
Seek-Efficient I/O Optimization in Single Failure
Recovery for XOR-Coded Storage Systems

Zhirong Shen, Jiwu Shu,Member, IEEE, Patrick P. C. Lee, and Yingxun Fu

Abstract—Erasure coding provides an effective means for storage systems to protect against disk failures with low redundancy. One

important objective for erasure-coded storage systems is to speed up single disk failure recovery. Previous approaches reduce the

amount of read data for recovery by reading only a small subset of data. However, they often incur high disk seeks, which may negate

the resulting recovery performance. We propose SIOR, a seek-efficient I/O recovery algorithm for improving the performance of single

disk failure recovery. SIOR carefully balances the trade-off between the amount of read data and the number of disk seeks by

considering the data layout at the multi-stripe level. It then greedily determines the data to read for recovery using Tabu search.

Experiments show that SIOR achieves similar performance to the brute-force enumeration method while keeping high search

efficiency. Also, SIOR reduces 31:8 � 65:1 percent of disk seeks during recovery and provides up to 150.0 percent recovery speed

improvement, when compared to a state-of-the-art greedy recovery approach.

Index Terms—XOR-Coded storage systems, single failure fecovery, disk seeks, repair traffic, greedy algorithm

Ç

1 INTRODUCTION

DISK failures are commonplace in large-scale storage sys-
tems [2], and hence protecting data with redundancy is

critical to provide fault tolerance guarantees. Given that
replication has high storage overhead and aggravates the
operational cost of storage, erasure coding is increasingly
adopted in commercial storage systems (e.g., Azure [3] and
Facebook [4], [5]). The core idea of erasure coding is to take
original pieces as inputs and encode them into redundant
pieces, where the original and redundant pieces collectively
form a stripe, such that the original pieces can be recon-
structed from any sufficient number of original/redundant
pieces within a stripe (see Section 2.1 for details). A storage
system organizes data in different stripes, each of which is
independently encoded and operated by erasure coding. It
distributes the original/redundant pieces of each stripe
across different disks, so as to tolerate multiple disk failures.

Although erasure coding tolerates multiple disk failures,
single disk failures dominate over 90 percent of failure events
in practice [2], [4], [6]. Conventional recovery for single (disk)
failures often needs to read a considerable amount of surviv-
ing data. To reduce the amount of read data during single fail-
ure recovery, researchers propose a spate of solutions [6], [7],
[8], [9], [10], [11], which can be categorized as follows:

1) New constructions of RAID-6 codes that tolerate
double failures, such as HDP Code [10], F-MSR

Code [12], HV Code [11], which read less data for
recovery than existing RAID-6 codes.

2) Optimization techniques for specific codes, such asRDP
Code (by [7]) and X-Code (by [13]), which provide a
provably lower bound of the amount of read data.

3) General optimization techniques for any erasure
codes [6], [9], [14].

Although these studies effectively reduce the amount of
read data for recovery, they achieve this by reading and cor-
relating different portions of a stripe to reconstruct the
failed data. This leads to additional disk seeks,1 which can
negate the actual recovery performance. A disk seek needs
to move the mechanic disk head to the position where the
accessed data resides, and its overhead is generally larger
than that of transferring the same size of accessed data.
However, most existing studies do not take into account the
disk seek overhead in their recovery solutions. Some studies
mitigate the disk seek overhead by assuming large-size I/O
units (e.g., 16 MB [6], [9], [11], [14], [16], [17]), yet traditional
file systems often operate on small-size disk blocks (e.g.,
4 � 16 KB [18], [19], [20]). How to balance the trade-off of
different block sizes between normal I/O performance and
recovery performance remains unexplored.

In this paper, we examine the seek-efficient I/O optimiza-
tion problem of single failure recovery for any XOR-based era-
sure code, whose encoding and decoding operations are
purely XORoperations.Our observation is that previous stud-
ies only focus on the recovery at the single stripe level, yet stor-
age systems typically organize data in stripes [21]. Thus, by
collectively examining the data layouts ofmultiple stripes, we
can reduce the number of disk seeks in recovery. To this end,
we propose SIOR, a Seek-efficient I/O Recovery algorithm for
a multi-stripe single failure recovery, such that it not only
reduces the amount of read data, but also reduces the number

� Z. Shen, J. Shu, and Y. Fu are with theDepartment of Computer Science and
Technology, Tsinghua University, Beijing 100084, China. E-mail: zhirong.
shen2601@gmail.com, shujw@tsinghua.edu.cn, mooncape1986@126.com.

� P.P.C. Lee is with the Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong.
E-mail: pclee@cse.cuhk.edu.hk.

Manuscript received 23 Jan. 2016; revised 28 May 2016; accepted 1 July 2016.
Date of publication 13 July 2016; date of current version 15 Feb. 2017.
Recommended for acceptance by M. Steinder.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2016.2591040

1. We use the term “seeks” to collectively refer to seeks and rotations
[15].

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 3, MARCH 2017 877

1045-9219� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

of disk seeks. SIOR is suitable for the storage systems that are
sensitive to both repair traffic (i.e., the amount of read data for
recovery) and disk seeks for the data reconstruction.

SIOR can be decomposed into two stages. In the first
stage, SIOR finds an initial recovery solution that can
rebuild the lost data at the multi-stripe level and satisfies
the requirements on the data reduction. In the second
stage, SIOR utilizes Tabu Search [22] to iteratively obtain
another solution that achieves fewer disk seeks without
violating the requirement on the data reduction. In addi-
tion, SIOR uses a filling method that selectively reads unre-
quested data to further reduce disk seeks. Therefore, SIOR
fully lightens the load on disks during single failure recov-
ery, in terms of the amount of read data and the number of
disk seeks.

In summary, we make the following contributions.

1) We formulate the seek-efficient I/O optimization
problem for single failure recovery. The formulation
aims to reduce both the amount of read data and the
number of disk seeks.

2) We leverage Tabu search [22] and propose a general
greedy algorithm called SIOR that is applicable for
any XOR-based erasure code. SIOR iteratively selects
a recovery solution with fewer disk seeks, while pre-
serving the reduction on the amount of read data for
recovery. SIOR also uses a filling method to reduce
disk seeks.

3) We implement SIOR over a storage system testbed
constructed from several representative XOR-based
erasure codes. Evaluation shows that SIOR signifi-
cantly reduces the search time when compared to the
brute-force enumerationmethod. In addition,we com-
pare SIOR with Zpacr [14], a state-of-the-art greedy
recovery approach that minimizes the amount of read
data but does not consider disk seeks. We show that
SIOR reduces 31:8 � 65:1 percent disk seeks during
the recovery, and provides up to 150.0 percent recov-
ery speed improvement.

The rest of this paper is organized as follows. Section 2
introduces the research background. The problem formula-
tion is provided in Section 3. We present the detailed design
of SIOR in Section 4. After that, we evaluate the perfor-
mance of SIOR in Section 5 and conclude our work in
Section 6.

2 BACKGROUND

2.1 Basics

One typical class of erasure codes is Maximum Distance
Separable (MDS) codes, which reach the optimal storage
efficiency for a given level of fault tolerance. MDS codes are
typically configured by two parameters k and m: an ðk;mÞ
MDS code transforms k pieces of original data pieces and
encodes them to produce another m redundant pieces, such
that any k out of kþm pieces are sufficient to reconstruct
the original data. The kþm dependent pieces collectively
form a stripe and are distributed to kþm disks.

A popular family of MDS codes is XOR-based erasure
codes [8], [10], [11], [14], [23], [24], [25], [26], whose encoding/
decoding operations are purely based on XOR operations, so
as to achieve fast parity calculation and data reconstruction.
This type of erasure codes generally achieve better encoding,
decoding, and update performance than the erasure codes
that are based on complicated operations in the finite field,
such as Reed-Solomon Code [27], LRC Code [3], and STAIR
Code [28]. XOR-based erasure codes have been widely used
in current storage systems [29], [30], [31]. In this paper, we call
the storage systems that are protected by XOR-based erasure
codes to be “XOR-coded storage systems”.

An erasure-coded storage system is composed of many
independent stripes. Fig. 1 shows the logical structure of an
XOR-coded storage system with three stripes. Meanwhile,
we denote the maximum set of information in a stripe that
stored on the same disk as strip. In XOR-coded storage sys-
tems, a strip is partitioned into w equal-size elements, where
an element is the basic operation unit (e.g., byte or block) in
XOR-coded storage systems. For example, in Fig. 1, each
stripe has six strips and every strip has four elements.

To clarify the relationships among the elements in a stripe,
Fig. 2 presents the layouts of RDP Code [25] in a stripe. RDP
Code is a typical RAID-6 code for double fault tolerance and is
constructed over pþ 1 disks, where p is a prime number used

Fig. 1. Relationships among disk, stripe, strip, and element in an XOR-
coded storage system.

Fig. 2. A stripe of RDP Code with pþ 1 disks (p ¼ 5). fE1;1; E1;2; . . . ;
E1;5g is a horizontal parity chain and fE1;1; E4;3; E3;4; E2;5; E1;6g is a diag-
onal parity chain.

TABLE 1
Background Notations and Descriptions

Notations Descriptions

p prime number to configure the stripe size
n number of disks in an XOR-coded storage system

k,m number of data disks, number of parity disks
w number of elements in a strip
Dj the jth disk
Ei;j element at the ith row and jth disk
� XOR operationP
Ei;j

� �
sum of XOR operation among the elements Ei;j

� �

878 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 3, MARCH 2017

for configuring the number of disks in a stripe. Table 1 also
lists the notations and their descriptions. Specifically, a stripe
usually consists of data elements and parity elements. Data ele-
ments contain the original data information, while parity ele-
ments keep the redundant information. For example, E1;1 is a
data element andE1;5 is a parity element in Fig. 2a.

To generate a parity element, a subgroup of data ele-
ments will be selected to perform the encoding operation by
using XOR operations. For example, RDP Code needs to cal-
culate “horizontal parity elements” and “diagonal parity
elements”. The horizontal parity element E1;5 :¼

P4
i¼1 E1;i :

¼ E1;1 � � � � � E1;4 in Fig. 2a, and the diagonal parity ele-
ment E1;6 :¼ E1;1 �E4;3 � E3;4 � E2;5 as shown in Fig. 2b.

We also denote the parity generation relationship as the
parity chain when it is used to repair lost elements. A parity
chain consists of a parity element and the associated ele-
ments in that parity element’s generation. For example, as
shown in Fig. 2, a horizontal parity element E1;5 is generated
based on elements fE1;1; E1;2; . . . ; E1;4g. Then the set of ele-
ments fE1;1; E1;2; . . . ; E1;5g constitutes a parity chain. Once
an element fails, it can be recovered by using the surviving
elements in the associated parity chains. For example, E1;1

can be recovered by two parity chains in Fig. 2, i.e.,
fE1;1; E1;2; . . . ; E1;5g that generates the horizontal parity

element E1;5 and fE1;1; E4;3; E3;4; E2;5; E1;6g that produces
the diagonal parity element E1;6.

To represent any XOR-based erasure code, one can
arrange the data elements residing on disks into a data ele-
ment vector and utilize a generator matrix [32], which is actu-
ally a binary matrix, to realize the encoding procedure as
the multiplication between the generator matrix and the
data element vector. For example, Fig. 3 illustrates the gen-
erator matrix of RDP Code (p ¼ 5) in a stripe.

2.2 Single Failure Problem

For single failure recovery, most previous works propose to
accelerate the repair process by reducing the number of ele-
ments that need to be read from the surviving disks.

For RDP Code, Xiang et al. [7] first propose to repair the
corrupted elements by selectively using the diagonal parity
chains and the horizontal parity chains, so that the optimal
solution with the fewest retrieved elements will be
obtained. Fig. 4 shows three recovery schemes to rebuild
Disk 1 in two stripes for RDP Code. To repair the lost data
elements in the Stripe 1, the first two schemes (i.e., Figs. 4a
and 4b) only use horizontal parity chains and diagonal par-
ity chains respectively during the recovery, and both of the
schemes require 16 elements. On the other hand, if we mix
the two kinds of parity chains, the recovery solution of
Stripe 1 as shown in Fig. 4c, we only need 12 elements. Fol-
lowing this inspiration, Xu et al. [13] investigate the optimal
recovery for single failure in X-Code [8]. Many erasure
codes [3], [10], [11] also consider the performance of single
failure recovery specifically in their code constructions.

To minimize the number of read elements during single
failure recovery for any XOR-based erasure code, Khan et al.
[6] propose to enumerate all the parity chains for each failed
element based on the generatormatrix and convert the possi-
ble parity chains into a directed and weighted graph. There-
fore, the optimization of single failure recovery can be
transformed to the problem of finding the shortest path in
the converted graph. Besides retrieving the fewest elements,
Luo et al. [9] also show that the solution that evenly reads
elements from surviving disks can achieve a faster recovery.
Fu et al. [16] further study the load-balancing problem at

Fig. 3. The generator matrix for RDP Code (p ¼ 5) in a stripe. The filled
cell in the generator matrix means “1”, while the blank cell means “0”.

Fig. 4. The three recovery solutions to repair Disk 1 for RDP Code (p ¼ 5) in two rotated stripes. It indicates that the data reduction in single failure
recovery may increase the seek operations.

SHEN ETAL.: SEEK-EFFICIENT I/O OPTIMIZATION IN SINGLE FAILURE RECOVERY FOR XOR-CODED STORAGE SYSTEMS 879

multi-stripe setting. However, all of the above solutions
involveNP-Hard problems and need to spend a significantly
long search time to obtain the optimal solution. Thus, they
cannot be easily generalized to support on-line reconstruc-
tion, which determines the optimal recovery solution on-the-
fly based on the current system configurations. Aiming at
this shortcoming, Zhu et al. [14] greedily search the solution
with a near-minimum number of read elements for any
XOR-based erasure code.

2.3 Open Problems

Although there have been extensive efforts on single failure
recovery, there remain two open problems.

The Increasing Number of Disk Seeks. Most prior works [6],
[7], [9], [10], [11], [14], [16], [33] only focus on reducing the
number of elements to be read during the recovery, but
neglect the increasing number of disk seeks. For example, in
Fig. 4a, it reads 32 elements from the surviving disks, and
triggers five seek operations. Fig. 4c only reads 24 elements,
but produces 17 seek operations. Disk seeks are expensive
operations, especially when the size of an I/O unit is small.
Thus, the optimization on disk seeks should be carefully
studied for single failure recovery.

Recovery in Multiple Stripes. Most previous studies [6], [7],
[9], [10], [11], [33] only consider the recovery in a single
stripe,mainly because their problems are stripe-independent
and they can directly generalize the stripe-level solutions for
multiple stripes. However, the optimization of disk seeks is
more complicated, as the number of disk seeks usually corre-
lates with the positions of read elements among stripes. For
example, in Fig. 4b, the two elements E4;3 (in Stripe 1) and
E5;3 (in Stripe 2) can be read directly, while it needs an extra
seek operation to retrieve E3;2 (in Stripe 1) and E5;2 (in Stripe
2). Therefore, it is more practical to consider this problem at
themulti-stripe setting.

In practice, as the disk hosting parity elements will usu-
ally serve the heavy updates when the associated data ele-
ments are written, multiple stripes are usually organized by
the stripe rotation [21] for load balancing. In this paper, we
rotate the stripes by gradually shifting the elements to left
when the stripe identity increases. Take Fig. 4 as an exam-
ple. Parity elements of Stripe 1 are placed at D5 and D6, and
parity elements of Stripe 2 will be shifted toD4 andD5.

3 PROBLEM FORMULATION

3.1 Model

This paper addresses the following fundamental question:
Can we mitigate the disk seek overhead during single fail-
ure recovery, while still reducing the amount of read data?
To address the question, we formulate the following prob-
lem: Given an expected number of retrieved elements, our
goal is to minimize the number of disk seeks at the multi-
stripe level.

We now formulate the problem as follows. Suppose an
XOR-coded storage system consists of n disks
fD1; . . . ; Dng. Given a corrupted disk Di ð1 � i � nÞ and
the expected number of retrieved elements M, suppose
that the recovery solution reads mj elements from disk Dj

(1 � j 6¼ i � n) and consequently causes oj seek operations.
Our objective is to find the recovery solution that

minimizes the number of seek operations and also
retrieves no more than M elements. This objective can be
formulated as follows:

Minimize
X

1�j 6¼ i�n
oj; (1)

subject to
X

1�j 6¼ i�n
mj �M: (2)

3.2 Assumptions

We assume that a storage system treats an element as a stor-
age block on disk, such that the blocks serve as not only the
encoding/decoding units of a given XOR-based erasure
code, but also the read/write units of a storage system. This
treatment has been extensively assumed by previous studies
on I/O-efficient recovery of XOR-based erasure codes (e.g.,
[6], [7], [10], [11], [13], [14], [34]). Previous studies often
assume a large block size to mitigate the overhead due to
disk seeks, while our work relaxes this assumption by taking
into account the disk seek overhead in our recovery solution.

Our work is applicable for both on-line and off-line
reconstructions [35], in which the former continually serves
users’ I/O requests when recovering lost data, while the lat-
ter uses all available resources to recover lost data only
without handling foreground I/O requests. Our focus is to
mitigate the impact of disk seeks during failure recovery, so
we expect that both on-line and off-line reconstructions can
benefit from our designs. On the other hand, the disk seeks
in on-line reconstruction scenario are caused by both I/O
activities (in the foreground) and the reconstruction process
(in the background). How to leverage foreground I/O activ-
ities to further improve the performance of on-line recon-
struction will be posed as future work.

3.3 Motivation

Our objective is an optimization problem of minimizing the
number of disk seeks with a constraint on the number of
read elements. To achieve this objective, the enumeration
method that exhaustively tests all possible parity chains for
each lost element will cause an extremely high computation
complexity. For example, consider the case where a disk fails
in X-Code [8]. Suppose that there are s stripes and the prime
number is p. Then there are ðp� 2Þs data elements on each
disk and each lost data element can be recovered by at least
two parity chains (according to the property of RAID-6), so

the search space is larger than 2ðp�2Þs. Pre-storing the optimal
recovery solution cannot always retain its optimality, espe-
cially under the environment with constant changing factors,
for example, the changing available network bandwidth in a
heterogeneous environment [33].

Therefore, a better idea is to propose a greedy algorithm
that can efficiently pursue a near-optimal solution. To this
end, we propose to partition the search procedure into two
stages. In the first stage, we find an “initial solution” that
satisfies the restriction (2). As discussed above, extensive
studies have been made to minimize the number of
required elements in a single stripe, such as Zpacr [14].
Therefore, we can apply any existing approach for each
stripe in turn, so as to obtain an initial solution. In the

880 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 3, MARCH 2017

second stage, we can further perform more fine-grained
optimization based on the initial solution, by trying every
other possible parity chain for each lost element and greed-
ily selecting the best replacement in each iteration.

4 THE DETAILED DESIGN OF SIOR

Based on the above motivation, we propose a greedy
algorithm called SIOR. SIOR can be decomposed into
“InitialSolutionSelection” and “InitialSolutionOptimization”.
Table 2 lists the used notation and descriptions in SIOR.

4.1 Initial Solution Selection

To obtain an initial solution, for each stripe, we can make use
of existing stripe-level2 methodologies [6], [14] to minimize
the number of read elements for recovery, until the number of
retrieved elements accumulated in all the stripes satisfies the
constraint (2). There exist twomethodologies that address sin-
gle failure recovery for any XOR-based erasure code, includ-
ing the enumeration scheme [6], which is shown to be NP-
Hard, and the greedy algorithm Zpacr [14], which finds the
near-optimal solution in polynomial time. To efficiently
provide an on-line recovery solution, we choose Zpacr
[14] to serve as the cornerstone in InitialSolutionSelection.
Algorithm 1 presents the detailed procedure.

Algorithm Details. At the beginning, we first initialize a
solution Ri (1 � i � s) for the ith stripe (steps 1 � 2), where
Ri is composed of parity elements. It indicates that the lost
elements in the ith stripe can be recovered by using the par-
ity chains that associate with these parity elements in Ri.
For example, R1 :¼ fE1;5; . . . ; E4;5g in Stripe 1 of Fig. 4a,

where the lost element Ej;1 (1 � j � 4) can be recovered by
using the horizontal parity chain that generates Ej;5, i.e.,
Ej;1 ¼ Ej;2 � Ej;3 �Ej;4 � Ej;5.

Algorithm 1. Initial Solution Selection

Input: s: number of stripes
M : expected number of read elements in s stripes

Output: Rini: initial solution
1 for i ¼ 1 to s do
2 InitializeRi for the ith stripe
3 Build a recovery solution Rini :¼ ðR1; . . . ;RsÞ
4 for i ¼ 1 to s do
5 Apply Zpacr [14] toRi and getRi

6 Set Rini :¼ ðR1; . . . ;Ri;Riþ1; . . . ;RsÞ
7 Get the element distribution Dini of Rini

8 if eðDiniÞ �M then
9 Return Rini

10 Return false

In this paper, a recovery solution is said to be valid if it
satisfies the constraint (2) on the number of retrieved ele-
ments. We construct an initial solution Rini that includes the
recovery solutions for s stripes (step 3). Then for the ith
stripe, we take Ri as input, apply Zpacr [14] for optimiza-

tion, and obtain a near-optimal recovery solution Ri (step

5). We replace Ri with Ri in Rini and get an updated initial

solution Rini :¼ ðR1; . . . ;Ri;Riþ1; . . . ;RsÞ (step 6). Suppose
that Dini denotes the element distribution of Rini and eðDiniÞ
represents the number of retrieved elements in Dini (step 7).
Once the total number of retrieved elements eðDiniÞ is no
more than the expected number of read elements M, Rini

will be returned as a valid initial solution (steps 8 � 9).
Otherwise, the algorithm will return false (step 10).

An Example. We take Fig. 4 as an example, where s ¼ 2,
and M is set as 24. We use a parity element to represent the
associated parity chain for data reconstruction. Algorithm 1
first generates a solution Rini :¼ ðR1;R2Þ and its element
distribution Dini is shown in Fig. 4a, where R1 :¼ fE1;5;

E2;5; . . . ; E4;5g andR2 :¼ fE5;4; E6;4; . . . ; E8;4g. It reads 32 ele-
ments. After performing the optimization, we obtain the ini-

tial solution Rini :¼ ðR1;R2Þ and its distribution Dini is

shown in Fig. 4c, where R1 :¼ fE1;5; E2;6; E3;6; E4;5g and

R2 :¼ fE6;5; E6;4; E8;5; E8;4g. The initial solution retrieves 24
elements and thus satisfies the constraint (2).

4.2 Initial Solution Optimization

Although the initial solution satisfies the constraint (2), it
may trigger many disk seeks. We now propose an algorithm
based on Tabu Search [22] to optimize the number of disk
seeks. Tabu Search effectively prevents a search from being
confined in suboptimal search regions when compared to
other local search methods like hill-climbing algorithm [14].
It specifies a search rule and keeps a structure called a Tabu
list. For a visited solution, once it violates the rule, it will be
recorded in the Tabu list and passed over for a period of
time. Before explicitly presenting our detailed algorithm,
we first give a rough sketch about its main idea.
Main Idea:

1) Simplified recovery model. To iteratively make the initial
solution approach the optimal one, an important step

TABLE 2
The Used Symbols and Descriptions in SIOR

Symbols Descriptions

Defined in Algorithm 1

M expected number of read elements for recovery
Rini initial recovery solution of s stripes
Ri recovery solution for the ith stripe before optimization
Ri recovery solution for the ith stripe after optimization
s number of stripes
D distribution of read elements before filling
eð�Þ function to calculate the number of read elements

Defined in Algorithm 2

D0 candidate distribution of read elements before filling
F0 candidate distribution of read elements after filling
I an interval to be filled
jIj number of elements included in I
SI set of disks that have the intervals with size jIj
DI disk that has the lightest load in SI

Defined in Algorithm 3

L Tabu list
Fopt optimal recovery solution found by SIOR
Cx candidate parity chain for the lost element x
Sx selected parity chain for the lost element x
A set of candidate solutions in an iteration
qð�Þ function to calculate the number of disk seeks

2. The stripe-level means that these methodologies can only opti-
mize the number of retrieved elements for a single stripe.

SHEN ETAL.: SEEK-EFFICIENT I/O OPTIMIZATION IN SINGLE FAILURE RECOVERY FOR XOR-CODED STORAGE SYSTEMS 881

is to try other parity chains to repair lost elements and
then execute a greedy selection. For example, in the
solution of Fig. 4a, the lost data element E1;1 is recov-
ered by the horizontal parity chain that generates E1;5.
We can obtain another recovery solution by simply
selecting another parity chain that E1;1 involves, i.e.,
the diagonal parity chain that produces E1;6. Some pre-
vious works, such as [6] and [9], adopt the enumera-
tion method to exhaustively try every possible parity
chain according to the generator matrix. Unfortu-
nately, this enumeration problem is NP-Hard.

Given the need for efficiency, we choose a simplified
recovery model instead. We repair lost elements by simply
using parity chains that generate the parity elements. For
example, we only consider the horizontal/diagonal parity
chains for data recovery in RDP Code, as it only has these
two kinds of parity elements. Following the same principle,
we only use the diagonal/anti-diagonal parity chains for
data reconstruction in X-Code.

2) The filling procedure. Algorithm 1 may return a recovery
solution that requests less than M elements. Given the
distribution of requested elements, we first define the
concept of an interval, which enables us to measure
disk seeks.

Definition 1. If two sequentially requested elements are not
physically contiguous, we call the maximum set of unrequested
elements between them to be an “interval”.

We take the solution illustrated in Fig. 5a as an example.
E4;2 and E6;2 are two elements that are sequentially
requested, and E5;2 is an element that is not needed between
them. Thus, E5;2 is called an interval, since it takes an extra
seek operation for the disk to read E4;2 and E6;2. Similarly,
the set fE2;3; E3;3g forms an interval between the requested
elements E1;3 and E4;3. The idea of the filling procedure is to
read all the unrequested elements in the selected intervals,
so as to reduce the number of disk seeks. For example, the
solution in Fig. 5a needs 17 disk seeks. As a comparison, the
solution in Fig. 5c reads the same requested elements in
Fig. 5a, but additionally reads the unrequested elements
(i.e., E5;2, E7;3, and E7;6). Thus, it reduces the number of disk

seeks reduces to 14. We can observe that we can “fill” an
interval by reading the elements in it, so as to save one seek
operation.

To generalize the idea, suppose that we are given a valid
recovery solution R and its element distribution D, and that
the number of retrieved elements in D is eðDÞ. To reduce the
number of disk seeks, we can fill the intervals by retrieving
no more than M � eðDÞ elements that are unrequested. The-
orem 1 shows how to reduce the maximum number of disk
seeks for a given constant number of filled elements.

Theorem 1. The filling procedure that fills the intervals in the
order of smallest to largest in size (in terms of the number of
elements included in an interval) can reduce the maximum
number of seek operations.

Proof. Since filling an interval can save one seek operation,
filling more intervals will reduce more disk seeks. Given a
constant number of available elements for filling, the met-
hod that fills the intervals in the order of smallest to largest
in size can reduce the maximum number of intervals, and
thus bring themost reduction of seek operations. tu
Although the filling procedure can reduce the number of

seek operations, it will change the distribution of elements
to be retrieved, leading to unbalanced element retrievals
across the surviving disks. The unbalanced load is undesir-
able, since it not only extends the recovery time [9], [16], but
also easily makes the most loaded disk exhausted [10], [11].
Fig. 5 gives an example to show how the filling procedure
causes an uneven distribution of element retrievals for
recovery if it is not carefully designed. Fig. 5a first shows
the distribution of elements to be read in Fig. 4c. It reads 24
elements. Suppose that M ¼ 27. Fig. 5b only fills the inter-
vals at Disk 2, while Fig. 5c respectively fills three intervals
at Disk 2, Disk 3, and Disk 6. We can see that the distribu-
tion in Fig. 5c is more balanced than that in Fig. 5b.

Based on above observations, in addition to reducing the
maximum number of intervals, we also propose to perform
the filling procedure according to the element distribution
and try to obtain a more balanced recovery solution. Our
main idea is that given an interval to be filled, we always

Fig. 5. Making filling procedure more balanced.

882 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 3, MARCH 2017

give a higher priority to the disk with a lighter load. Algo-
rithm 2 describes how the filling procedure is performed
when taking into account load balancing.

Algorithm 2. Filling Procedure

Input:M : number of read elements to repair s stripes.
D0: candidate distribution before filling procedure.

Output: F0: candidate distribution after filling procedure.
1 Calculate eðD0Þ and set D M � eðD0Þ
2 Sort the intervals from smallest to largest in size
3 for each interval I to be filled do
4 D D� jIj
5 if D < 0 then
6 Break
7 Scan the surviving disks and obtain the disk set SI
8 SelectDI SI
9 Fill the interval atDI

10 Obtain F0 after filling procedure
11 Return F0

Algorithm Details. Given a distribution of the elements to
be read D0, we first calculate eðD0Þ, which denotes the
number of elements to be retrieved in D0, and then obtain D
(step 1). D denotes the maximum number of unrequested
elements that can be read, so that the final recovery solution
will not violate the constraint (2). To fill the most number of
intervals, we first sort the intervals in D0 in ascending order,
and scan the interval from smallest to largest in size (step
2). For each interval I, suppose that its size is jIj. We first
judge if the number of unrequested elements that is allowed
to be read is enough to fill I. We terminate the filling proce-
dure if the seek operations cannot be further reduced (steps
4 � 6). To fill the interval I, we then scan every surviving
disk and obtain a set of disks SI that have intervals with
size jIj (step 7). We select a diskDI that has the lightest load
from SI and perform the filling procedure at DI (steps
8 � 9). Finally, we can obtain a new element distribution F0

once D cannot fill any interval (step 10).
An Example. Fig. 5 shows an example of how the filling

procedure is performed. Based on the recovery solution in
Figs. 4c and 5a first illustrates the distribution of the
requested elements whose number is 24 (i.e., eðD0Þ ¼ 24).
Suppose M ¼ 27, and the number of elements to be filled is
D ¼M � 24 ¼ 3. To perform the filling procedure, Algo-
rithm 2 first sorts the intervals from smallest to largest in
size. According to Theorem 1, one has to fill the intervals in
ascending order, such that the maximum number of disk
seeks can be reduced. To pad the interval (i.e., I) whose size
is 1, Algorithm 2 then selects the disk set
SI ¼ fD2; D3; D4; D5; D6g, in which all the disks have the
interval with size one. To make the distribution more bal-
anced, we select D6 (i.e., DI), which has the minimum num-
ber of requested elements and fill the interval (i.e., reading
the unrequested element E7;6). After this filling procedure,
D will be updated to two. Following this filling principle,
we also fill another two intervals by reading E5;2 and E7;3 in
the next filling procedure. Finally, we can obtain a new dis-
tribution of requested elements (i.e., F0), as shown in Fig. 5c,
after filling three intervals.

3) The maintenance of a Tabu list. We now elaborate how
we optimize our initial solution, with an objective of

reducing the number of disk seeks, using Tabu Search.
Algorithm 3 presents the pseudo-code. It maintains a Tabu
list L throughout the search, which keeps track of the num-
ber of seek operations of the selected solutions in recent iter-
ations. In each iteration, Algorithm 3 will ignore the
solutions that need the same disk seeks recorded in L, and
choose the one with the least disk seeks among the remain-
ing candidates. This design effectively prevents the search
process from being stuck to a suboptimal solution.

Algorithm 3. Initial Solution Optimization

Input: L: Tabu list
t: number of iterations
Rini: initial recovery solution
M : expected number of read elements to repair s
stripes

Output: Fopt: recovery solution found by SIOR
1 Set L ;, R Rini, qðFoptÞ 1,A ;
2 for each iteration do
3 for each lost element x do
4 for each candidate parity chain Cx do
5 R0 R� Sx þ Cx

6 if R0 is not valid then
7 Reuse Initial Solution Selection to optimize it
8 Get the element distribution D0

9 Run Filling Procedure to D0 and obtain F0

10 Calculate the caused disk seeks qðF0Þ
11 if qðF0Þ =2 L then
12 Record fR0;F0g in A
13 Select fRmin;Fming from A
14 " record the near� optimal scheme
15 if qðFminÞ � qðFoptÞ then
16 qðFoptÞ qðFminÞ
17 Fopt Fmin

18 " update the Tabu list
19 if L is full then
20 Evict the oldest value out of L
21 Append qðFminÞ to L
22 Update R Rmin, set A ;
23 Return Fopt

Algorithm Details. In Algorithm 3, we first initialize a
Tabu list L as an empty set and set the current optimal num-
ber of disk seeks qðFoptÞ as infinity (step 1). In a new itera-
tion, for a given current recovery solution R and each lost
element x, we replace the current selected parity chain Sx

with each candidate parity chain Cx, and construct another
recovery solution R0 (steps 2 � 5). If R0 retrieves more than
M elements, then it will be optimized to be a valid one by
reusing Algorithm 1 (steps 6 � 7). Given R0, we can have
the distribution of retrieved elements, which is denoted as
D0 (step 8). We run the Filling Procedure (i.e., Algorithm 2)
to fill the intervals in D0, obtain the element distribution F0,
and calculate the number of seek operations qðF0Þ (steps
9 � 10). If qðF0Þ is not kept in the Tabu list, then we record
the tuple fR0;F0g in the candidate set A (steps 11 � 12).

After testing every candidate parity chain for each lost
element, we select the tuple fRmin;Fming from A, where
Fmin has the fewest disk seeks among the solutions in A
(step 13). We compare qðFminÞ with the optimal number of
seek requests qðFoptÞ currently found, and record Fmin and
qðFminÞ if Fmin brings fewer seek operations than Fopt (steps

SHEN ETAL.: SEEK-EFFICIENT I/O OPTIMIZATION IN SINGLE FAILURE RECOVERY FOR XOR-CODED STORAGE SYSTEMS 883

15 � 17). Finally, we append qðFminÞ in the Tabu list L (step
21) and select Rmin for the next iteration (step 22). As Algo-
rithm 3 proceeds, qðFoptÞwill be iteratively reduced.

An Example. The current recovery solution in Fig. 4c is
R :¼ ðR1;R2Þ, where R1 :¼ fE1;5; E2;6; E3;6; E4;5g and R2 :¼
fE6;5; E6;4; E8;5; E8;4g. This solution requires 24 elements and
causes 17 disk seeks. The element distribution of R is shown
in Fig. 6a.

We set M ¼ 27 and assume L ¼ f14g, which is updated
in previous iterations. The current parity chain for E1;1 (i.e.,
element x in Algorithm 3) in R is the horizontal parity chain
led by E1;5 (i.e., Sx). We replace it with another parity chain
that E1;1 involves (i.e., the diagonal parity chain led by E1;6

(denoted by Cx)), and construct a candidate solution
R0 ¼ ðR01;R2Þ, whereR01 :¼ fE1;6; E2;6; E3;6; E4;5g.

We can obtain a new element distribution D0 as shown in
Fig. 6b. D0 is a valid distribution because it requires 25 ele-
ments (�M ¼ 27). We then calculate the number of filling
elements (i.e., D ¼ 2), perform the filling procedure (i.e.,
read unrequested data elements E5;2 and E7;3), and obtain
the element distribution (i.e., F0) as shown in Fig. 6c. The
number of disk seeks in F0 (i.e., qðF0Þ) is 13. Since 13 =2 L, we
record the tuples fR0;F0g in A.

After testing all the possible candidate parity chains for
every lost element fE1;1; E2;1; . . . ; E8;1g, we perform the
greedy selection in steps 13 � 22.

4.3 Complexity Analysis

We now analyze the complexities of Algorithms 1, 2, and 3,
based on the notation listed in Tables 1 and 2.

Complexity of Algorithm 1. Since the complexity of Zpacr is

Oðmw3Þ [14] and Algorithm 1 will invoke it for at most s

times, the complexity of Algorithm 1 is Oðsmw3Þ.
Complexity of Algorithm 2. The total number of intervals

is no more than ðn� 1Þsw, where ðn� 1Þ is the number of
surviving disks and ðn� 1Þsw is the total number of sur-
viving elements. Therefore, the sorting complexity is
Oðnsw log ðnswÞÞ when employing the sorting algorithms,
such as Quicksort [36] (step 2 in Algorithm 2). For each
interval to be padded, Algorithm 2 should scan every sur-
viving disks (steps 3 � 9). The complexity is no more than

Oðn2swÞ. Therefore, the complexity of Algorithm 2 is

Oðnsw log ðnswÞÞ þOðn2swÞ.

Complexity of Algorithm 3. In Algorithm 3, for each parity
replacement, Algorithm 3 may reuse Algorithm 1 and
invoke Algorithm 2. Since our simplified recovery model
only considers the parity chains that generate parity ele-
ments, there are at most mw parity chains in a stripe. Each
iteration will try at most smw replacements for s stripes, so
the total number of replacements after t iterations is at most
tsmw. Based on the above analysis, in Algorithm 3, the com-

plexity of calling Algorithm 2 is Oðtnms2w2log ðnswÞÞþ
Oðtmn2s2w2Þ, while the complexity of reusing Algorithm 1

is Oðts2m2w4Þ. Therefore, the complexity of Algorithm 3 is

Oðts2m2w4Þ þOðtnms2w2 log ðnswÞÞ þOðtmn2s2w2Þ.

5 PERFORMANCE EVALUATION

We conduct a series of intensive tests to evaluate the perfor-
mance of SIOR. We choose the stripe-level greedy algorithm
Zpacr [14] as the baseline, which also works for any XOR-
based erasure code but only optimizes the number of read
elements without considering the optimization of disk
seeks. Therefore, the comparison can fairly represent the
advantage of SIOR.

We select four typical coding schemes, including RDP
Code (over pþ 1 disks, where p is a prime number), X-Code
(over p disks), STAR Code (over pþ 3 disks) and CRS Code.
Table 3 shows the properties of the four coding schemes,
where n is the number of disks in a stripe andm is the toler-
able number of disk failures.

Evaluation Environment. We choose n from 5 to 15. This
range covers typical system configurations of many well-
known storage systems [3], [37]. The test is run on a Linux
server with a X5472 processor and 8 GBmemory. The operat-
ing system is SUSE Linux Enterprise Server and the filesys-
tem is EXT3. The deployed disk array consists of 15 Seagate/

Fig. 6. An example for a replacement in Algorithm 3.

TABLE 3
Four Representative Coding Schemes

(p is a Prime Number)

Coding Scheme n k m

RDP Code pþ 1 p� 1 2
X-Code p p� 2 2
STAR Code pþ 3 p 3

CRS Code general pairs of (k;m)

884 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 3, MARCH 2017

Savvio 10K.3 SAS disks, each of which has 300 GB storage
capability and 10,000 rmp.We organize the disks in the just a
bunch of disks (JBOD) mode and each disk is independently
handled as a node. The machine and the disk array are con-
nected by a Fiber cable with the bandwidth of 800 MB/sec.
The codes are realized by Jerasure 1.2 [32], a widely-used
library to realize erasure coding storage systems.

Evaluation Metrics. Suppose the storage system consists of
n disks fD1; . . . ; Dng. When Di fails, a recovery solution
causes oj disk seeks toDj (1 � j 6¼ i � n). Suppose the recov-
ery time (i.e., the time to read the wanted data from surviv-
ing disks, recover the lost data, and store the reconstructed
data at a new disk) is T . We concern the followingmetrics:

1) Seek load. This metric denotes the average number of
seek operations that a surviving disk serves during
the reconstruction and is defined as follows:

seek load ¼
P

1�j 6¼i�n oj
n� 1

: (3)

2) Average recovery time. This metric denotes the time
that is needed to repair a certain amount of data. We
mainly consider the average recovery time per MB,
which is denoted as the ratio of the recovery time T
and the size of repair data (in MB)

average recovery time ¼ T

size of repaired data
: (4)

3) Recovery speed. As the reciprocal of recovery time, the
recovery speed can then be defined as follows:

recovery speed ¼ size of repaired data

recovery time
: (5)

Evaluation Methodology. For each coding scheme, we gen-
erate the data elements and perform the encoding by produc-
ing parity elements. These elements are then dispersed
according to the layout of that code and the stripe rotation
principle. The element size is set as 16KB and the stripe num-
ber is set as 100. We then destroy the elements on a random
selected disk, and trigger SIOR to generate the recovery solu-
tion over these 100 stripes. We also employ Zpacr [14] to
compute the recovery solution for each stripe. Finally, we
repair the lost elements based on the solutions found by
SIOR and Zpacr respectively. To recover the failed disk, for
each solution, the systemwill perform the following steps: 1)
retrieving the needed data from the surviving disks; 2) per-
forming the data reconstruction; and 3) writing the recon-
structed data to a new disk.

5.1 Impact of Number of Iterations

In this experiment, we evaluate the performance on seek
load and average recovery time when the number of itera-
tions increases. We select p ¼ 11, so that the number of disks
n constructed over RDP Code, X-Code and STAR Code will
be 12, 11 and 13, respectively. For CRS Code, we choose the
parameter ðk ¼ 8;m ¼ 4Þ, so that the number of disks n ¼
kþm ¼ 12. Like in Zpacr [14], we also select w ¼ 6 for CRS
Code. For each code, SIOR reads 5 percent more elements
than Zpacr. The test results are shown in Figs. 7 and 8.

Seek Load. Fig. 7 demonstrates that SIOR can significantly
reduce the seek load for various kinds of codes, when com-
pared to Zpacr [14]. For RDP Code, SIOR cuts down up to
65.1 percent of seek operations for each disk during the
reconstruction. For X-Code, SIOR decreases up to 44.2 per-
cent of seek operations. For STAR Code and CRS Code,
SIOR removes up to 64.7 and 52.4 percent of seek opera-
tions, respectively.

Fig. 7. The seek load under different numbers of iterations. The smaller value means the lighter load on disks.

Fig. 8. The average recovery time (in seconds) per MB under different numbers of iterations. The larger value means the more needed time for data
reconstruction.

SHEN ETAL.: SEEK-EFFICIENT I/O OPTIMIZATION IN SINGLE FAILURE RECOVERY FOR XOR-CODED STORAGE SYSTEMS 885

Moreover, with the increasing of iterations, the number of
optimized seek operations first sharply decreases and then
becomes stable. This is because the gained reduction on seek
operations in each iteration generally becomes smaller when
the sought solution is closer to the optimal one.

Average Recovery Time. Fig. 8 shows that SIOR signifi-
cantly decreases the average recovery time when compared
with Zpacr. For RDP Code, the recovery solution found by
SIOR needs 46.8 percent less time than that sought by Zpacr.
For STAR Code and CRS Code, SIOR cuts down the average
recovery time by up to 49.0 and 34.0 percent respectively
compared to Zpacr [14]. Meanwhile, similar with the ten-
dency of disk seeks, the average recovery time will first be
rapidly decreased with the increase of iteration steps and
then become stable. This phenomenon demonstrates the
benefit brought by the reduction on disk seeks. Besides, the
average recovery time evaluated in our experiment is simi-
lar to that in [6] and [33].

5.2 Scalability

In this experiment, we evaluate the scalability of SIOR in
terms of seek load and average recovery time when the sys-
tem scale expands. The number of iterations is set as 400. In
the evaluation of each code, SIOR reads 5 percent more ele-
ments than Zpacr. For RDP Code, X-Code, and STAR Code,
we measure the seek load and average recovery time under
different selections of p. For CRS Code, we select different
parameter pairs of ðk;mÞ. Results are shown in Figs. 9 and 10.

Seek Load. Fig. 9 indicates that SIOR keeps its advantage
to optimize disk seeks under different scales of the storage
systems. Take RDP Code as an example, SIOR decreases
about 31.8 percent of seek operations loaded on each disk
when p ¼ 5, and this reduction increases to 62.8 percent
when p ¼ 13.

Moreover, SIOR widens the benefit on disk seeks reduc-
tion when the scale of the storage system expands. Take

STAR Code as an example, the saving of seek operations
brought by SIOR increases from 37.7 percent (p ¼ 5) to 64.7
percent (p ¼ 11).

Average Recovery Time. Fig. 10 confirms that SIOR keeps
its capability to shorten the average recovery time under
different system scales, as SIOR still behaves well to reduce
the caused seek operations when the system scale expands.
For example, for RDP Code, the recovery solution found by
SIOR needs 38.5 percent less time compared with that
sought by Zpacr when p ¼ 7, which also indicates that the
recovery speed brought by SIOR is 62.5 percent faster than
that by using Zpacr when p ¼ 7.

We have another observation that the reduction on average
recovery time brought by SIORwill be different when the sys-
tem scale varies. For example, for X-Code, the recovery solu-
tion by using SIOR requires 16.9 percent less time for data
reconstruction when compared with that found by Zpacr.
The time savingwill expand to 36.8 percentwhen p ¼ 5.

5.3 Impact of Expected Retrieved Data

We further evaluate the seek load and average recovery
time of SIOR under different number of elements that are
expected to be read. The number of iterations is set as 400.
We select p ¼ 11, so that the number of disks n constructed
over RDP Code, X-Code and STAR Code will be 12, 11 and
13, respectively. For CRS Code, we choose the parameter
ðk ¼ 8;m ¼ 4Þ, so that the number of disks n ¼ kþm ¼ 12.
To find the recovery solution of each code, SIOR consider
three different selections M, i.e., M1 ¼ ð1þ 1%Þ � Cmin,
M3 ¼ ð1þ 3%Þ � Cmin, and M5 ¼ ð1þ 5%Þ � Cmin, where
Cmin is the least number of required elements found by
Zpacr [14]. The results are shown in Figs. 11 and 12.

Seek Load. Fig. 11 indicates that the seek load on each disk
will be lighter when the number of elements that are
expected to be read increases. For STAR Code, when
M ¼M1, the recovery solution found by SIOR requires

Fig. 9. The seek load under different number of disks. The smaller value means the lighter load on disks.

Fig. 10. The average recovery time (in seconds) per MB under different number of disks. The larger value means the more needed time for data
reconstruction.

886 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 3, MARCH 2017

about 34.5 percent less disk seeks compared with that found
by Zpacr. The reduction will increase to 57.7 percent when
M ¼M3. This reduction should owe to two reasons. First,
when given a larger number of elements that are expected
to be read, SIOR has a larger search space to find the recov-
ery solution with less disk seeks. Second, for a same recov-
ery solution, when the number of elements expected to be
read is larger, there will be more elements that are allowed
to be filled for interval padding, which then facilitates the
reduction of disk seeks.

Average Recovery Time. Fig. 12 shows that SIOR can
shorten the average recovery time when the number of
expected elements increases. For RDP Code, when M ¼M1,
the recovery time (per MB) using SIOR will be 42.3 percent
less than that employing Zpacr. When M ¼M3, the time
saving will increase to 43.9 percent. We can observe that the
average recovery time will not be greatly reduced when
M ¼M5. More expected elements though facilitate the
search of the recovery solution with less disk seeks, it also
causes more repair traffic (i.e., the amount of data to be read
for data recovery) in reverse. Therefore, the selection of M
should be carefully considered in practice.

5.4 Accuracy and Efficiency

We then evaluate the accuracy and efficiency of SIOR. Accu-
racy is used to denote the closeness between the optimal sol-
utions sought by SIOR and the Enumeration respectively

accuracy ¼ the least disk seeks in SIOR

the least disk seeks in Enumeration
: (6)

We select RDP Code (p ¼ 11), X-Code (p ¼ 11), and STAR
Code (p ¼ 11), and vary the number of stripes. In the evalu-
ation of each code, both SIOR and Enumeration method
read 5 percent more elements than Zpacr. The number of
iteration steps is set as 400. We run SIOR and Enumeration

method respectively, calculate the search accuracy, and
record the search latency in Table 4.

Table 4 indicates that SIOR is accurate and efficient when
compared with Enumeration. SIOR obtains the solution with
the same minimum number of disk seeks compared to Enu-
meration in RDP Code, and causes no more than 8 percent
extra seek operations when compared with Enumeration in
X-Code. On the aspect of efficiency, SIOR greatly decreases
the search latency. For example, SIOR only needs 0.21 sec-
onds to find the solution with the least disk seeks for RDP
code when the number of stripes is 3. On the contrary, the
search time of Enumeration exponentially enlarges when the
number of stripes increases. For example, for RDPCode, Enu-
meration requires more than 3 hours to find the solution with
minimum seek operationswhen there are only three stripes.

5.5 Load Balancing

To evaluate the effect on load balancing, we also compare
the new proposed SIOR in this paper with that in the
preliminary version [1]. Like in [10], [11], to reflect the

Fig. 11. The seek load under different expected number of read elements. The smaller value means the lighter load on disks.

Fig. 12. The average recovery time (in seconds) per MB under different expected number of read elements. The larger value means the more needed
time for data reconstruction.

TABLE 4
The Accuracy and Efficiency of SIOR

Num. of Stripe Accuracy Time (SIOR) Time (Enumeration)

RDP Code (p ¼ 11)

1 1.00 0.04 sec 0.04 sec
2 1.00 0.12 sec 7.52 sec
3 1.00 0.21 sec 3h 17min 30sec

X-Code (p ¼ 11)

1 1.05 0.03 sec 0.04 sec
2 1.08 0.15 sec 26.04 sec
3 1.02 0.27 sec 20h 4min 8sec

STAR Code (p ¼ 11)

1 1.00 0.21 sec 0.22 sec
2 1.09 0.29 sec 7h 1min 10sec

SHEN ETAL.: SEEK-EFFICIENT I/O OPTIMIZATION IN SINGLE FAILURE RECOVERY FOR XOR-CODED STORAGE SYSTEMS 887

balancing degree of the load, we first define the concept of
load balancing rate by using the ratio of the number of read
elements at the most loaded disk with that at the least
loaded disk. In this test, we select p ¼ 7 for RDP Code,
X-Code, and STAR Code, respectively. We also choose the
parameters ðk ¼ 7;m ¼ 3; w ¼ 6Þ for CRS Code. For each
code, SIOR reads 5 percent more elements than Zpacr. The
test results are shown in Fig. 13.

We can observe that compared with the preliminary ver-
sion [1], the proposed SIOR in this paper behaves better on
evenly dispersing the element requests across the surviving
disks during the recovery. For example, for STAR Code, the
load balancing rate in the preliminary version [1] will be
1.64. As a comparison, after applying SIOR in this paper,
the load balancing rate will be decreased to 1.12. This is
because the filling procedure of SIOR in this paper will
selectively increase the load at the lightest disk, and thus
narrow the gap between the most loaded disk and the least
loaded one.

5.6 Data Reduction

We also test the capability of SIOR to reduce the amount of
read data for recovery. We select p ¼ 11 for RDP Code,
X-Code, and STAR Code. We also use CRS Code with the
parameters ðk ¼ 8;m ¼ 4; w ¼ 6Þ. In the evaluation of each
code, SIOR reads 5 percent more elements than Zpacr. The
comparison results among Zpacr, SIOR, and the conven-
tional method (i.e., without hybrid parity chains) are nor-
malized in Table 5. Table 5 indicates that both Zpacr and
SIOR impressively decrease the amount of read data com-
pared to the conventional method. For example, SIOR
reduces 19 percent unnecessary retrieved elements com-
pared with the conventional method. Meanwhile, SIOR
only retrieves 5 percent more elements compared with
Zpacr, and this ratio can also be further adjusted according
to the administrator’s requirements.

5.7 Impact of Element Size

To investigate how the element size affects the benefit of
SIOR, we compare SIOR with Zpacr in terms of recovery
speed under different element sizes. We first define the con-
cept of acceleration ratio as

acceleration ratio ¼ recovery speed of SIOR

recovery speed of Zpacr
: (7)

Obviously, when the acceleration ratio is larger, SIOR can
achieve a faster data reconstruction when compared with
Zpacr [14]. With respect to the selection of M, we mainly
consider two cases for each code, i.e., M1 ¼ ð1þ 1%Þ � Cmin

and M5 ¼ ð1þ 5%Þ � Cmin, where Cmin is the least number
of required elements found by Zpacr [14]. We also select
RDP Code (p ¼ 11), X-Code (p ¼ 11), STAR Code (p ¼ 11),
and CRS Code (k ¼ 8;m ¼ 4) in this test. The number of iter-
ation steps is set as 400. We then vary the element size from
4 to 256 KB, and calculate the acceleration ratio under these
two selections of M (i.e., M ¼M1 and M ¼M5). The results
are presented in Fig. 14.

First, the advantage of SIOR will eliminate when the ele-
ment size increases. For example, when the element size is
4 KB andM ¼ ð1þ 5%Þ � Cmin, the acceleration ratio of RDP
Code is 2.5, meaning that the recovery speed of SIOR is 1.5
times faster than that of Zpacr. When the element size
increases to 256 KB, SIOR reaches almost the same recovery
speed with Zpacr. This test also suggests that SIOR is more
suitable to be deployed in the environment with a small ele-
ment size (i.e., smaller than 256 KB). This is because the influ-
ence of seek time declines when the size of I/O unit expands.

Second, the number of read elements also affects the per-
formance of SIOR when the element size is larger. When the
element size is small, selecting M ¼M5 gains more perfor-
mance improvement, compared with the chosen of
M ¼M1. However, when the element size increases, the
advantage of selecting M ¼M5 will drop. This is because
the effect of disk seek reduction becomes insignificant and
the increasing size of retrieved elements also slows down
the reconstruction in reverse.

Fig. 13. Comparison on load balancing rate.

TABLE 5
Comparison on Data Reduction

Codes Zpacr SIOR Conventional Method

RDP Code 0.77 0.81 1.00
X-Code 0.72 0.76 1.00
STAR Code 0.72 0.76 1.00
CRS Code 0.87 0.91 1.00

Fig. 14. The acceleration rate under different element sizes.

888 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 3, MARCH 2017

5.8 Summary

These tests show that both Zpacr and SIOR are suitable for
storage systems that are easily restricted by the repair traf-
fic, such as [12] and [38]. Compared with Zpacr, SIOR not
only sustains the advantage of data reduction, but also
decreases disk seeks to reach the faster data reconstruction.

6 CONCLUSION

Previous studies on single failure recovery confine to the
minimization of retrieved data, and overlook the influence
of disk seeks. In this paper, we propose a greedy algorithm
called SIOR based on Tabu search to optimize both the
number of disk seeks and the amount of read data for recov-
ery. The algorithm includes two stages. The first stage
makes use of an existing algorithm that optimizes the num-
ber of retrieved elements for each stripe, and gets an initial
solution. The second stage optimizes the initial solution and
iteratively approaches the optimal recovery solution.
Finally, the evaluation indicates that SIOR reduces
31:8 � 65:1 percent of disk seeks and improves the recovery
speed by up to 150.0 percent during the recovery.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (Grant No. 61232003, 61327902,
61433008), University Grants Committee of Hong Kong
(Grant No. AoE/E-02/08), VC Discretionary Fund of
CUHK (Grant No. VCF2014007), and Research Committee
of CUHK. Jiwu Shu (shujw@tsinghua.edu.cn) is the corre-
sponding author. A preliminary version[1] of this paper
was presented at the 34th International Symposium on Reli-
able Distributed Systems (SRDS’15). In this journal version,
we include additional analysis on load balancing and more
evaluation results for SIOR.

REFERENCES

[1] Z. Shen, J. Shu, and Y. Fu, “Seek-efficient I/O optimization in
single failure recovery for XOR-coded storage systems,” in Proc.
IEEE 34th Symp. Reliable Distrib. Syst., 2015, pp. 228–237.

[2] B. Schroeder and G. Gibson, “Disk failures in the real world: What
does an MTTF of 1,000,000 hours mean to you?” in Proc. 5th
USENIX Conf. File Storage Technol., 2007, Art. no. 1.

[3] C. Huang, et al., “Erasure coding in windows azure storage,”
in Proc. USENIX Conf. Annu. Tech. Conf., 2012, pp. 15–26.

[4] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, “A hitchhiker’s guide to fast and efficient data
reconstruction in erasure-coded data centers,” in Proc. ACM Conf.
SIGCOMM, 2014, pp. 331–342.

[5] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, “A solution to the network challenges of data
recovery in erasure-coded distributed storage systems: A study
on the Facebook warehouse cluster,” in Proc. 5th USENIX Conf.
Hot Topics Storage File Syst., 2013, pp. 8–8.

[6] O. Khan, R. C. Burns, J. S. Plank, W. Pierce, and C. Huang,
“Rethinking erasure codes for cloud file systems: Minimizing I/O
for recovery and degraded reads,” in Proc. USENIX Fast Storage
Technol., pp. 251–264, 2012.

[7] L. Xiang, Y. Xu, J. Lui, and Q. Chang, “Optimal recovery of single
disk failure in RDP code storage systems,” in Proc. ACM SIGMET-
RICS Int. Conf. Meas. Modeling Comput. Syst., 2010, pp. 119–130.

[8] L. Xu and J. Bruck, “X-code: MDS array codes with optimal
encoding,” IEEE Trans. Inf. Theory, vol. 45, no. 1, pp. 272–276,
Jan. 1999.

[9] X. Luo and J. Shu, “Load-balanced recovery schemes for single-
disk failure in storage systems with any erasure code,” in Proc.
IEEE 42nd Int. Conf. Parallel Process., 2013, pp. 552–561.

[10] C. Wu, et al., “HDP Code: A horizontal-diagonal parity code to
optimize I/O load balancing in RAID-6,” in Proc. IEEE/IFIP 41st
Int. Conf. Depend. Syst. Netw., 2011, pp. 209–220.

[11] Z. Shen and J. Shu, “HVCode: An all-aroundMDS code to improve
efficiency and reliability of RAID-6 systems,” in Proc. 44th Annu.
IEEE/IFIP Int. Conf. Depend. Syst. Netw., 2014, pp. 550–561.

[12] Y. Hu, H. C. Chen, P. P. Lee, and Y. Tang, “NCCloud: Applying
network coding for the storage repair in a cloud-of-clouds,” in
Proc. 10th USENIX Conf. File Storage Technol., 2012, pp. 21–21.

[13] S. Xu, et al., “Single disk failure recovery for X-code-based parallel
storage systems,” IEEE Trans. Comput., vol. 63, no. 4, pp. 995–1007,
Apr. 2013.

[14] Y. Zhu, P. P. Lee, Y. Hu, L. Xiang, and Y. Xu, “On the speedup of
single-disk failure recovery in XOR-coded storage systems: The-
ory and practice,” in Proc. IEEE 28th Symp. Mass Storage Syst. Tech-
nol., 2012, pp. 1–12.

[15] C. Ruemmler and J. Wilkes, “An introduction to disk drive mod-
eling,” Computer, vol. 27, no. 3, pp. 17–28, 1994.

[16] Y. Fu, J. Shu, and X. Luo, “A stack-based single disk failure recov-
ery scheme for erasure coded storage systems,” in Proc. IEEE 33rd
Int. Symp. Reliable Distrib. Syst., 2014, pp. 136–145.

[17] Z. Shen, J. Shu, and P. P. Lee, “Reconsidering single failure recov-
ery in clustered file systems,” in Proc. 46th IEEE/IFIP Int. Conf.
Depend. Syst. Netw., 2016.

[18] (2016). EXT3. [Online]. Available: http://www.en.wikipedia.org/
wiki/ext3:

[19] Z. Zhang and K. Ghose, “yFS: A journaling file system design for
handling large data sets with reduced seeking,” in Proc. 2nd USE-
NIX Conf. File Storage Technol., 2003, pp. 59–72.

[20] (2011). EMC CLARiiON best practices for performance and avail-
ability: Release 30.0 firmware update applied best practice.
[Online]. Available: https://www.emc.com/collateral/hard-
ware/white-papers/h5773-clariion-best-pra ctices-performance-
availability-wp.pdf

[21] J. Gray, B. Horst, and M. Walker, “Parity striping of disk arrays:
Low-cost reliable storage with acceptable throughput,” in Proc.
16th Int. Conf. Very Large Data Bases, 1990, pp. 148–161.

[22] F. Glover and M. Laguna, Tabu Search. Berlin, Germany: Springer,
1999.

[23] J. J. Wylie and R. Swaminathan, “Determining fault tolerance of
XOR-based erasure codes efficiently,” in Proc. 37th Annu. IEEE/
IFIP Int. Conf. Depend. Syst. Netw., 2007, pp. 206–215.

[24] C. Jin, H. Jiang, D. Feng, and L. Tian, “P-Code: A new RAID-6
code with optimal properties,” in Proc. 23rd Int. Conf. Supercomput-
ing, 2009, pp. 360–369.

[25] P. Corbett, et al., “Row-diagonal parity for double disk failure
correction,” in Proc. 3rd USENIX Conf. File Storage Technol., 2004,
pp. 1–1.

[26] C. Wu, S. Wan, X. He, Q. Cao, and C. Xie, “H-Code: A hybrid
MDS array code to optimize partial stripe writes in RAID-6,”
in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2011,
pp. 782–793.

[27] I. S. Reed and G. Solomon, “Polynomial codes over certain finite
fields,” J. Soc. Ind. Appl.Math., vol. SIAM-8, no. 2, pp. 300–304, 1960.

[28] M. Li and P. P. Lee, “Stair codes: A general family of erasure codes
for tolerating device and sector failures in practical storage
systems,” in Proc. 12th USENIX Conf. File Storage Technol., 2014,
pp. 147–162.

[29] (2009). EMC symmetrix DMX-RAID 6 implementation. [Online].
Available: http://storagenerve.com/2009/02/27/emc-symme-
trix-dmx-raid-6-implementation/

[30] C. Lueth, “RAID-DP: Network appliance implementation of raid
double parity for data protection,” Netw. Appliance, Inc., Sunny-
vale, CA, USA, Tech. Rep. TR-3298, 2004.

[31] G. Zhang, G. Wu, J. Shu, K. Li, S Wang, and W. Zheng, “CaCo: An
efficient cauchy coding approach for cloud storage systems,”
IEEE Trans. Comput., vol. 65, no. 2, pp. 435–447, Feb. 2015.

[32] J. S. Plank, S. Simmerman, and C. D. Schuman, “Jerasure: A
library in C/C++ facilitating erasure coding for storage applica-
tions-version 1.2,” Dep. Elec. Eng. Comput. Sci., Univ. Tennessee,
Knoxville, TN, USA, Tech. Rep. CS-08–627, 2008, vol. 23.

[33] Y. Zhu, P. P. Lee, L. Xiang, Y. Xu, and L. Gao, “A cost-based het-
erogeneous recovery scheme for distributed storage systems with
RAID-6 codes,” in Proc. 42nd Annu. IEEE/IFIP Int. Conf. Depend.
Syst. Netw., 2012, pp. 1–12.

[34] Z. Wang, A. Dimakis, and J. Bruck, “Rebuilding for array codes in
distributed storage systems,” in Proc. IEEE Globecom Workshops,
2010, pp. 1905–1909.

SHEN ETAL.: SEEK-EFFICIENT I/O OPTIMIZATION IN SINGLE FAILURE RECOVERY FOR XOR-CODED STORAGE SYSTEMS 889

[35] M. Holland, G. Gibson, and D. Siewiorek, “Architectures and
algorithms for on-line failure recovery in redundant disk arrays,”
Distrib. Parallel Databases, vol. 2, no. 3, pp. 295–335, 1994.

[36] C. A. Hoare, “Quicksort,” Comput. J., vol. C-5, no. 1, pp. 10–16,
1962.

[37] (2010). HDFS RAID. [Online]. Available: https://wiki.apache.
org/hadoop/HDFS-RAID

[38] Z. Wilcox-O’Hearn and B. Warner, “Tahoe: The least-authority fil-
esystem,” in Proc. 4th ACM Int. Workshop Storage Secur. Survivabil-
ity, 2008, pp. 21–26.

Zhirong Shen received the bachelor’s degree
from the University of Electronic Science and
Technology of China, and the PhD degree from
the Department of Computer Science and Tech-
nology, Tsinghua University in 2016. He is now an
assistant professor at Fuzhou University. His cur-
rent research interests include storage reliability
and storage security.

Jiwu Shu received the PhD degree in computer
science from Nanjing University in 1998, and fin-
ished the postdoctoral position research at Tsing-
hua University in 2000. Since then, he has been
teaching at Tsinghua University. His current
research interests include storage security and
reliability, non-volatile memory based storage
systems, and parallel and distributed computing.
He is a member of the IEEE.

Patrick P.C. Lee received the BEng degree (first-
class honors) in information engineering from
Chinese University of Hong Kong in 2001, the
MPhil degree in computer science and engineer-
ing from Chinese University of Hong Kong in
2003, and the PhD degree in computer science
from Columbia University in 2008. He is now an
associate professor in the Department of Com-
puter Science and Engineering, Chinese Univer-
sity of Hong Kong. His research interests include
in cloud storage, distributed systems and net-
works, and security/resilience.

Yingxun Fu received the bachelor’s degree from
North China Electric Power University in 2007,
the master’s degree from Beijing University of
Posts and Telecommunications in 2010, and the
doctor’s degree from Tsinghua University in
2015. He is now an assistant professor at the
North China University of Technology. His current
research interests include storage reliability and
distributed systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

890 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 3, MARCH 2017

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

