that SpeedupGC can averagely decrease
64.7% of the GC latency, 21.8% of the read latency,
17.7% of the write latency, and 11.5% of the write
amplification (Section IV).

II. BACKGROUND AND MOTIVATIONS

A. Background

NAND flash memory: Fundamentally, information in NAND
flash memory are recognized through the number of electrons

1Different sub-block erase designs [5], [6] have proposed different formulas
to calculate the recycle benefits, while our approach works for them.

1

Horizontal Layer

Vertical-Layer

Select Lines Word
Lines

Word Lines

Bit Line

x

z

y

Fig. 1. Bird’s eye view of a 3D flash block.

trapped in the basic flash cells (i.e., physical floating gate
transistors) [3]. Flash memory manipulates data via three basic
operations: read, write, and erase. In particular, the read and
write operations are performed in units of flash pages (made
up of multiple cells), while the erase operations are launched
on flash blocks (composed of multiple flash pages). A flash cell
cannot be re-written directly. Flash memory adopts the out-of-
place update manner [24], meaning that the newly updated
data will be directed to the clean flash pages, while those
storing the old data will be treated invalid. In this paper,
we call the out-dated data (resp. page) as the invalid data
(resp. page). Once the remaining available space reaches a pre-
defined threshold (called “GC threshold”), the flash controller
will reclaim the space occupied by the invalid data via the
following steps: (i) selecting a victim block; (ii) relocating the
residual valid pages of this block to other places; and (iii)
erasing this entire victim block for future reuse.

3D NAND flash memory: 3D NAND flash memory [1], [7],
[9], [20] is a new manufacturing technology that realizes the
continuous capacity growth through stacking the flash layers
in the vertical direction. Figure 1 illustrates the architecture of
a 3D flash block, in which five horizontal layers (in orange)
are vertically squeezed into the space between the two select
lines (SLs, which are used to select the corresponding vertical
layer for I/O requests). In this example, each horizontal layer
comprises four word lines (WLs) and a WL further consists
of multiple flash cells for data storage. Therefore, the 3D flash
memory can multiply the flash cells piled up within the given
area, and hence achieve remarkable storage capacity growth.

Sub-block erase: The “big block” in the 3D flash memory
also suffers tedious GC processes, as a victim block is likely
to have more valid pages to be migrated. To reduce the GC
latency, the sub-block erase [8], [21], [22] is proposed to break
a block into multiple fixed-size sub-blocks. It then performs
GC operations at the sub-block level and hence only those
valid pages of the victim sub-blocks need to be relocated.
Erasing a number of sub-blocks within the same block still
calls for almost the same time as erasing an entire block [6].
The sub-block erase also easily adds the interference to the
adjacent horizontal layers [6] (Figure 1), as it may induce
the charge leakage of the flash cells of them and arise the
error occurrence. To alleviate the interference, existing sub-
block erase designs mainly resort to two isolation methods,
namely hardware isolation [6] and software isolation [5].

Sub-block1

Sub-block2

Sub-block3 ② Erase a sub-block

Isolation layer

Isolation layer

Invalid page Valid page Useless page

② Erase a sub-block

① Relocate one page
Sub-block1

Sub-block2

Sub-block3

Sub-block4

② Erase two sub-blocks

① Relocate one page

① Relocate two pages

① Relocate two pages

(a) Hardware isolation (b) Software isolation

Fig. 2. Examples of hardware isolation and software isolation. The sub-block
with dashed lines (in red) denotes the victim sub-block.

Specifically, the hardware isolation reserves two horizontal
layers that sit right above and below each sub-block to serve as
the dedicated isolation layers (i.e., without storing any data),
such that the inference of erasing a sub-block can be absorbed
by the corresponding isolation layers without affecting other
sub-blocks. However, reserving dedicated isolation layers will
introduce storage loss. Figure 2(a) shows an example of the
hardware isolation, which reserves isolation layers (each with
two pages) laid between two sequential sub-blocks. Hence,
it can erase two victim sub-blocks (i.e., sub-block1 and
sub-block3) without affecting the data of sub-block2 .

On the other hand, the software isolation proposes to
proactively relocate the valid pages of the corresponding
adjacent sub-blocks before erasing a given victim sub-block,
such that the storage space can be fully utilized at the expense
of additional relocation overhead. To suppress the relocation
overhead, the software isolation further suggests selecting se-
quential victim sub-blocks that have the largest recycle benefit
(defined as the average latency to reclaim an invalid page).
Figure 2(b) shows an example of the sub-block erase with
the software isolation, where two sequential sub-blocks (i.e.,
sub-block2 and sub-block3) that have the largest recycle
benefit are selected as the victim ones. Besides migrating one
remaining valid pages on sub-block2, the system also has
to relocate the four valid pages resided in the adjacent sub-
blocks (i.e., sub-block1 and sub-block4) before performing
the erase operation.

In this paper, we mainly focus on the sub-block erase with
the software isolation. We also show that our approach works
for the case with the hardware isolation (Section III-E).

B. Motivations

Our observations are two-fold. On one hand, existing sub-
block erase approaches [5], [6], [8], [19], [21], [22] are
most agnostic to the access characteristics, indicating that
they choose victim sub-blocks directly based on the given
footprints of the invalid pages. On the other hand, today’s
storage workloads often exhibit highly skewed access charac-
teristics [2], [4]. Hence, how to leverage the skewed access
characteristics to generate the footprints of the invalid pages,
which favor existing sub-block erase designs, still receives
limited attentions.

Our motivation is that we can proactively produce more
invalid pages in the GC operations by directing the hotly-
updated data to the sub-blocks that are more likely to be erased
in the near future. By doing this, we can speculatively suppress

2

1.
00

0.
38

0.
00

1.
00

0.
29

0.
00

1.
00

0.
24

0.
00

1.
00

0.
24

0.
00

1.
00

0.
33

0.
00

1.
00

0.
25

0.
06

1.
00

0.
44

0.
09

1.
00

0.
32

0.
07

1.
00

0.
38

0.
09

1.
00

0.
37

0.
10

1.
00

0.
42

0.
10

1.
00

0.
33

0.
07

1.
00

0.
38

0.
09

1.
00

0.
56

0.
14

0.0

0.3

0.6

0.9

1.2

2016021620-LUN1

2016021719-LUN0

2016021619-LUN2

2016021614-LUN3

2016021616-LUN6

2016021811-LUN4

2016021918-LUN3

2016021712-LUN3

2016021612-LUN2

2016022008-LUN0

2016021810-LUN2

2016021709-LUN1

2016021909-LUN4

2016021909-LUN6

N
or

m
al

iz
ed

 R
el

oc
at

io
ns

Baseline GSM GSM+

(a) Finding 1: GSM+ can suppress data relocation in GC operations.

1.
00

1.
01 1.
05

1.
00

1.
00 1.

06

1.
00

1.
00 1.
05

1.
00 1.

05
0.

94 1.
00

1.
02

1.
00

1.
00

0.
94

0.
87 1.

00
0.

49
0.

31

1.
00

0.
85

0.
74

1.
00

0.
81

0.
73

1.
00

0.
80

0.
72

1.
00

0.
72

0.
58

1.
00

0.
97

0.
91 1.

00
0.

90
0.

64

1.
00

0.
72

0.
38

0.0

0.3

0.6

0.9

1.2

2016021620-LUN1

2016021719-LUN0

2016021619-LUN2

2016021614-LUN3

2016021616-LUN6

2016021811-LUN4

2016021918-LUN3

2016021712-LUN3

2016021612-LUN2

2016022008-LUN0

2016021810-LUN2

2016021709-LUN1

2016021909-LUN4

2016021909-LUN6

N
or

m
al

iz
ed

 R
ea

d
La

re
nc

y

Baseline GSM GSM+

(b) Finding 2: GSM+ can reduce the overall read latency.

Fig. 3. Trace-driven analysis with hotness-aware updates.

the relocation latency, hence favoring the overall system per-
formance. To demonstrate, we select 14 representative traces
with different volumes of write sizes from a state-of-the-art
trace repository [17]. We track the hotly-updated data using
multiple independent hash functions and a multi-dimensional
hash table [10].

We compare three approaches: the Baseline (which erases
an entire block with the most invalid pages in a GC operation),
GSM [5] (a sub-block erase approach with the software
isolation), and GSM+. GSM+ is amended atop GSM, which
guides hotly-updated data to the sub-blocks to be erased and
applies the same sub-block erase strategy as GSM. We focus
on the read latency and the number of relocated valid pages
in GC operations, which can systematically characterise the
access performance and endurance of the 3D flash memory.
Figure 3 shows the results, and we make two findings.

Finding 1: GSM+ can reduce 84.8% and 94.2% of valid
page relocations on average compared to GSM and the
Baseline, respectively (Figure 3(a)).

Since the hotly-updated data identified are prone to be
updated again in a short space of time, by writing the hotly-
updated data to the sub-blocks that are likely to be erased in
the near future, GSM+ can dramatically reduce the number of
valid pages to be relocated in GC operations.

Finding 2: GSM+ can reduce 12.4% and 21.5% of the
read latency on average compared to GSM and the Baseline,
respectively (Figure 3(b)).

The rationale is that by reducing the number of valid pages
being relocated, GSM+ can greatly shorten the GC latency,
hence decreasing the overall latency for foreground reads.

III. SPEEDUPGC DESIGN

We design SpeedupGC, a framework that incorporates
the update hotness into the sub-block erase operations for
improving the performance of 3D flash memory. SpeedupGC
is a general design that works for both the hardware isolation
and the software isolation. It is built atop the following design

Group 1 Group 2 Group g

Flash chip Flash chip Flash chip Flash chip3D flash memory

MTD
Block Classifier

FTL

•••

Host Interface

LPN of write request

Hotness Identifier Space Allocator

EraseRelocation

Garbage Collector

• • •• • •• • •

Fig. 4. The architecture of SpeedupGC.

primitives: (i) a hotness-aware update algorithm, which directs
the hotly-updated data to the sub-blocks that are more likely to
be erased, so as to speculatively aggravate the space utilization
of the victim sub-blocks; and (ii) a hotness-aware relocation
strategy, which relocates the remaining valid pages of the
victim sub-blocks based on their hotness degrees, so as to
opportunistically reduce the number of valid pages relocated
in next GC operations.

A. Overview of SpeedupGC

Figure 4 depicts the system architecture of SpeedupGC,
which is implemented across the flash translation layer (FTL)
and memory technology device (MTD) layer. SpeedupGC
comprises the following components: (i) a hotness

identifier, which timely records the hotness degrees of the
updated data; (ii) a block classifier, which classifies the
blocks into groups based on their recycle benefits; (iii) a space
allocator, which pinpoints the physical locations (including
the block ID and the sub-block ID) for the incoming data, and
(iv) a garbage collector, which periodically relocates the
valid pages and reclaims the space.

We summarize the workflow of SpeedupGC as follows.
When an update request arrives, the hotness identifier

first gets the hotness degree of the updated data based on
the corresponding logical page number (LPN). The space

allocator then pinpoints the destination to relocate the
updated data. When the number of free pages drops below
a given GC threshold, the garbage collector chooses a
block and relocates the remaining valid pages of the victim
sub-blocks based on their hotness degrees. After the updated
data is persisted to the flash memory, the block classifier

recalculates the recycle benefit of the destination block.

B. Identifying Hotness and Classifying Blocks

Hotness identifier: We elaborate the functionalities of
the hotness identifier and block classifier. Similar
as the previous study [10], the hotness identifier of
SpeedupGC also employs h independent hash functions
(where h ≥ 1) coupled with a multiple dimensional hash table,
so as to record the hotly-updated data in a memory-efficient
way. Hence, when an update request reaches, SpeedupGC
hashes the corresponding logical page number (LPN) into h
entries of the hash table, where the counter of each entry
associated with the LPN is then increased by one. Given an
LPN, SpeedupGC uses the smallest value of the associated
h counters to serve as its hotness degree (see Figure 6).

3

Algorithm 1 Adjustment of block groups
Input: {BG1,BG2, · · · ,BGg} (g block groups)

m (the most blocks that a block group can contain)
B (a block that is updated)
r′ (the updated recycle benefit of B)

Output: The updated block groups
1: procedure MAIN
2: // Pinpoint the block group
3: Set l = g
4: while l >= 1 do
5: if r′ > r∗l then
6: break
7: l = l − 1
8: end if
9: end while

10: // Insert the block into the block group
11: if |BGl| == m then
12: EVICT({BG1,BG2, · · · ,BGl})
13: end if
14: Set BGl = BGl ∪B
15: return {BG1,BG2, · · · ,BGl}
16: end procedure
17: // Evict a block to make room for the insertion
18: function EVICT({BG1,BG2, · · · ,BGl})
19: Set B∗

l = argmin{rl,j |Bl,j ∈ BGl}
20: Set BGl = BGl −B∗

l

21: if |BGl−1| == m then
22: EVICT(BG1,BG2, · · · ,BGl−1)
23: end if
24: Set BGl−1 = BGl−1 ∪B∗

l

25: return {BG1,BG2, · · · ,BGl}
26: end function

The hotness degree of each LPN will decay by half after
performing a given number of updates [10].

SpeedupGC classifies LPNs based on their hotness
degrees. To lessen the metadata management overhead,
SpeedupGC first defines a threshold φ (φ ≥ 1), indicating
that only the LPNs whose hotness degrees are larger than φ
will be treated as hotly-updated. It then establishes g hotness
groups (where g > 1), denoted by {HG1,HG2, · · · ,HGg}.
Let {t1, t2, · · · , tg} be the hotness thresholds for classifying
the LPNs into g hotness groups, where φ = t1 < t2 <
· · · < tg . Hence, an LPN with the hotness degree d can be
classified into the hotness group HGi once ti ≤ d < ti+1

(where 1 ≤ i ≤ g−1) or the hotness group HGg once tg ≤ d.

Block classifier: Except classifying the hotly-updated LPNs,
SpeedupGC also arranges the blocks into g block groups
based on their recycle benefits. Suppose that there are n blocks
in total. We first specify the maximum number of the blocks
that a block group can contain as follows:

m =
⌊ n

g − 1

⌋
− 1. (1)

The configuration of m ensures that each of the g block
groups will definitely contain at least a block 2. We also

2We can easily prove it via contradiction. If there is a block group contains
no block, then there must exist a block group that has more than m blocks,
hence violating our requirement.

Block

Block

Block

•••

Block

Block

Block

•••

Block

Block

Block

•••

Block

Block

Block

•••

Block

Block

Block

•••

Block1

Block2

Recycle benefit

��
∗=4 < ��=4.5<��

∗=5

��
∗

When the recycle benefit increases When the group is full

•••

BG1

��
∗ = 1 ��

∗ = 2 ��
∗ = 3 ��

∗ = 4 ��
∗ = 5

Update Block1
BG2 BG3 BG4 BG5

Fig. 5. Example of adjustment of block groups.

require m ≥ 2g − 3, ensuring that all the n blocks can be
organized into the g block groups (i.e., m×g ≥ n). At the very
beginning, as all the blocks have the same recycle benefits, we
can randomly assign them to the g block groups, ensuring that
each block group contains no more than m blocks. With the
update requests being served, the numbers of invalid pages of
the blocks gradually differ and hence the recycle benefits of
them get diverse. At this time, SpeedupGC will dynamically
adjust the positions of the blocks, ensuring that each block
group still has no more than m blocks. Algorithm 1 elaborates
the detailed steps to find a position for inserting a block in the
groups with smaller indices. If we cannot find such one, we
can seek another one in the groups with larger indices using
similar steps.
Details of Algorithm 1: For a block group BGi (where 1 ≤
i ≤ g), we use r∗i to denote the smallest recycle benefit of
the blocks in BGi. Let B denote a block that is updated and
r′ be its new recycle benefit after being updated. We first
pinpoint the block group to which B should belong by finding
a block group BGl with the largest ID, such that r′ > r∗l
(Lines 2-9). SpeedupGC then checks if the number of blocks
in BGl (represented by |BGl|) is equal to m. If the block
group BGl is full, then SpeedupGC evicts the block whose
has the smallest recycle benefit (i.e., r∗l) in BGl and inserts
B into BGl (Lines 10-14). For the block B∗

l (with the recycle
benefit r∗l) expelled from BGl, SpeedupGC will feed it in the
block group BGl−1 (Lines 19-24). By doing this, Algorithm 1
ensures that the recycle benefit of any block in BGi (where
2 ≤ i ≤ g) is no smaller than that of any block in BGi−1.
Example: Figure 5 shows an example of the adjustment of
block groups. Suppose that the Block1 is updated and the
corresponding recycle benefit changes to r′ = 4.5. We insert
Block1 into the BG4 as r∗4 < r′ < r∗5 . If BG4 is full, we evict
the Block2 with the recycle benefit r∗4 from BG4.

C. Hotness-Aware Update Algorithm

Besides classifying LPNs and blocks, SpeedupGC further
devises a hotness-aware update algorithm, with the aim of
speculatively reducing the number of valid pages to be re-
located for the victim sub-blocks. Suppose that the data of the
LPN in the hotness group HGi (where 1 ≤ i ≤ g) are updated,
the hotness-aware update strategy will prioritize to direct the
updated data to the blocks in the BGi, which has the same
ID as the HGi. To this end, the hotness-aware update strategy
should address the following two questions beforehand: (i)

4

Algorithm 2 Hotness-aware update algorithm
Input: an LPN with data updated
Output: the locations to store the updated data
1: Get the hotness degree d of the LPN
2: // Check if the data of the LPN are hotly-updated
3: if d < φ then
4: Write the data to a randomly selected block
5: return complete
6: end if
7: Get the ID i of the hotness group to which the LPN belongs
8: for each block Bi,j ∈ BGi do
9: for each sub-block S in the candidate victim sub-blocks do

10: if S has free pages then
11: Write the updated data to S
12: return complete
13: end if
14: end for
15: end for
16: for each block Bi,j ∈ BGi do
17: if Bi,j has free pages then
18: Write the updated data to any free page of Bi,j

19: return complete
20: end if
21: end for
22: Write data to any block of the neighboring block groups with

free pages
23: return complete

which block in BGi should be selected; and (ii) which explicit
sub-block of the selected block should be chosen to keep the
updated data. Conversely, if we cannot find the LPN in the
hotness group (i.e., the data are cold as the hotness degree
is smaller than φ), we choose to write the updated data in a
randomly selected block.

Algorithm 2 shows the main procedures to direct the up-
dated data. We first identify the LPN that the update data
reside and also the associated hotness group. We then pinpoint
the corresponding block group (Line 7) and scan each block
in the selected block group. We always prioritize to write the
hotly-updated data to a block of the designated block group,
whose candidate victim sub-blocks (i.e., the victim sub-blocks
currently identified if the sub-block is erased right now) still
have free pages (Lines 8-15). If we cannot find such a block,
then we turn to search any block that still has free pages in
this block group (Lines 16-21). If all the blocks in this block
group do not have any free page, then we will pick out any one
with free pages from the neighbouring block groups (Line 22).
Example: Figure 6 shows an example of the hotness-aware
update algorithm with four independent hash functions. Given
an LPN whose data are updated, we first identify its hotness
degree as five (i.e., the smallest counter of the LPN). We then
pinpoint that the LPN resides in HG2 based on its hotness
degree. Hence, we prioritize to direct the updated data to the
block of BG2.

D. Hotness-Aware Relocation Strategy

When the ratio of free space is smaller than the given GC
threshold, SpeedupGC will trigger the GC operation by se-
lecting a number of victim sub-blocks for being erased within

LPN

f1(x)

f2(x)

f3(x)

f4(x)

Get
minimum

t2 ≤ d ≤ t3

Hash
function

Counter

4→5

5→6

3

2

6→7

2

7→8

d = 5

t1 = 2, t2 = 4, t3 = 6

Update
request

Block

HG3

HG2

LPN

LPN

LPN

LPN

LPN

LPN

HG1

• • •

• • •

• • •

Block

BG2

• • •

Fig. 6. Example of the hotness-aware update algorithm.

2.59 3.42 4.36 5.31 6.73
8.56

10.35 11.63 12.98 14.67
17.47

21.62
25.14

32.82

0

10

20

30

40

2016021620-LUN1

2016021719-LUN0

2016021619-LUN2

2016021614-LUN3

2016021616-LUN6

2016021811-LUN4

2016021918-LUN3

2016021712-LUN3

2016021612-LUN2

2016022008-LUN0

2016021810-LUN2

2016021709-LUN1

2016021909-LUN4

2016021909-LUN6

Workloads

W
rit

e
S

iz
e

(G
B

)

Fig. 7. Characteristic of the select traces [17].

a block. SpeedupGC devises a hotness-aware relocation
strategy, whose main idea is to relocate the valid pages based
on their hotness degrees, so as to opportunistically suppress
the data relocations in next GC operations. Specifically, given
a number of victim sub-blocks within the same block, we
scan each valid page of them. We still rely on the hotness

identifier to get the hotness degree and also the hotness
group of the corresponding LPN. If the data of the valid page
to be relocated are hotly-updated, we give higher priority to
migrate them to another block within the block group that has
the same ID as the hotness group. On the other hand, if the
data to be relocated are cold, then SpeedupGC migrates them
to a randomly selected block.

E. Analysis

Apply to hardware isolation: SpeedupGC can be effort-
lessly extended to the sub-block erase with the hardware
isolation. Compare to the software isolation, the hardware
isolation (e.g., the performance booster [6]) also differs in the
calculation of the recycle benefit. For example, the perfor-
mance booster [6] prioritizes to select the victim sub-blocks
with more invalid pages. Hence, we can organize the blocks
into groups based on the number of invalid sub-blocks (i.e., the
sub-blocks with all invalid pages) they have. We then employ
the hotness-aware update and relocation strategies to direct the
updated data, and migrate the remaining valid pages.
Computational complexity: We first analyze the computa-
tional complexity of Algorithm 1. The complexity to pinpoint
the block group (Lines 4-9 in Algorithm 1) is O(g), where g is
the number of groups. Let n be the number of blocks. Evicting
a block from a group (Lines 18-26) takes the complexity of
O(n), as it may recursively scan each block in the worst case.
So the computational complexity of Algorithm 1 is O(n).

For Algorithm 2, it has to scan each block and the corre-
sponding sub-block. Suppose that a block comprises s sub-
blocks. As a block group contains no more than m blocks,
the complexity is O(ms).

5

1.
00

0.
94

0.
86

1.
00

0.
82

0.
42

1.
00

0.
78

0.
39

1.
00

0.
81

0.
33

1.
00

0.
89

0.
55

1.
00

0.
71

0.
16

1.
00

0.
72

0.
23

1.
00

0.
72

0.
14

1.
00

0.
76

0.
14

1.
00

0.
71

0.
16

1.
00

0.
80

0.
25

1.
00

0.
84

0.
18

1.
00

0.
85

0.
21

1.
00

0.
94

0.
48

0.0

0.3

0.6

0.9

1.2

2016021620-LUN1

2016021719-LUN0

2016021619-LUN2

2016021614-LUN3

2016021616-LUN6

2016021811-LUN4

2016021918-LUN3

2016021712-LUN3

2016021612-LUN2

2016022008-LUN0

2016021810-LUN2

2016021709-LUN1

2016021909-LUN4

2016021909-LUN6

N
or

m
al

iz
ed

 G
C

 L
at

en
cy

Baseline GSM SpeedupGC

Fig. 8. Experiment 1 (GC latency).

1.
00

1.
01

1.
00

1.
00

1.
00

0.
99

1.
00

1.
00

0.
98

1.
00 1.

05
0.

95 1.
00

1.
02

0.
98

1.
00

0.
94

0.
82

1.
00

0.
50

0.
29

1.
00

0.
85

0.
71

1.
00

0.
81

0.
65

1.
00

0.
80

0.
67

1.
00

0.
71

0.
54

1.
00

0.
97

0.
83

1.
00

0.
91

0.
62

1.
00

0.
71

0.
36

0.0

0.3

0.6

0.9

1.2

2016021620-LUN1

2016021719-LUN0

2016021619-LUN2

2016021614-LUN3

2016021616-LUN6

2016021811-LUN4

2016021918-LUN3

2016021712-LUN3

2016021612-LUN2

2016022008-LUN0

2016021810-LUN2

2016021709-LUN1

2016021909-LUN4

2016021909-LUN6

N
or

m
al

iz
ed

 R
ea

d
La

te
nc

y

Baseline GSM SpeedupGC

Fig. 9. Experiment 2 (Read latency).

RAM overhead: SpeedupGC keeps a multiple dimensional
hash table for tracking update hotness. It also maintains the
information about the hotness group and block group. Based
on the configurations borrowed from a real product [12] (see
Section IV-A), we have measured that SpeedupGC merely
induces 510.0 KB of RAM overhead for a 269 GB SSD.

IV. PERFORMANCE EVALUATION

We finally conduct extensive experiments to uncover the
property, sensitivity, and generality of SpeedupGC. Our
major findings are concluded as follows: (i) SpeedupGC can
reduce 21.8% of the read latency, 17.7% of the write latency,
64.7% of the GC latency, and 11.5% of the write amplification
on average (Section IV-B); (ii) SpeedupGC can sustain its
advantages under different parameters (Section IV-C); and (iii)
SpeedupGC is a general design that also works for the sub-
block erase with the hardware isolation (Section IV-D).

A. Experimental Setup

Preparation: We implement SpeedupGC in the trace-driven
simulator SSDsim [11]. We borrow the major configurations
from a 64-stacked 3D NAND flash [12]. Specifically, the size
of the flash memory is 269 GB with two channels, where each
channel contains two chips with one die per chip. Each die
is composed of 5,748 blocks and each block consists of 768
pages with 16 KB per page. We configure the program, read,
and erase latencies as 700µs, 60µs and 3,500µs, respectively
[12]. Besides, we select seven independent hash functions for
hotness degree maintenance and treat an LPN as hotly-updated
if its hotness degree is no smaller than two (Section III-B). We
separate the LPNs and the blocks into seven groups. We run
our experiments on a server with Ubuntu 18.04.1 LTS, which
is equipped with Intel Xeon CPU E3-1225 v6 (3.30GHz) and
16 GB RAM.

Default configurations: Unless otherwise specified, we select
the following configurations throughout the evaluation. We set
the number of sub-blocks that a block comprises to 16, which

1.
00

1.
02

1.
01

1.
00

1.
02

0.
98

1.
00

1.
00

0.
96 1.
00 1.
04

0.
96 1.
00

1.
01

0.
98

1.
00

0.
95

0.
86

1.
00

0.
64

0.
45

1.
00

0.
87

0.
74

1.
00

0.
83

0.
69

1.
00

0.
85

0.
74

1.
00

0.
76

0.
61

1.
00

0.
98

0.
89 1.

00
0.

92
0.

66

1.
00

0.
78

0.
50

0.0

0.3

0.6

0.9

1.2

2016021620-LUN1

2016021719-LUN0

2016021619-LUN2

2016021614-LUN3

2016021616-LUN6

2016021811-LUN4

2016021918-LUN3

2016021712-LUN3

2016021612-LUN2

2016022008-LUN0

2016021810-LUN2

2016021709-LUN1

2016021909-LUN4

2016021909-LUN6

N
or

m
al

iz
ed

 W
rit

e
La

te
nc

y

Baseline GSM SpeedupGC

Fig. 10. Experiment 3 (Write latency).

1.
01

1.
00

1.
00 1.
06

1.
02

1.
00 1.
06

1.
01

1.
00 1.
09

1.
02

1.
00

1.
03

1.
01

1.
00

1.
22

1.
05

1.
00

1.
57

1.
22

1.
02

1.
27

1.
07

1.
00

1.
32

1.
10

1.
00

1.
29

1.
09

1.
00

1.
39

1.
15

1.
01 1.

18
1.

05
1.

00

1.
24

1.
08

1.
00

1.
40

1.
21

1.
03

0.0

0.5

1.0

1.5

2.0

2016021620-LUN1

2016021719-LUN0

2016021619-LUN2

2016021614-LUN3

2016021616-LUN6

2016021811-LUN4

2016021918-LUN3

2016021712-LUN3

2016021612-LUN2

2016022008-LUN0

2016021810-LUN2

2016021709-LUN1

2016021909-LUN4

2016021909-LUN6

W
rit

e
A

m
pl

ifi
ca

tio
n

Baseline GSM SpeedupGC

Fig. 11. Experiment 4 (Write amplification).

is also considered in previous studies [5], [6]. We set the GC
threshold to 20%.

Counterparts: We compare SpeedupGC against another
three erase approaches: (i) the Baseline (which erase a block in
a GC operation), (ii) the greedy scanning method [5] (GSM,
a sub-block erase with the software isolation), and (iii) the
performance booster [6] (PB, a sub-block erase with the
hardware isolation).

Methodology: We select 14 block-level I/O traces with differ-
ent volumes of updated data from a state-of-the-art repository
[17], which is collected from an enterprise virtual desktop
infrastructure. To trigger GC operations, we warm up the flash
memory via simply writing random data until the residual
storage capacity is smaller than GC threshold. We then replay
each trace, and record the average latencies to complete the
read, write, and GC operations. For clear presentation, we nor-
malize the experimental results (except the write amplification)
to those of the Baseline.

B. Experiments on Property

Exp# 1 (GC latency): We first compare the average GC
latency, which comprises the erase latency and the relocation
latency. Figure 8 shows that SpeedupGC can reduce 67.8%
and 61.6% of GC latencies when compared to the Baseline and
GSM, respectively. Such significant reductions are a result of
SpeedupGC’s advantage on mitigating the data relocation.

Exp# 2 (Read latency): We then assess the read latency. Fig-
ure 9 shows that SpeedupGC introduces the lowest latency,
where it can cut down 25.9% and 17.6% of the read latency
on average compared to the Baseline and GSM, respectively.
The savings should attribute to the alleviation of the data re-
locations in the GC operations. We also observe that for some
traces (e.g., 2016021719-LUN0 and 2016021619-LUN2), the
reduction of the read latency brought by SpeedupGC is
trivial. We uncover that the root cause is the average time
interval between two successive read requests in these traces
is longer than the time taken in GC operations.

6

1.
00

1.
00

1.
00

1.
00

0.
99

0.
99

1.
00

1.
00

1.
02

1.
02 1.
04

0.
97

0.
98 1.
01

1.
00

0.
91

0.
85

0.
85

0.
70

0.
71 0.
74

1.
00

0.
81

0.
71

0.
69

0.
54

0.
54

0.
56

1.
00

0.
93

0.
71

0.
63

0.
34

0.
36 0.
41

0.0

0.3

0.6

0.9

1.2

2016021719-LUN0

2016021616-LUN6

2016021712-LUN3

2016021810-LUN2

2016021909-LUN6

N
or

m
al

iz
ed

 R
ea

d
La

te
nc

y
Baseline
GSM-8
GSM-16

GSM-32
SpeedupGC-8
SpeedupGC-16

SpeedupGC-32

1.
00

1.
02

1.
02

1.
04

0.
98

0.
98 1.
01

1.
00

1.
01

1.
01

1.
03

0.
98

0.
98

1.
01

1.
00

0.
92

0.
87

0.
87

0.
74

0.
74 0.
77

1.
00

0.
85

0.
76

0.
74

0.
61

0.
61

0.
63

1.
00

0.
95

0.
78

0.
72

0.
47

0.
50 0.
54

0.0

0.3

0.6

0.9

1.2

2016021719-LUN0

2016021616-LUN6

2016021712-LUN3

2016021810-LUN2

2016021909-LUN6

N
or

m
al

iz
ed

 W
rit

e
La

te
nc

y

Baseline
GSM-8
GSM-16

GSM-32
SpeedupGC-8
SpeedupGC-16

SpeedupGC-32

1.
06

1.
03

1.
02

1.
01

1.
00

1.
02

1.
00

1.
03

1.
01

1.
01

1.
01

1.
00

1.
01

1.
00

1.
27

1.
13

1.
07

1.
04

1.
00

1.
01

1.
00

1.
39

1.
25

1.
15

1.
08

1.
02

1.
02

1.
00

1.
40

1.
32

1.
21

1.
14

1.
07

1.
02

1.
02

0.0

0.3

0.6

0.9

1.2

1.5

2016021719-LUN0

2016021616-LUN6

2016021712-LUN3

2016021810-LUN2

2016021909-LUN6

W
rit

e
A

m
pl

ifi
ca

tio
n

Baseline
GSM-8
GSM-16

GSM-32
SpeedupGC-8
SpeedupGC-16

SpeedupGC-32

(a) Read latency. (b) Write latency. (c) Write amplification.

Fig. 12. Experiment 5 (Impact of number of sub-blocks within a block). The smaller value is better.

1.
00

1.
01

1.
09

1.
00

1.
01

1.
02

1.
00

1.
00

1.
00

1.
00

1.
04

1.
23

1.
04

1.
06

1.
12

1.
02

1.
02

1.
02

1.
00 1.
33

2.
75

1.
02

1.
14 1.

66
0.

94
0.

94
1.

08

1.
00 1.

64
5.

04
0.

95 1.
17

2.
25

0.
85

0.
88 1.
28

1.
00

2.
29

8.
54

0.
97 1.

62
4.

58
0.

67
0.

84
2.

30

0

2

4

6

8

10

2016021719-LUN0

2016021616-LUN6

2016021712-LUN3

2016021810-LUN2

2016021909-LUN6

N
or

m
al

iz
ed

 R
ea

d
La

te
nc

y

Baseline-10%
Baseline-20%
Baseline-30%

GSM-10%
GSM-20%
GSM-30%

SpeedupGC-10%
SpeedupGC-20%
SpeedupGC-30%

1.
00

1.
03 1.
23

1.
03

1.
04

1.
09

1.
01

1.
01

1.
01

1.
00

1.
03 1.
15

1.
03

1.
04

1.
08

1.
01

1.
01

1.
01

1.
00 1.

28
2.

32
1.

01
1.

12 1.
54

0.
95

0.
95

1.
07

1.
00 1.

48
3.

62
0.

96 1.
12

1.
87

0.
88

0.
91 1.

20

1.
00

1.
80

4.
78

0.
99 1.

41
2.

94
0.

77
0.

89
1.

73

0

2

4

6

2016021719-LUN0

2016021616-LUN6

2016021712-LUN3

2016021810-LUN2

2016021909-LUN6
N

or
m

al
iz

ed
 W

rit
e

La
te

nc
y

Baseline-10%
Baseline-20%
Baseline-30%

GSM-10%
GSM-20%
GSM-30%

SpeedupGC-10%
SpeedupGC-20%
SpeedupGC-30%

1.
00 1.
06

1.
40

1.
00

1.
02 1.
09

1.
00

1.
00

1.
00

1.
00

1.
03 1.

24
1.

00
1.

01
1.

05
1.

00
1.

00
1.

00 1.
06 1.

27
1.

78
1.

01 1.
07

1.
39

1.
00

1.
00

1.
05 1.
13

1.
39

2.
12

1.
03 1.

15
1.

66
1.

00
1.

01 1.
21

1.
15 1.

40
2.

13
1.

05 1.
21

1.
94

1.
00

1.
03

1.
58

0.0

0.5

1.0

1.5

2.0

2.5

2016021719-LUN0

2016021616-LUN6

2016021712-LUN3

2016021810-LUN2

2016021909-LUN6

W
rit

e
A

m
pl

ifi
ca

tio
n

Baseline-10%
Baseline-20%
Baseline-30%

GSM-10%
GSM-20%
GSM-30%

SpeedupGC-10%
SpeedupGC-20%
SpeedupGC-30%

(a) Read latency. (b) Write latency. (c) Write amplification.

Fig. 13. Experiment 6 (Impact of GC threshold).

Exp# 3 (Write latency): We then evaluate the average write
latency. Figure 10 shows that SpeedupGC can reduce 21.2%
and 14.2% of the write latencies on average, when compared
to the Baseline and GSM, respectively. The underlying reason
is that SpeedupGC can significantly shorten the GC process
by decreasing the number of valid pages being migrated and
hence mitigate the write stalls.

Besides, the Baseline induces the highest write latency for
most of the traces, as it always erases an entire block in a GC
operations and needs to relocate the most valid pages.

Exp# 4 (Write amplification): We also measure the write
amplification, which is defined as the ratio calculated via di-
viding the amount of data actually performed in the underlying
flash device by that written from the host [19]. Hence, the
write amplification is definitely no smaller than one (if we do
not consider data deduplication and compression). Figure 11
shows that SpeedupGC reaches the smallest write amplifica-
tion (i.e., 1.01 on average) among the three approaches, while
the Baseline induces the largest one (i.e., 1.22 on average).
The rationale lies in that by performing the GC operation at
a finer granularity, SpeedupGC can avoid unnecessary data
relocations in the GC operations. This experiment can also to
some extent show that SpeedupGC can favor the endurance
of the flash memory.

C. Experiments on Sensitivity

We then assess the sensitivity by varying the parameters
using in the evaluation. We select five typical traces from
Figure 7 with different volumes of data written.

Exp# 5 (Impact of number of sub-blocks in a block): We
first evaluate the impact of the number of sub-blocks in a
block, which is varied from 8 to 32. Figure 12 shows the read
latency, the write latency, and the write amplification under
different numbers of sub-blocks in a block.

We can make three findings. First, the read and write
latencies of GSM both decrease with the number of sub-blocks
comprised in a block, while those of SpeedupGC showcase

an opposite trend. The root cause analysis shows that when
the number of sub-blocks increases, GSM has more options
to select the more appropriate victim sub-blocks with higher
recycle benefit, hence favoring the read and write performance.
On the other hand, SpeedupGC has already touched the
lowest read and write latencies when a block is partitioned
into eight blocks; it needs more computational time when
the number of sub-blocks within a block increases, hence
conversely calling for higher read and write latencies.

Second, the write amplifications in GSM and SpeedupGC
both drop when the number of sub-blocks in a block increases.
The reason is that the erase granularity is finer when a block
is partitioned into more sub-blocks, and hence we can avoid
more unneeded data relocations in GC operations.

Third, SpeedupGC reaches the lowest read and write
latencies, and the smallest write amplification. To average, it
reduces 23.4% of the read latency, 19.3% of the write latency,
and 11.8% of the write amplification when compared to the
Baseline and GSM.

Exp# 6 (Impact of GC threshold): We further uncover the
impact of the GC threshold. We vary the GC threshold from
10% to 30%. Figure 13 shows the results.

Our observations are two-fold. First, the read and write
latencies both increase with the GC threshold (Figure 13(a)
and Figure 13(b)). We identify the reason is that when the
GC threshold is larger, the system needs to migrate more
valid pages (see Figure 13(c)), hence deteriorating the access
performance. Second, SpeedupGC still causes the lowest
read and write latencies, and the write amplification under
different GC thresholds.

D. Experiment on Generality

Exp# 7 (Generality): We finally show that SpeedupGC also
works for PB [6] (Section III-E). We select five traces from
Figure 7 and measure the performance of the Baseline, PB, and
SpeedupGC. Figure 14 shows that SpeedupGC reduces the
read latency by -0.4-56.9%, the write latency by 0.5-45.1%,

7

1.
00

0.
99

0.
98 1.
05

1.
05

1.
05

1.
05

1.
05

1.
05

1.
00

0.
89

0.
76

1.
37

1.
24

1.
10

1.
37

1.
24

1.
10

1.
00

1.
01

1.
00 1.

11
1.

07
1.

04 1.
11

1.
07

1.
04

1.
00

0.
77

0.
59

1.
53

1.
43

1.
20

1.
53

1.
43

1.
20

1.
00

0.
87

0.
43

1.
54 1.
58

1.
24

1.
54 1.
58

1.
24

2016021616-LUN6 2016021712-LUN3 2016021719-LUN0 2016021810-LUN2 2016021909-LUN6

Read Latency

Write
 Latency

Write
 Amplific

ation

Read Latency

Write
 Latency

Write
 Amplific

ation

Read Latency

Write
 Latency

Write
 Amplific

ation

Read Latency

Write
 Latency

Write
 Amplific

ation

Read Latency

Write
 Latency

Write
 Amplific

ation
0.0

0.4

0.8

1.2

1.6

2.0
R

es
ul

ts
Baseline PB SpeedupGC

Fig. 14. Experiment 7 (Generality).

and the write amplification by 0.3-21.7% when compared to
the Baseline and PB.

V. RELATED WORK

The concept of partial erase had been proposed in the planar
flash memory [15], [16] and begins to receive tremendous
attentions when 3D flash memory is widely deployed.

Some studies focus on the realization of sub-block erase
with electronic designs. D’Abreu et al. [8] propose to elec-
trically isolate sub-blocks for enabling the sub-block erase
without interference. However, it needs additional hardware
support. Oh et al. [21] and Kim et al. [22] relieve the erase
interference by reducing the voltage differences between the
victim sub-blocks and their adjacent ones, but it may come
with reliability flaws (e.g., incomplete erase or climbing raw
bit error rates).

Some approaches also consider how to select the appropriate
victim sub-blocks. Chen et al. [6] prioritize to select the
ones with more invalid pages. However, it requires to reserve
dedicated word lines to serve as the isolation layers for
absorbing the erase interference, hence leading to storage
loss. GSM [5] selects the sequential victim sub-blocks and
migrating the valid pages resided on the adjacent sub-blocks to
resist interference. It avoids storage loss at the cost of inducing
additional data relocation. PEN [19] is an architectural design
to enable partial-erase. It can adaptively find the optimal erase
granularity for both the block-level FTL and hybrid FTL.

All above studies neglect how to leverage the characteristics
of upper-layer’s access to improve the efficiency of sub-block
erase. SpeedupGC fills in this blank by carefully directing the
hotly-updated data, so as to produce the footprints of invalid
pages that favor the performance of the sub-block erase.

VI. CONCLUSION

This paper presents SpeedupGC, an efficient sub-block
erase approach for 3D flash memory. The design principle
is to classify the updated data based on their hotness degrees
and separate the blocks based on their recycle benefits. It then
carefully directs the updated data to the destination sub-blocks,
so as to speculatively decrease the number of valid pages to be
migrated in next GC operations. We implement SpeedupGC
and conduct extensive performance evaluation with 14 real-
world traces, demonstrating the effectiveness and generality
of SpeedupGC.

REFERENCES

[1] P. Arya. A Survey of 3D Nand Flash Memory. EECS Int’l Graduate
Program, National Chiao Tung University, 11, 2012.

[2] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny.
Workload Analysis of A Large-Scale Key-Value Store. In Proc. of ACM
SIGMETRICS, 2012.

[3] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti. Introduction to
flash memory. Proceedings of the IEEE, 91(4):489–502, 2003.

[4] P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Patterson.
Characterizing, Modeling, and Generating Workload Spikes for Stateful
Services. In Proc. of ACM SoCC, 2010.

[5] H.-Y. Chang, C.-C. Ho, Y.-H. Chang, Y.-M. Chang, and T.-W. Kuo.
How to Enable Software Isolation and Boost System Performance with
Sub-block Erase over 3D Flash Memory. In Proc. of IEEE/ACM/IFIP
CODES+ISSS, 2016.

[6] T.-Y. Chen, Y.-H. Chang, C.-C. Ho, and S.-H. Chen. Enabling Sub-
Blocks Erase Management to Boost the Performance of 3D NAND Flash
Memory. In Proc. of ACM DAC, 2016.

[7] J. Choi and K. S. Seol. 3D Approaches for Non-Volatile Memory.
In Proc. of 2011 Symposium on VLSI Technology-Digest of Technical
Papers, 2011.

[8] M. A. d’Abreu. Partial Block Erase for A Three Dimensional (3D)
Memory, May 19 2015. US Patent 9,036,428.

[9] Y.-H. Hsiao, H.-T. Lue, T.-H. Hsu, K.-Y. Hsieh, and C.-Y. Lu. A Critical
Examination of 3D Stackable NAND Flash Memory Architectures by
Simulation Study of the Scaling Capability. In Proc. of IEEE IMW,
2010.

[10] J.-W. Hsieh, T.-W. Kuo, and L.-P. Chang. Efficient Identification of Hot
Data for Flash Memory Storage Systems. ACM Transactions on Storage,
2(1):22–40, 2006.

[11] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang. Performance
Impact and Interplay of SSD Parallelism through Advanced Commands,
Allocation Strategy and Data Granularity. In Proc. of ACM ICS, 2011.

[12] C. Kim, D.-H. Kim, W. Jeong, H.-J. Kim, I. H. Park, H.-W. Park, J. Lee,
J. Park, Y.-L. Ahn, J. Y. Lee, et al. A 512-Gb 3-b/Cell 64-Stacked
WL 3-D-NAND Flash Memory. IEEE Journal of Solid-State Circuits,
53(1):124–133, 2017.

[13] J. Kim, A. J. Hong, S. M. Kim, K.-S. Shin, E. B. Song, Y. Hwang,
F. Xiu, K. Galatsis, C. O. Chui, R. N. Candler, et al. A Stacked Memory
Device on Logic 3D Technology for Ultra-High-Density Data Storage.
Nanotechnology, 22(25):254006, 2011.

[14] J. Kim, A. J. Hong, S. M. Kim, E. B. Song, J. H. Park, J. Han, S. Choi,
D. Jang, J.-T. Moon, and K. L. Wang. Novel Vertical-Stacked-Array-
Transistor (VSAT) for Ultra-High-Density and Cost-Effective NAND
Flash Memory Devices and SSD (Solid State Drive). In Proc. of 2009
Symposium on VLSI Technology, 2009.

[15] J.-k. Kim. Partial Block Erase Architecture for Flash Memory, Sept. 23
2014. US Patent 8,842,472.

[16] J.-K. Kim, H.-B. Pyeon, H. Oh, R. Schuetz, and P. Gillingham. Low
Stress Program and Single Wordline Erase Schemes for NAND Flash
Memory. In Proc. of IEEE NVSMW, 2007.

[17] C. Lee, T. Kumano, T. Matsuki, H. Endo, N. Fukumoto, and M. Sug-
awara. Understanding Storage Traffic Characteristics on Enterprise
Virtual Desktop Infrastructure. In Proc. of ACM SYSTOR, 2017.

[18] Y. Li and K. N. Quader. NAND Flash Memory: Challenges and
Opportunities. Computer, 46(8):23–29, 2013.

[19] C.-y. Liu, J. Kotra, M. Jung, and M. Kandemir. PEN: Design and
Evaluation of Partial-Erase for 3D NAND-Based High Density SSDs.
In Proc. of USENIX FAST, 2018.

[20] A. Nitayama and H. Aochi. Vertical 3D NAND Flash Memory
Technology. ECS Transactions, 41(7):15, 2011.

[21] E. C. Oh and J. Kong. Nonvolatile Memory Device and Sub-Block
Managing Method thereof, Feb. 24 2015. US Patent 8,964,481.

[22] S. H. I. Se-Hyun Kim. Erasing Method of Non-Volatile Memory Device,
2015. US Patent 9,025,389.

[23] C. Sun, A. Soga, T. Onagi, K. Johguchi, and K. Takeuchi. A Workload-
Aware-Design of 3D-NAND Flash Memory for Enterprise SSDs. In
Proc. of IEEE ISQED, 2014.

[24] K. Zhou, S. Hu, P. Huang, and Y. Zhao. LX-SSD: Enhancing the
Lifespan of NAND Flash-Based Memory via Recycling Invalid Pages.
In Proc. of IEEE MSST, 2017.

8

	Introduction
	background and motivations
	Background
	Motivations

	SpeedupGC Design
	Overview of SpeedupGC
	Identifying Hotness and Classifying Blocks
	Hotness-Aware Update Algorithm
	Hotness-Aware Relocation Strategy
	Analysis

	Performance Evaluation
	Experimental Setup
	Experiments on Property
	Experiments on Sensitivity
	Experiment on Generality

	Related Work
	Conclusion
	References

