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Abstract—Erasure coding provides an effective means for stor-
age systems to protect against disk failures with low redundancy.
One important objective for erasure-coded storage systems is to
speed up single disk failure recovery. Previous studies reduce the
amount of read data for recovery by reading only a small subset
of data, but their approaches often incur high disk seeks, which
may negate the resulting recovery performance. We propose
SIOR, a seek-efficient I/O recovery algorithm for single failure.
SIOR carefully balances the trade-off between the amount of
read data and the number of disk seeks by considering the
data layout at the multi-stripe level. It then greedily determines
the data to read for recovery using Tabu search. Experiments
show that SIOR achieves similar performance to the brute-
force enumeration method while keeping high search efficiency.
Also, SIOR reduces 31.8%∼65.1% of disk seeks during recovery
and provides up to 186.8% recovery speed improvement, when
compared to a state-of-the-art greedy recovery approach.

I. INTRODUCTION

Disk failures are commonplace in large-scale distributed

storage systems [18], and hence protecting data with redun-

dancy is critical to provide fault tolerance guarantees. Given

that replication has high storage overhead and aggravates the

operational cost of storage, erasure coding is increasingly

adopted in commercial storage systems (e.g., Azure [10] and

Facebook [15]). It takes original information as input and

produces redundant information. The original information and

redundant information connected by an erasure code form a

stripe. A storage system organizes data in different stripes,

each of which is independently operated by erasure coding.

Although erasure coding tolerates multiple disk failures,

single disk failures dominate over 90% of failure events in

practice [11], [15], [18]. Conventional recovery for single

(disk) failures often needs to read a considerable amount of

surviving data. To reduce the amount of read data during single

failure recovery, researchers propose a spate of solutions [11],

[12], [19], [21]–[23], which can be categorized as follows:

1) New constructions of RAID-6 codes which tolerate

double failures, such as HDP Code [21], and HV Code
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[19], which read less data for recovery than existing

RAID-6 codes.

2) Optimization techniques for specific codes, such as RDP

Code (by [22]) and X-Code (by [24]), which provide a

provably lower bound of the amount of read data.

3) General optimization techniques for any erasure codes

[11], [25].

Although these studies effectively reduce the amount of read

data for recovery, they achieve this by reading and correlating

different portions of a stripe to reconstruct the failed data.

This leads to additional disk seeks,1 which can negate the

actual recovery performance. A disk seek needs to move

the mechanic disk head to the position where the accessed

data resides, and its overhead is generally larger than that of

transferring the same size of accessed data. However, most

existing studies do not take into account the disk seek overhead

in their recovery solutions. Some studies mitigate the disk

seek overhead by assuming large-size I/O units (e.g., 16MB

[5], [11], [12], [19], [25]), yet traditional file systems often

operate on small-size disk blocks (e.g., 4KB in EXT3 [4]).

How to balance the trade-off of different block sizes between

normal I/O performance and recovery performance remains

unexplored.

In this paper, we explore the seek-efficient I/O optimization

problem of single failure recovery for any XOR-based erasure

code. Our observation is that previous studies only focus

on recovery at the single stripe level, yet storage systems

are usually configured in stripes [7]. Thus, by collectively

examining the data layouts of multiple stripes, we can reduce

the number of disk seeks in recovery. To this end, we propose

SIOR, a multi-stripe single failure recovery scheme that not

only reduces the amount of read data, but also minimizes the

number of disk seeks. SIOR is suitable for the storage systems
(e.g., [9], [20]) that are sensitive to both repair traffic and
recovery I/O for the data reconstruction.

SIOR can be decomposed into two stages. In the first stage,

SIOR finds an initial recovery solution that is able to rebuild

the lost data at the multi-stripe level and satisfies the require-

ments on the data reduction. In the second stage, SIOR utilizes

Tabu Search [6] and iteratively obtains another solution that

gains fewer disk seeks without violating the requirement on the

1We use the term “seeks” to collectively refer to seeks and rotations [17].
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data reduction. Besides, SIOR also proposes a filling method
that selectively reads unrequested data to further decrease disk

seeks. Therefore, SIOR fully lightens the load on disks during
single failure recovery, in terms of the amount of read data
and the number of disk seeks. To our best knowledge, it is

the first work to simultaneously consider the optimization of

these two metrics for single failure reconstruction.
In summary, we make the following contributions.

1) We formulate the seek-efficient I/O optimization prob-

lem for single failure recovery. The formulation not only

minimizes the number of disk seeks, but also reduces the

amount of read data.

2) We make use of Tabu search [6] and propose a general

greedy algorithm named SIOR for any XOR-based era-

sure code. SIOR iteratively selects a recovery solution

with fewer disk seeks, while preserving the reduction

on the read data for recovery. SIOR also proposes the

filling method to reduce disk seeks.

3) We implement SIOR over a real storage system con-

structed over several representative XOR-based erasure

codes. Evaluations shows that SIOR significantly de-

creases the search time when compared with the brute-

force enumeration method. Moreover, SIOR decreases

31.8%∼65.1% disk seeks during the recovery, and pro-

vides up to 186.8% recovery speed improvement, when

compared with Zpacr [25], a state-of-the-art greedy

recovery approach to minimize the amount of read data.

The rest of this paper is organized as follows. Section II

introduces the research background. The problem formulation

is provided in Section III. We present the detailed design of

SIOR in Section IV. After that, we evaluate the performance

of SIOR in Section V and conclude our work in Section VI.

II. BACKGROUND

A. Basics
One typical class of erasure codes is Maximum Distance

Separable (MDS) codes [2], which reach the optimal storage

efficiency. MDS codes are typically configured by two param-

eters k and m: an (k,m) MDS code transforms k pieces of

original data and produces another m redundant pieces, such

that any k out of k+m pieces are sufficient to reconstruct the

original data. The k + m dependent pieces collectively form

a stripe and are distributed to k +m disks. In this work, we

focus on XOR-based MDS codes, in which encoding/decoding

operations are based on XOR operations only.
The coded storage system is also the composition of many

independent stripes. Figure 1 shows the logical structure of

an XOR-coded storage system with 3 stripes. Meanwhile, we

denote the maximum set of information in a stripe that stored

on the same disk as strip. In XOR-coded storage systems,

a strip is partitioned into w elements with equal-size, where

element is the basic operated unit (e.g., byte or block). For

example, in Figure 1, each stripe has 6 strips and every strip

has 4 elements.
To clarify the internal connection among elements in a

stripe, we present the layout of RDP Code [3] over p + 1

Stripe 1Stripe 1

Stripe 2Stripe 2

Stripe 3Stripe 3

ElementElement

Disk 1Disk 1 Disk 2Disk 2 Disk 3Disk 3 Disk 4Disk 4 Disk 5Disk 5 Disk 6Disk 6

StripStrip

Fig. 1. The relationship among disk, stripe, strip, and element in an XOR-
Coded storage system.

TABLE I
BACKGROUND NOTATIONS AND DESCRIPTIONS

Notations Descriptions

p prime number to configure the stripe size

n number of disks in an XOR-coded storage system

k, m number of data disks, number of parity disks

w number of elements in a strip

Dj the j-th disk

Ei,j element at the i-th row and j-th disk

⊕ XOR operation
∑ {Ei,j} sum of XOR operation among the elements {Ei,j}

disks (p = 5) as an example in Figure 2. Table I also lists the

notations and their descriptions in this clarification. A stripe

usually consists of data elements and parity elements. Data

elements contain the original data information, while parity

elements keep the redundant information. For example, E1,1

is a data element and E1,5 is a parity element in Figure 2(a).

To generate the parity element, a subgroup of data ele-

ments will be selected to perform the encoding operation.

For example, RDP Code needs to calculate “horizontal parity

elements” and “diagonal parity elements”. The horizontal

parity element E1,5 :=
∑4

i=1 E1,i := E1,1 ⊕ · · · ⊕ E1,4

in Figure 2(a), and the diagonal parity element E1,6 :=
E1,1 ⊕ E4,3 ⊕ E3,4 ⊕ E2,5 as shown in Figure 2(b). We

also denote the parity generation relationship as the parity
chain when it is used to repair lost elements. For example,

E1,1 can be recovered by two parity chains in Figure 2,

i.e., {E1,1, E1,2, · · · , E1,5} that generates the horizontal parity

element E1,5 and {E1,1, E4,3, E3,4, E2,5, E1,6} that produces

the diagonal parity element E1,6.

B. XOR-based Erasure Codes

XOR-based erasure codes calculate the parity elements by

just performing XOR operations. This kind of erasure codes

has better encoding/decoding/update efficiency, compared to

the codes that are based on complicated operations in the finite

field, such as Reed-Solomon Code [16]. As shown in Figure 2,

RDP Code [3] is a typical XOR-based erasure code.

To generally represent any XOR-based erasure code, one

can arrange the data elements residing on disks into a data
element vector and utilize a generator matrix [13], [14] which

is actually a binary matrix, to simulate the encoding procedure

as the multiplication between the generator matrix and the data

element vector. For example, Figure 3 illustrates the generator

matrix of RDP Code (p = 5) in a stripe.
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(a) The Horizontal Parity Chain.
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(b) The Diagonal Parity Chain.

Fig. 2. The layout of RDP Code with p + 1 disks (p =
5) in a stripe. {E1,1, · · · , E1,5} is a horizontal parity chain and
{E1,1, E4,3, E3,4, E2,5, E1,6} is a diagonal parity chain.
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Fig. 3. The generator matrix for RDP Code (p=5) in a stripe. The filling cell
in the generator matrix means “1”, while the blank cell means “0”.

C. Single Failure Problem

For single failure recovery, most previous works propose

to accelerate the repair process by reducing the number of

elements that need to be read from the surviving disks.

For RDP Code, Xiang et al. [22] firstly propose to repair

the corrupted elements by selectively using the diagonal parity

chains and the horizontal parity chains, so that the optimal

solution with the fewest retrieved elements will be obtained.

Figure 4 shows three recovery schemes to rebuild Disk 1 in

two stripes for RDP Code. To repair the lost data elements

in the Stripe 1, the first 2 schemes (i.e., Figure 4(a) and

Figure 4(b)), which only use horizontal parity chains and

diagonal parity chains respectively during the recovery, require

16 elements. By mixing the two kinds of parity chains, the

recovery solution of Stripe 1 in Figure 4(c) only needs 12

elements. Following this inspiration, Xu et al. [24] investigate

the optimal recovery for single failure in X-Code [23].

To get the minimum number of read elements during single

failure recovery for any XOR-based erasure code, Khan et al.

[11] propose to enumerate all the parity chains for each failed

element based on the generator matrix and convert the possible

parity chains into a directed and weighted graph. Therefore,

the optimization of single failure recovery can be transformed

to the problem of finding the shortest path in the converted

graph. Besides retrieving the fewest elements, Luo et al. [12]

also discover that the solution that evenly reads elements from

surviving disks can achieve a faster recovery. Fu et al. [5]

also study the load-balancing problem at multi-stripe setting.

However, all of the above solutions are NP-Hard and thus are

not capable of supporting the on-line reconstruction.

Aiming at this shortcoming, Zhu et al. [25] greedily search

the solution with a near-minimum number of read elements for

any XOR-based erasure code. In the meantime, many erasure

codes [10], [19], [21] also consider the performance of single

failure recovery in their code designs. However, these methods

are only suitable for the recovery in a single stripe.

D. Remaining Problems in Single Failure Recovery

Although intensive attempts have been made on the single

failure recovery, two restrictions are still remained.

The Increasing Number of Disk Seeks: Most prior works [5],

[11], [12], [19], [21], [22], [25], [26] only focus on decreasing

the elements to be read during the recovery, and neglect the

increasing number of disk seeks. For example, in Figure 4(a), it

reads 32 elements from the surviving disks, and causes 5 seek

operations. Figure 4(c) only reads 24 elements, but produces

17 seek operations. Disk seek is expensive especially when

the size of an I/O unit is small. Thus, the optimization on disk

seeks should be carefully studied for single failure recovery.

Recovery in Multiple Stripes: Most previous studies [11],

[12], [19], [21], [22], [26] also only consider the recovery in

a single stripe, generally because their problems are stripe-

independent and the stripe-level solutions they propose can be

directly applied in multiple stripes.

However, the optimization of disk seeks is more compli-

cated, as the number of disk seeks usually correlates with

the positions of read elements among stripes. For example,

in Figure 4(b), the two elements E4,3 (in Stripe 1) and E5,3

(in Stripe 2) can be read directly, while it needs an extra seek

operation to retrieve E3,2 (in Stripe 1) and E5,2 (in Stripe 2).

Therefore, it is more practical to consider this problem at the

multi-stripe setting.

In practice, as the disk hosting parity elements will usually

serve the heavy updates when the associated data elements are

written, multiple stripes are usually organized by the stripe

rotation [7] for load balancing. In this paper, we rotate the

stripes by gradually shifting the elements to left when the

stripe identity increases. Take Figure 4 as an example, parity

elements of Stripe 1 are placed at D5 and D6, and parity

elements of Stripe 2 will be shifted to D4 and D5.

III. PROBLEM FORMULATION AND MOTIVATIONS

Based on the above problems, we thus pose the following

question: Can we decrease disk seeks during the single failure

recovery at the multi-stripe level, while still reducing the

amount of read data? One typical scenario is: Given an
expected number of retrieved elements, minimize the number
of disk seeks at the multi-stripe level.

We can formulate the problem as follows: suppose an XOR-

coded storage system consists of n disks {D1, · · · , Dn}. Giv-

en a corrupted disk Di (1 ≤ i ≤ n) and the expected number

of retrieved elements M , suppose the recovery solution reads

mj elements from disk Dj (1 ≤ j �= i ≤ n) and consequently

causes oj seek operations. Our objective is to find the recovery

solution that minimizes the number of seek operations and
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(b) The Solution with Diagonal Parity
Chains in Stripe 1 and Hybrid Chains in
Stripe 2. It reads 29 elements and causes
13 seek operations.
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(c) An Optimal Solution (2 horizontal parity
chains and 2 diagonal parity chains in each
stripe). It fetches 24 elements and incurs 17
seek operations.

Fig. 4. The three recovery solutions to repair Disk 1 for RDP Code (p = 5) in two rotated stripes. It indicates that the data reduction in single failure recovery
may increase the seek operations.

also retrieves no more than M elements. This objective can

be formulated as follows:

Minimize
∑

1≤j �=i≤n

oj (1)

subject to ∑

1≤j �=i≤n

mj ≤ M (2)

Our objective is an optimization problem of disk seeks with

a restriction on the number of read elements. To achieve this

objective, the enumeration method that exhaustively tests all

possible parity chains for each lost element will cause an

extremely high computation complexity. For example, if the

disk D0 fails in X-Code [23], suppose there are s stripes

and the prime number is p. Then there are (p − 2)s data

elements on each disk and each lost data element can be

recovered by at least 2 parity chains (according to the property

of RAID-6), so the search space is larger than 2(p−2)s. Pre-

storing the optimal recovery solution cannot always retain

its optimality especially under the environment with constant

changing factors, for example, the changing available network

bandwidth in a heterogeneous environment [26].

Therefore, a better idea is to propose a greedy algorithm

that can efficiently pursue a near-optimal solution. To this end,

we propose to partition the search procedure into two stages.

In the first stage, we find an “initial solution” that satisfies

the restriction (2). As discussed above, extensive studies have

been made to minimize the number of required elements in

a single stripe, such as Zpacr [25]. Therefore, we can apply

them for each stripe in turn and get an initial solution. In the

second stage, we can further perform a deeper optimization

based on the initial solution, by trying every other possible

parity chain for each lost element and greedily selecting the

best replacement in each iteration.

IV. THE DETAILED DESIGN OF SIOR

Based on the above motivation, we propose our greedy

algorithm called SIOR. SIOR can be decomposed into “Initial

Algorithm 1: Initial Solution Selection

Input: s: number of stripes
M : expected number of read elements in s stripes

Output: Rini: initial solution

1 for i = 1 to s do
2 Initialize Ri for the i-th stripe

3 Build a recovery solution Rini := (R1, · · · ,Rs)
4 for i = 1 to s do
5 Apply Zpacr [25] to Ri and get Ri

6 Set Rini := (R1, · · · ,Ri,Ri+1, · · · ,Rs)
7 Get the element distribution Dini of Rini

8 if e(Dini) ≤ M then
9 Return Rini

10 Return false

Solution Selection” and “Initial Solution Optimization”. The

used symbols and descriptions in SIOR are listed in Table II.

A. Initial Solution Selection

To obtain an initial solution, for each stripe, we can make

use of existing stripe-level2 methodologies [11], [25] to min-

imize the number of read elements for recovery, until the

number of retrieved elements accumulated in all the stripes

satisfies the restriction (2). Two widely adopted methodologies

for any XOR-based erasure code are considered, i.e., the

enumeration scheme [11] that is NP-Hard, and the greedy

algorithm Zpacr [25] that finds the near-optimal solution in

polynomial time. To efficiently provide an on-line recovery

solution, we choose Zpacr [25] to serve as the cornerstone in

Initial Solution Selection. The detailed procedure is presented

in Algorithm 1.

Algorithm Details: At the beginning, we first initiate a

solution Ri (1 ≤ i ≤ s) for the i-th stripe (step 1∼2),

where Ri is composed of parity elements. It indicates that

the lost elements in the i-th stripe can be recovered by using

2The stripe-level means that these methodologies can only optimize the
number of retrieved elements for a single stripe.
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TABLE II
THE USED SYMBOLS AND DESCRIPTIONS IN SIOR

Symbols Descriptions

Defined in Algorithm 1

M expected number of read elements for recovery

Rini initial recovery solution of s stripes

Ri recovery solution for the i-th stripe before optimization

Ri recovery solution for the i-th stripe after optimization

s number of stripes

D distribution of read elements before filling

e(·) function to calculate the number of read elements

Defined in Algorithm 2

L Tabu list

F distribution of read elements after filling

Fopt optimal recovery solution found by SIOR

Cx candidate parity chain for the lost element x

Sx selected parity chain for the lost element x

A set of candidate solutions in an iteration

q(·) function to calculate the number of disk seeks

the parity chains that associate with these parity elements in

Ri. For example, R1 := {E1,5, · · · , E4,5} in the Stripe 1 of

Figure 4(a), where the corrupted element Ej,1 (1 ≤ j ≤ 4) can

be recovered by using the horizontal parity chain that generates

Ej,5, i.e., Ej,1 = Ej,2 ⊕ Ej,3 ⊕ Ej,4 ⊕ Ej,5.

In this paper, a recovery solution is valid if it satisfies

the restriction (2) on the number of retrieved elements. We

construct an initial solution Rini which includes the recovery

solutions for s stripes (step 3). Then for the i-th stripe, we

take Ri as input, apply Zpacr [25] for optimization, and

get a near-optimal recovery solution Ri (step 5). We replace

Ri with Ri in Rini and get an updated initial solution

Rini := (R1, · · · ,Ri,Ri+1, · · · ,Rs) (step 6). Suppose Dini

denotes the element distribution of Rini and e(Dini) represents

the number of retrieved elements in Dini (step 7). Once the

total number of retrieved elements e(Dini) is no more than

the expected number of read elements M , then Rini will be

returned as a valid initial solution (step 8∼9). Otherwise, the

algorithm will return false (step 10).

An Example: We take Figure 4 as an example, where s = 2,

and M is set as 24 in this example. We use a parity element to

denote its associated parity chain. Algorithm 1 first generates

a solution Rini := (R1,R2) and its element distribution

Dini is shown in Figure 4(a), where R1 := {E1,5, · · · , E4,5}
and R2 := {E5,4, · · · , E8,4}. It reads 32 elements. After

performing the optimization, we obtain the initial solution

Rini := (R1,R2) and its distribution Dini is shown in

Figure 4(c), where R1 := {E1,5, E2,6, E3,6, E4,5} and R2 :=
{E6,5, E6,4, E8,5, E8,4}. The initial solution retrieves 24 ele-

ments and satisfies the requirement (2).

B. Initial Solution Optimization

Although the initial solution satisfies the restriction (2), it

may cause many disk seeks. In this section, we accordingly

propose Algorithm 2 based on Tabu Search [6] to optimize the

number of disk seeks. Tabu Search effectively avoids sticking

in suboptimal search regions when compared to other local

search methods like hill-climbing algorithm [25]. It specifies

a search rule and keeps a structure called a Tabu list. For a

visited solution, once it violates the rule, it will be recorded

in the Tabu list and passed over for a period of time. Before

explicitly presenting Algorithm 2, we first give a rough sketch

about its main idea.

Main idea:
1) Simplified recovery model. To iteratively make the

initial solution approach the optimal one, an important step

is to try other parity chains to repair lost elements and then

execute a greedy selection. For example, in the solution of

Figure 4(a), the lost data element E1,1 is recovered by the

horizontal parity chain that generates E1,5. We can get another

recovery solution by simply selecting another parity chain that

E1,1 involves, i.e., the diagonal parity chain that produces

E1,6. Some previous works, such as [11] and [12], adopt the

enumeration method to exhaustively try every possible parity

chain according to the generator matrix. Unfortunately, this

enumeration method is NP-Hard.

Given the need for efficiency, we choose a simplified recov-

ery model instead. We repair lost elements by simply using

parity chains that encode the parity elements. For example,

we only consider the horizontal/diagonal parity chains for data

recovery in RDP Code, as it only has these two kinds of parity

elements.

2) The filling procedure. Algorithm 2 may get a solution

requiring less than M element retrievals. Given the distribution

of requested elements, we first define the concept of interval
that is the core reason that causes disk seeks.

Definition 1. If two sequentially requested elements are not
physically contiguous, we call the maximum set of unrequested
elements between them as an “interval”.

We take the solution illustrated in Figure 5(b) as an example.

E4,2 and E6,2 are two elements that are sequentially requested,

and E5,2 is an element that is not needed between them. E5,2

is called an interval since it takes an extra seek operation

for the disk to read E4,2 and E6,2. Similarly, {E2,3, E3,3}
forms an interval between the requested elements E1,3 and

E4,3. The filling procedure reads all the unrequested elements

in the selected intervals, so as to reduce the disk seeks. For

example, the solution in Figure 5(b) needs 15 disk seeks. As

a comparison, the solution in Figure 5(c) not only reads the

same requested elements in Figure 5(b), but also reads E5,2

and E7,3, and then the number of disk seeks reduces to 13.

We can observe that filling an interval by reading the elements

in it will decrease a seek operation.

Therefore, given a valid recovery solution R and its element

distribution D, suppose the number of retrieved elements in D

is e(D). To decrease the disk seeks, we can fill the intervals

by retrieving no more than M − e(D) elements that are

unrequested. Moreover, we also give the Theorem 1, which

points out how to reduce the maximum number of disk seeks

when given a constant number of filled elements.

Theorem 1. The filling procedure that fills the intervals in
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Algorithm 2: Initial Solution Optimization

Input: L: Tabu list
t: number of iterations
Rini: initial recovery solution
M : expected number of read elements to repair s stripes

Output: Fopt: recovery solution found by SIOR

1 Set L ← ∅, R ← Rini, q(Fopt) ← ∞, A ← ∅
2 for each iteration do
3 for each lost element x do
4 for each candidate parity chain Cx do
5 R

′ ← R− Sx + Cx

6 if R′ is not valid then
7 Reuse Initial Solution Selection to optimize it

8 Get the element distribution D
′

9 Run Filling Intervals to D
′ and obtain F

′

10 Calculate the caused disk seeks q(F′)
11 if q(F′) /∈ L then
12 Record {R′,F′} in A

13 Select {Rmin,Fmin} from A
14 � record the near-optimal scheme
15 if q(Fmin) ≤ q(Fopt) then
16 q(Fopt) ← q(Fmin)
17 Fopt ← Fmin

18 � update the Tabu list
19 if L is full then
20 Evict the oldest value out of L
21 Append q(Fmin) to L
22 Update R ← Rmin, set A ← ∅
23 Return Fopt

24 Procedure Filling Intervals()
25 Calculate e(D′) and set Δ ← M − e(D′)
26 Fill Δ elements to intervals from smallest to largest in size,

and obtain F
′

2828 return F
′;

the order of smallest to largest in size, 3 can decrease the
maximum number of seek operations.

Proof: As discussed above, filling an interval can reduce a

seek operation, therefore the more filled intervals will cause

the more reductions on disk seeks. When given a constant

number of available elements for filling, the method that fills

the intervals in the order of smallest to largest in size can

decrease the maximum number of intervals, and thus introduce

the most reduction of seek operations. �
3) The maintenance of a Tabu list. Algorithm 2 always

maintains a Tabu list L throughout the search, which keeps the

number of seek operations of the selected solutions in recent

iterations. In next iterations, Algorithm 2 will ignore the solu-

tions that need the same disk seeks recorded in L, and choose

the one with the least disk seeks among remaining candidates.

This design can effectively avoid the search process sticking

to a suboptimal solution.

Algorithm Details: In Algorithm 2, we first initialize a

Tabu list L as an empty set and set the current optimal

3The size of an interval is denoted by the number of elements it includes.

number of disk seeks q(Fopt) as infinity (step 1). In a new

iteration, given the current recovery solution R, for each lost

element x, we replace the current selected parity chain Sx

with each candidate parity chain Cx, and construct another

recovery solution R
′ (step 2∼5). If R

′ retrieves more than

M elements, then it will be optimized to be a valid one by

reusing Algorithm 1 (step 6∼7). Given R
′, we can have the

distribution of retrieved elements, which is denoted as D′ (step

8). We perform the procedure of Filling Intervals to D
′, get

the element distribution F
′ after filling procedure, and calculate

the number of seek operations q(F′) (step 9∼10). If q(F′) is

not kept in the Tabu list, then we record the tuple {R′,F′} in

the candidate set A (step 11∼12).

After testing every candidate parity chain for each lost

element, we select the tuple {Rmin,Fmin} from A, where

Fmin has the fewest disk seeks among the solutions in A
(step 13). We compare q(Fmin) with the optimal number of

seek requests q(Fopt) currently found, and record Fmin and

q(Fmin) if Fmin brings fewer seek operations than Fopt (step

15∼17). Finally, we append q(Fmin) in the Tabu list L (step

21) and select Rmin for the next iteration (step 22). q(Fopt)
will be iteratively reduced with Algorithm 2 proceeds.

For the procedure of Filling Intervals, given the element

distribution D
′, we first calculate the number of read elements

e(D′) and further get the number of unrequested elements Δ
that can be read (step 25). To fill the maximum number of

intervals according to Theorem 1, we sort the intervals and

fill the intervals from smallest to largest in size (step 26). The

procedure finally returns the filled distribution F
′ (step 28).

An Example: The current recovery solution in Figure 4(c)

is R := (R1,R2), where R1 := {E1,5, E2,6, E3,6, E4,5}
and R2 := {E6,5, E6,4, E8,5, E8,4}. This solution requires 24

elements and causes 17 disk seeks. The element distribution

of R is shown in Figure 5(a).

We set M = 27 and assume L = {14} which is updated

in previous iterations. The current parity chain for E1,1 (i.e.,

element x in Algorithm 2) in R is the horizontal parity chain

led by E1,5 (i.e., Sx). We replace it with another parity chain

that E1,1 involves, i.e., the diagonal parity chain led by E1,6

(i.e., Cx), and construct a candidate solution R
′ = (R′1,R2),

where R′1 := {E1,6, E2,6, E3,6, E4,5}.

We can obtain a new element distribution D
′ as shown in

Figure 5(b). D′ is a valid distribution because it requires 25

elements (≤ M = 27). We then calculate the number of filling

elements (i.e., Δ = 2), perform the filling procedure (i.e.,

read unrequested data elements E5,2 and E7,3), and obtain

the element distribution after filling (i.e., F
′) as shown in

Figure 5(c). The number of disk seeks in F
′ (i.e., q(F′)) is

13. Since 13 /∈ L, then we record the tuples {R′,F′} in A.

After testing all the possible candidate parity chains for

every lost element {E1,1, E2,1, · · · , E8,1}, we then perform

the greedy selection in step 13∼22.

Complexity Analysis: We will respectively analyze the com-

plexity of Algorithm 1 and Algorithm 2. The descriptions of

symbols can be reviewed in Table I and Table II.

233



1

2

3

4

D1

5

6

7

8

Stripe 1Stripe 1

Stripe 2Stripe 2

Disk SeeksDisk Seeks 44 33 33 44 33

D2 D3 D4 D5 D6

00

Failed elementFailed element

(a) Element Distribution Before Replace-
ment. It needs 24 elements and causes 17
seek operations.

1

2

3

4

D1

5

6

7

8

Stripe 1Stripe 1

Stripe 2Stripe 2

Disk SeeksDisk Seeks 44 33 22 33 33

D2 D3 D4 D5 D6

00

Originally read elementOriginally read element

(b) Element Distribution After Replacemen-
t. It needs 25 elements and causes 15 seek
operations.

1

2

3

4

D1

5

6

7

8

Stripe 1Stripe 1

Stripe 2Stripe 2

Disk SeeksDisk Seeks 33 22 22 33 33

D2 D3 D4 D5 D6

00

Padded intervalPadded interval

(c) Element Distribution After Filling. It
needs 27 elements and causes 13 seek op-
erations.

Fig. 5. An example for a replacement in Algorithm 2

Since the complexity of Zpacr is O(mw3) [25] and Algo-

rithm 1 will invoke it for at most s times, the complexity of

Algorithm 1 is O(smw3).
Before giving the complexity of Algorithm 2, we first

analyze the complexity of Filling Intervals Procedure. The

total number of intervals is no more than (n − 1)sw, where

(n − 1) is the number of surviving disks and (n − 1)sw
is the total number of surviving elements. Therefore, the

sorting complexity is O(nsw log(nsw)) when employing the

sorting algorithms, such as Quicksort [8]. The filling oper-

ation (step 26 in Algorithm 2) scans at most (n − 1)sw
elements. Thus the complexity of Filling Intervals Procedure
is O(nsw log(nsw)).

In Algorithm 2, for each parity replacement, Algorithm 2

may reuse Algorithm 1 and invoke the filling procedure.

Since our simplified recovery model only considers the parity

chains that generate parity elements, there are at most mw
parity chains in a stripe. Each iteration will try at most smw
replacements for s stripes, so the total number of replacements

after t iterations is at most tsmw. Based on the above

analysis, in Algorithm 2, the complexity of filling operations

is O(tnms2w2 log(nsw)), while the complexity of reusing

Algorithm 1 is O(ts2m2w4). Therefore, the complexity of

Algorithm 2 is O(ts2m2w4) +O(tnms2w2 log(nsw)).

V. PERFORMANCE EVALUATION

We conduct a series of intensive tests to evaluate the perfor-

mance of SIOR. We choose the stripe-level greedy algorithm

Zpacr [25] as the reference, since it also works for any XOR-

based erasure code and only optimizes the number of read

elements without considering the optimization on disk seeks.

Therefore, the comparison can fairly represent the advantage

of SIOR. We select four typical coding schemes, i.e., RDP

Code (over p + 1 disks, where p is a prime number), X-

Code (over p disks), STAR Code (over p+3 disks) and CRS

Code. The features of these four coding schemes are shown

in Table III, where n is the number of disks in a stripe and m
is the tolerated number of disk failures.

Evaluation Environment: We choose n from 5 to 15.

This range covers typical system configurations of many

TABLE III
FOUR REPRESENTATIVE CODING SCHEMES (p IS A PRIME NUMBER)

Coding Scheme n k m

RDP Code p+ 1 p− 1 2

X-Code p p− 2 2

STAR Code p+ 3 p 3

CRS Code general pairs of (k,m)

well-known storage systems [1], [10]. The test is run on a

Linux server with a X5472 processor and 8GB memory. The

operating system is SUSE Linux Enterprise Server and the

filesystem is EXT3. The deployed disk array consists of 15

Seagate/Savvio 10K.3 SAS disks, each of which has 300GB

storage capability and 10,000 rmp. We organize the disks in

the JBOD (just a bunch of disks) mode and each disk is

independently handled as a node. The machine and the disk

array are connected by a Fiber cable with the bandwidth of

800MB/sec. The codes are realized by Jerasure 1.2 [14], a

widely-used library to realize erasure coding storage systems.

Evaluation Metrics: Suppose the storage system consists of

n disks {D1, · · · , Dn}. When Di fails, a recovery solution

causes oj disk seeks to Dj (1 ≤ j �= i ≤ n), and takes the

time Tj to retrieve the required elements from Dj . We concern

the following metrics:

1) Seek load. This metric denotes the averaged number of

seek operations that a surviving disk serves during the

reconstruction and is defined as follows:

seek load =

∑
1≤j �=i≤n

oj

n− 1
(3)

2) Recovery speed. According to the principle of parallel

technology, the recovery time is determined by the disk

that takes the longest time. Therefore, the recovery time

is Max{Tj |1 ≤ j �= i ≤ n}. The recovery speed can

then be defined as follows:

recovery speed =
size of all the lost elements

recovery time
(4)

Evaluation Method: For each coding scheme, we generate

the data elements and perform the encoding by producing
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parity elements. These elements are then dispersed according

to the layout of that code and the stripe rotation principle. The

element size is set as 4KB and the stripe number is set as 100.

We then destroy the elements on a random selected disk, and

trigger SIOR to generate the recovery solution over these 100

stripes. We also employ Zpacr [25] to compute the recovery

solution for each stripe. Finally, we repair the lost elements

based on the solutions found by SIOR and Zpacr respectively.

A. Impact of Number of Iterations

In this experiment, we evaluate the performance on seek

load and recovery speed when the number of iterations in-

creases. We select p = 11, so that the number of disks n
constructed over RDP Code, X-Code and STAR Code will

be 12, 11 and 13, respectively. For CRS Code, we choose

the parameter (k = 8,m = 4), so that the number of disks

n = k+m = 12. Like in Zpacr [25], We also select w = 6 for

CRS Code. For each code, SIOR reads 5% more elements than

Zpacr. To clearly illustrate the gap of recovery speed between

SIOR and Zpacr, we normalize the recovery speed of Zpacr

as 1. The test results are shown in Figure 6 and Figure 7.

Seek Load: Figure 6 demonstrates that SIOR can significantly

reduce the seek load for various kinds of codes, when com-

pared to Zpacr [25]. For RDP Code, SIOR cuts down up

to 65.1% of seek operations for each disk during the recon-

struction. For X-Code, SIOR decreases up to 44.2% of seek

operations. For STAR Code and CRS Code, SIOR removes

up to 64.7% and 52.4% of seek operations, respectively.

Moreover, with the increasing of iterations, the number of

optimized seek operations first sharply decreases and then

becomes stable. This is because the gained reduction on seek

operations in each iteration generally becomes smaller when

the sought solution is closer to the optimal one.

Recovery Speed: Figure 7 shows SIOR greatly improves the

recovery speed. For RDP Code, the recovery speed of SIOR is

144.9% faster than that of Zpacr. For CRS Code and X-Code,

SIOR improves the recovery speed by up to 97.0% and 33.0%

respectively compared to Zpacr [25].

B. Scalability

In this test, we evaluate the scalability of SIOR in terms

of seek load and the recovery speed when the system scale

expands. The number of iterations is set as 400. In the

evaluation of each code, SIOR reads 5% more elements than

Zpacr. To clearly illustrate the gap of recovery speed between

SIOR and Zpacr, we normalize the recovery speed of Zpacr

as 1. Results are shown in Figure 8 and Figure 9.

Seek Load: Figure 8 indicates that SIOR keeps its advantage

to optimize disk seeks under different scales of the storage

systems. Take RDP Code as an example, SIOR decreases about

31.8% of seek operations loaded on each disk when p = 5,

and this reduction increases to 62.8% when p = 13.

Moreover, SIOR widens the benefit on disk seeks reduction

when the scale of the storage system expands. Take STAR

Code as an example, the saving of seek operations brought by

SIOR increases from 37.7% (p = 5) to 64.7% (p = 11).

TABLE IV
THE ACCURACY AND EFFICIENCY OF SIOR

Num. of Stripe Accuracy Time (SIOR) Time (Enumeration)

RDP Code (p = 11)

1 1.00 0.04 sec 0.04 sec

2 1.00 0.12 sec 7.52 sec

3 1.00 0.21 sec 3h 17min 30sec

X-Code (p = 11)

1 1.05 0.03 sec 0.04 sec

2 1.08 0.15 sec 26.04 sec

3 1.02 0.27 sec 20h 4min 8sec

STAR Code (p = 11)

1 1.00 0.21 sec 0.22 sec

2 1.09 0.29 sec 7h 1min 10sec

Recovery Speed: Figure 9 confirms that SIOR keeps its

capability for recovery speedup under different system scales,

as SIOR still behaves well to reduce the seek operations when

the system scale expands. For example, for RDP Code, SIOR

accelerates the data recovery by 59.6% when p = 5 and this

improvement reaches 186.8% when p = 13.

C. Accuracy and Efficiency

We then evaluate the accuracy and efficiency of SIOR.

Accuracy is used to denote the closeness between the optimal

solutions sought by SIOR and the Enumeration respectively.

accuracy =
the least disk seeks in SIOR

the least disk seeks in Enumeration
(5)

We select RDP Code (p = 11), X-Code (p = 11), and

STAR Code (p = 11), and vary the number of stripes. In

the evaluation of each code, both SIOR and Enumeration

method read 5% more elements than Zpacr. We run SIOR

and Enumeration method respectively, calculate the search

accuracy, and record the search latency in Table IV.

Table IV indicates that SIOR is accurate and efficient

when compared with Enumeration. SIOR obtains the solution

with the same minimum number of disk seeks compared to

Enumeration in RDP Code, and causes no more than 8% extra

seek operations when compared with Enumeration in X-Code.

On the aspect of efficiency, SIOR greatly decreases the search

latency. For example, SIOR only needs 0.21 seconds to find

the solution with the least disk seeks for RDP code when

the number of stripes is 3. On the contrary, the search time

of Enumeration exponentially enlarges when the number of

stripes increases. For example, for RDP Code, Enumeration

requires more than 3 hours to find the solution with minimum

seek operations when there are only 3 stripes.

D. Data Reduction

We also test the capability of SIOR to reduce the mount

of read data for recovery. We select p = 11 for RDP Code,

X-Code, and STAR Code. We also use CRS Code with the

parameters (k = 8,m = 4, w = 6). In the evaluation of

each code, SIOR reads 5% more elements than Zpacr. The

comparison results among Zpacr, SIOR, and the conventional

method (i.e., without hybrid parity chains) are normalized

in Table V. Table V indicates that both Zpacr and SIOR
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Fig. 6. The seek load under different numbers of iterations. The smaller value means the lighter load on disks.
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Fig. 7. The recovery speed under different numbers of iterations. The larger value means the faster recovery.
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Fig. 8. The seek load under different number of disks. The smaller value means the lighter load on disks.
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Fig. 9. The recovery speed under different number of disks. The larger value means the faster recovery.

TABLE V
COMPARISON ON DATA REDUCTION

Codes Zpacr SIOR Conventional Method

RDP Code 0.77 0.81 1.00

X-Code 0.72 0.76 1.00

STAR Code 0.72 0.76 1.00

CRS Code 0.87 0.91 1.00

impressively decrease the amount of read data compared to

the conventional method. For example, SIOR reduces 19%

unnecessary retrieved elements compared with the conven-

tional method. Meanwhile, SIOR only retrieves 5% more

elements compared with Zpacr, and this ratio can also be

further adjusted according to the administrator’s requirements.

E. Impact of Element Size

To investigate how the element size affects the benefit of

SIOR, we compare SIOR with Zpacr in terms of recovery

speed under different element sizes. We first define the concept

of acceleration ratio in Equation (6).

acceleration ratio =
recovery speed of SIOR

recovery speed of Zpacr
(6)

Obviously, when the acceleration ratio is larger, SIOR can

achieve a faster data reconstruction when compared with Zpacr

[25]. With respect to the selection of M , we mainly consider

two cases for each code, i.e., M1 = (1+1%)×Cmin and M5 =
(1+5%)×Cmin, where Cmin is the least number of required

elements found by Zpacr [25]. We then vary the element size

from 4KB to 256KB, and calculate the acceleration ratio under

these two selections of M (i.e., M = M1 and M = M5). The

results are presented in Figure 10.
First, the advantage of SIOR will eliminate when the

element size increases. For example, when the element size

is 4KB and M = (1 + 5%)× Cmin, the acceleration ratio of

RDP Code is 2.6, meaning that the recovery speed of SIOR

is 2.6 times faster than that of Zpacr. When the element size
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Fig. 10. The acceleration rate under different element sizes.

increases to 256KB, SIOR reaches the same recovery speed

with Zpacr. This test also suggests that SIOR is more suitable

to be deployed in the environment with a small element size

(i.e., smaller than 256KB). This is because the influence of

seek time declines when the size of I/O unit expands.

Second, the number of read elements also affects the per-

formance of SIOR. When the element size is small, selecting

M = M5 gains more performance improvement, compared

with the chosen of M = M1. This is because when M = M5,

SIOR has a larger search space to find the solution with fewer

disk seeks. However, when the element size increases, the

effect of disk seek reduction becomes insignificant and the

increasing size of retrieved elements slows down the recon-

struction in reverse. Thus the gained benefit when M = M5

will reduce, compared to the case when M = M1.

F. Summary

These tests show that both Zpacr and SIOR are suitable for

storage systems that are easily restricted by the repair traffic,

such as [9] and [20]. Compared with Zpacr, SIOR not only

sustains the advantage of data reduction, but also decreases

the disk seeks to reach the faster data reconstruction.

VI. CONCLUSION

In this paper, we propose a greedy algorithm called SIOR

based on Tabu search to optimize both the number of disk

seeks and the amount of read data for recovery. The algorithm

includes two stages. The first stage makes use of an existing

algorithm that optimizes the number of retrieved elements for

each stripe, and gets an initial solution. The second stage

optimizes the initial solution and iteratively approaches the

optimal recovery solution. Finally, the evaluation indicates that

SIOR reduces 31.8%∼65.1% of disk seeks and improves the

recovery speed by up to 186.8% during the recovery.
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