
SimiEncode: A Similarity-based Encoding Scheme to Improve
Performance and Lifetime of Non-Volatile Main Memory

Suzhen Wu‡, Jiapeng Wu‡, Zhirong Shen‡, Zhihao Zhang‡, Zuocheng Wang‡, Bo Mao‡�

‡School of Informatics at Xiamen University, Xiamen, Fujian, China
�Corresponding author: Bo Mao (maobo@xmu.edu.cn)

Abstract—Non-Volatile Memories (NVMs) have shown tremen-
dous potential to be the next generation of main memory, yet
they are still seriously hampered by the high write latency
and limited endurance. In this paper, we first unveil via real-
world benchmark analysis that the words within the same
cache line showcase a high degree of similarity. We therefore
present SimiEncode, a low-overhead and effective Similarity-
based Encoding approach. SimiEncode relieves writes to NVMs
by (1) generating a mask word with minimized differences to
the words within a cache line, (2) encoding each word with the
associated mask word by simple XOR operations, and (3) writing
a single tag bit to indicate the resulting zero word after encoding.
Our prototype implementation of SimiEncode and extensive
evaluations driven by 15 state-of-the-art benchmarks demon-
strate that, compared with existing approaches, SimiEncode
significantly prolongs the lifetime and improves the performance.
Importantly, SimiEncode is orthogonal to and can be easily
incorporated into existing bit flipping optimizations.

I. INTRODUCTION

Recently, the emerging Non-Volatile Memories (NVMs),
such as Phase-Change Memory (PCM) and Spin-Transfer
Torque RAM (STT-RAM), have received a surge of interest
and been promising candidates of next-generation memory
systems [4], [23]. Though they have the advantages of low
leakage, high density, and high scalability, NVMs are still con-
cerned by the inherent manufactural defects, in terms of high
write latency and limited endurance, raising challenges when
making attempts to deploy them in practice. For instance, a
PCM cell can only endure about 108 writes (as opposed to
1016 writes in DRAM) and its write latency is 20X slower
than that of DRAM (see Section II-A).

To address the problems, extensive efforts have been con-
ducted to relieve the writes to NVMs via bit flipping or data
compression. Specifically, the bit flipping [6], [9], [10], [15],
[22] transforms an incoming word into another one that has
fewer changed bits compared with the original word being
stored in NVMs, hence reducing the bit writes to NVMs.
Another method, the data compression [1], [8], [17], [18], [21]
seeks to represent a word using a much shorter one with the aid
of some data patterns maintained (e.g., the frequent patterns
in Frequent Pattern Compression [1] and the base words in
Base Delta Immediate [18]). However, most of existing studies
either calls for additional reads [6], [9], [10], [15], [22] or
is sensitive to the selected data patterns [1], [8], [17], [18],
[21], hence are inefficient and cannot dynamically adapt to
the workload changes.

On the other hand, our preliminary workload analysis
reveals that the data of the regions within the same cache
line exhibit a high degree of similarity. In detail, we conduct
in-depth analysis using real-world benchmarks selected from
PARSEC [3] and SPEC CPU 2017 [5], showing that the data
similarity is significant (i.e., the similar regions of the same
cache line take up a large proportion) and prevalent (i.e., all the
evaluated benchmarks showcase the property of data similarity.

Based on the observation, we carve out a new path to
prolong the lifetime and improve the performance of NVMs by
exploiting data similarity. We therefore present SimiEncode,
a new Similarity-based Encoding approach that strives to
prolong the lifetime and improve the performance of NVMs.
SimiEncode first partitions a cache line into many fixed-
size words. It then carefully generates a mask word for each
cache line, ensuring that the resulting mask word has mini-
mized differences from the words within the same cache line.
SimiEncode then encodes each word with the corresponding
mask word through XOR operations and introduces one tag
bit to indicate whether the word is encoded into a zero word
(i.e., the word with all zeros). Once a zero word is identified,
SimiEncode simply writes the corresponding tag bit, instead
of the whole word, so as to reduce the bit writes to NVMs.
Moreover, with the premier objective of reducing more bit
writes, SimiEncode dynamically seeks the appropriate encod-
ing granularity. In addition, SimiEncode is also orthogonal
to prior studies (e.g., the bit flipping techniques [6], [9],
[10], [15], [22]) and therefore can be easily incorporated into
the existing optimizations to further prolong the lifetime and
improve the performance of NVMs.

Our major contributions can be summarized as follows.
• We unveil via analyzing real-world benchmarks that data

similarity is of prevalence and significance in practice.
• We design SimiEncode, a low-overhead encoding ap-

proach that leverages the word similarity to lessen the
bit writes. SimiEncode also dynamically seeks the ap-
propriate encoding granularity to minimize the bit writes
to NVMs (Section III-A). In addition, when the large
encoding granularity is used, SimiEncode further breaks
the word into sub-words, to further reduce the bit writes.

• We implement the prototype of SimiEncode and conduct
extensive performance evaluations with real-world and
state-of-the-art benchmarks, showing that SimiEncode
can significantly prolong the lifetime, reduce the read and
write latencies, and save the energy consumption.

1

0x40404141 0x41414142 0x42424343 0x43434343 0x43434343 0x43434343 0x43434343 0x43434343

Fig. 1. An example of the first 32 bytes of a cache line where the last five
words are the same, which is selected from the x264 benchmark in SPEC
CPU 2017.

II. BACKGROUND AND MOTIVATIONS

A. Write problem in NVMs

NVMs are advantageous in architecting computer systems
with the promising properties, but they still suffer severe
manufactural shortcomings, such as expensive write energy,
high write latency, and limited write endurance. For example,
previous studies show that the write latency of PCM cells is
about 20X slower than that of DRAM [7], and a PCM cell can
merely sustain around 108 writes before getting stuck [29].
Besides, the write latency of STT-RAM is about 2X slower
than that of DRAM [11].

The write energy and endurance of PCM further differ in the
writing binary bits. For instance, PCM represents information
through two interchangeable states of chalcogenide alloy,
namely crystalline state (SET) and amorphous state (RESET).
The SET operation (i.e., writing the bit ‘1’) calls for more
power consumption, since the operated PCM cell should be
heated above 300◦C but below 600◦C over a period of time;
while the RESET operation (i.e., writing the bit ‘0’) is more
detrimental to the PCM cells, since the operated PCM cell
should be heated above 600◦C hastily during the RESET
operation [23].

The write asymmetric also differs in different NVMs. For
example, writing ‘0’ in a PCM cell is more detrimental to
endurance than writing ‘1’ [27], while writing ‘1’ in a STT-
RAM cell leads to a higher bit error rate than writing ‘0’ [28].
Thus, to prolong the lifetime and improve the performance of
NVMs, a straightforward approach is reducing the bit writes,
which is used by existing studies.

B. Workload characteristic

Knowing the workload characteristics is important for stor-
age design. Previous studies [1], [18] have pointed out that
applications may generate redundant data patterns, including
zeros (commonly used to initialize data) and repeated values
(e.g., adjacent pixels that have the same color). This phe-
nomenon drives us to investigate the data similarity within
the same cache line. We select 10 benchmarks from SPEC
CPU 2017 [5] and another 5 benchmarks from PARSEC [3]
for analysis. Figure 1 shows an example of the first 32 bytes
of a cache line selected from the x264 benchmark in SPEC
CPU 2017, in which the 32 bytes are divided into eight words
(4 bytes per word) and the last five words are the same.

We then formalize the analysis. Suppose that the size of a
cache line is 64 bytes. We divide a cache line into 16 equal-
sized words (4 bytes per word), namely {W1,W2, · · · ,W16}.
Given two words Wi and Wj, we can simply use Wi⊕Wj to
learn their similarity, where ⊕ denotes the exclusive-or (XOR)
operation. We say the two words Wi and Wj are more similar
once the resulting Wi⊕Wj contains more zero bits.

ble
nd
er

cac
tuB
SS
N

fot
on
ik3
d gcc lee

la mc
f

nab

per
lbe
nch x2

64

xal
anc
bm
k

bo
dy
tra
ck

ded
up

fer
ret

rtv
iew

sw
apt
ion
s

0

20

40

60

80

100

Pe
rc
en
ta
ge
(%

)

SPEC CPU 2017 Benchmark PARSEC Benchmark

Fig. 2. Similarity analysis of the real-world benchmarks.

Hence, to characterize the data similarity existed in a cache
line, we define the similarity degree of the i-th word (denoted
by si, where 1≤ i≤ 16) to the other 15 words within the same
cache line, which can be calculated through Equation (1):

si =

∑
1≤ j 6=i≤16

θ(Wi⊕Wj)

∑
1≤ j 6=i≤16

l
, (1)

where θ is a function to count the number of resulting zero bits
in a word, and l represents the word size. Finally, the average
word similarity of a cache line can be simply calculated
through Equation (2):

s =
∑

1≤i≤16
si

16
. (2)

Figure 2 presents the resulting word similarity of the 15
benchmarks. Given a benchmark, we obtain the word sim-
ilarity for each cache line, and calculate the average word
similarity as well as the maximum and minimum values across
all the cache lines. We observe that the words within the same
cache line exhibit a high degree of data similarity across all
the 15 benchmarks. Specifically, the similarity degrees range
from 66.7% (mcf benchmark) to 94.7% (dedup benchmark)
and finally reach 77.2% on average, as shown in Figure 2.
Moreover, the word similarity within cache lines of each
benchmark is rather stable, which inspires us to design a
new approach based on the identified word similarity for
eliminating the bit writes to NVMs.

C. Motivation

The emergence of NVM devices such as 3D-Xpoint leads
to significant changes to the storage hierarchy in personal
devices, cloud, and high-performance platforms. But writes
still significantly affect the energy, latency and endurance of
NVMs. The existing studies use bit flipping by comparing the
new and old cache lines, or data compression to reduce the
bit writes to some extent [6], [8], [18], [22], [24]. However,
most of these schemes ignore the significant word similarities
within cache lines, which can be utilized to further reduce the
bit writes to NVMs. Only BDI [18] utilizes the word similarity
when the beginning parts of the words are the same. In a
word, the word similarity within a cache line is still not fully
exploited to reduce the bit writes.

Motivated by the above observations and the importance to
address the write issues in NVMs, we present SimiEncode, an
encoding approach to explore word similarity for prolonging

2

Algorithm 1 Encoding procedure of SimiEncode
Input: k (number of words of a cache line), l (size of a word)
Output: M (the mask word), Coded words {W ′1,W ′2, · · · ,W ′k}

1: Divide a cache line into k words {W1,W2, · · · ,Wk}
2: Initialize U where U [j] = 0 for 1≤ j ≤ l
3: // Examine the bit distribution of the k words
4: for 1≤ i≤ k do
5: for 1≤ j ≤ l do
6: U [j] =U [j]+Wi[j]
7: end for
8: end for
9: // Determine the mask word

10: for 1≤ j ≤ l do
11: if U [j]> k

2 then
12: M[j] = 1
13: else
14: M[j] = 0
15: end if
16: end for
17: // Encode the k words
18: for 1≤ i≤ k do
19: W ′i =Wi⊕M
20: end for

the lifetime and improving the performance of NVMs. The
main idea behind SimiEncode is to look for a mask word
for each cache line that has the smallest Hamming distance
from the words in the cache line, thus generating as many zero
words as possible. SimiEncode then uses tag bits to represent
the generated zero words and writes the tag bits to NVMs (as
opposed to flushing the zero words), so as to reduce the bit
writes.

III. DESIGN OF SIMIENCODE

In this section, we first outline the encoding workflow in
SimiEncode to exploit the word similarity. Then we present
the write and read workflows of SimiEncode, followed by
descriptions of the encoding and decoding logic. The applica-
bility of SimiEncode is discussed at the end of this section.

A. Encoding workflow

The first step in the encoding workflow is to find the mask
word with the minimum differences among the k words within
the same cache line, and then apply the encoding method on
the words within the cache line.

Mask word: In order to generate as many zero words as pos-
sible to reduce bit writes, generating the mask word requires
careful consideration. The simplest method is picking a word
from the cache line (e.g., the first word) to be a mask word
which is used in the BDI scheme [18], but our evaluation
results indicate that the selected word is not sufficiently similar
to the other words. The other method is traversing all words
and calculating the similarity of each word to the other
remaining words. The word with the highest similarity among
all words will be selected as the mask word, incurring high
time overhead and O(n2) time complexity.

In this paper, we use Hamming distance to generate a mask
word such that the Hamming distance between the mask word

Word 1

Mask word

Summary word

00110101 00011101 01101101 00011101

00011101

01233404

Word 2 Word 3 Word 4

00101000 00000000 01110000 00000000

Encode each word with mask word

Coded word 1 Coded word 2 Coded word 3 Coded word 4

Fig. 3. An encoding example of SimiEncode.

b l e n
d e r

c a c t
u B S S N

f o t o
n i k 3

d g c c l e e l a m c f n a b
p e r l

b e n c
h

x 2 6
4

x a l a
n c b m

k
b o d

y t r a
c k

d e d u
p

f e r r e
t

r t v i e
w
s w a p t i

o n s
0

2 0
4 0
6 0
8 0

1 0 0

4 9 . 6
3 4 . 6

1 2 . 4
3 2 . 6 4 0 . 8 4 8 . 1

4 6 . 6 4 0 . 6 3 9 . 1
5 3 . 35 8 . 96 3 . 46 1 . 8

4 4 . 0

Per
cen

tag
e (

%)

S P E C C P U 2 0 1 7 B e n c h m a r k P A R S E C B e n c h m a r k

4 1 . 1

Fig. 4. Percentage of zero words in real-world benchmarks.

and the words in a cache line is the smallest, thus the mask
word is the most similar to the words overall. We consider
various methods to calculate similarity, but not all of them
are appropriate, such as Cosine distance, Pearson distance
and Jaccard distance, which are relatively complicated and not
effective. When the data is represented in binary, Manhattan
distance and Euclidean distance are equivalent to Hamming
distance. If the goal is solely to generate the most zero words,
it seems that the word with the most occurrences should be
selected as the mask word. However, when the word can be
divided into sub-words (see Sub-word in III-B), this method
is ineffective. Therefore, in SimiEncode, we use Hamming
distance to generate mask word.

Encoding procedure: Algorithm 1 elaborates the detailed pro-
cedure of encoding a cache line in SimiEncode. SimiEncode
first partitions a cache line into k equal-sized words with the
word size of l (Line 1, suppose that the size of a cache line
is divisible by k). It then records the bit distribution of the
k words by directly adding them and generates a summary
word U (Lines 4-8). SimiEncode then scans each bit of U to
establish the mask word M: if the value ‘1’ at a position is
dominated (i.e., more than k

2), the value of the mask word at
this position is set as ‘1’; otherwise, it is set as ‘0’ (Lines 10-
16). SimiEncode finally encodes each word by XORing it
with the mask word and resembles the resulting coded words
into a new coded cache line (Lines 18-20). We can readily
deduce that the computation complexity of Algorithm 1 is
O(kl) = O(1), where kl is the size of a cache line.

Figure 3 depicts an encoding example of SimiEncode. It
finally generates two zero words (i.e., Coded word 2 and
Coded word 4). We further select 15 benchmarks from SPEC
CPU 2017 [5] and PARSEC [3] to validate the effectiveness of
Algorithm 1. Figure 4 indicates that SimiEncode can encode
43.8% of the words of a cache line into zero words on average
when the word size is 4 bytes.

3

5 9 5 0

8 3 8 6
6 6

8 9

3 2
4 7 4 3 4 2

7 3
9 4

6 9 7 2 7 1

6
5

1 6 1
1 3

4

1 1
3 1 0 3

1

0

2 1 11 3 3 5

1
5

8
2

1 2
1 8 1 5

1 2

5

1

7 5 6
2 2

1 0 1 8 1 2 5

4 5
3 3 3 2 4 2

2 1
5

2 3 2 1 2 2

b l e n
d e r

c a c t
u B S S N

f o t o
n i k 3

d g c c l e e l
a m c f n a b

p e r l
b e n

c h x 2 6
4

x a l a
n c b

m k
b o d

y t r a
c k

d e d
u p f e r r e

t
r t v i e

w
s w a p t i

o n s
0

2 0

4 0

6 0

8 0

1 0 0
Per

cen
tag

e (%
)

 1 6 B y t e 8 B y t e 4 B y t e 2 B y t e

S P E C C P U 2 0 1 7 B e n c h m a r k P A R S E C B e n c h m a r k
Fig. 5. The proportion of zero words generated by different encoding
granularities.

TABLE I
ENCODING GRANULARITY AND THE ADDITIONAL BIT WRITES.

Prefix Encoding granularity (bytes) Number of additional bits
00 2 18+ h

2
01 4 34+ h

4
10 8 66+ h

8
11 16 130+ h

16

Encoding granularity: Matching the encoding granularity of
the encoding scheme to the size of the data elements in the
cache line has a considerable effect on the effectiveness of the
encoding scheme. For example, the cache line with all integer
numbers is better to choose a different encoding granularity
from the one with all floating-point numbers. If the encoding
granularity is not matched with the size of the underlying data
elements, it will fail to produce abundant zero words and thus
reducing the effectiveness of the encoding scheme.

Specifically, if the encoding granularity is smaller than
the data element in the cache line, SimiEncode fails to
produce zero words, potentially resulting in more writes as
SimiEncode requires to write additional mask word and tag
bits. Conversely, if the encoding granularity is larger than the
underlying data element, SimiEncode suffers two drawbacks:
fewer number of zero words after encoding and larger size of
the mask word to be written.

In order to facilitate the finding of the most appropriate
encoding granularity, SimiEncode provides four options of
the encoding granularity: 2-byte, 4-byte, 8-byte, and 16-byte.
Figure 5 shows the distribution of the different encoding
granularities that generates the proportion of zero words in
SimiEncode. SimiEncode traverses all the four encoding
granularities and selects the one that generates the largest
proportion of zero words. SimiEncode also employs a prefix
with two bits to indicate the encoding granularity finally
selected. Table I shows the prefix, the corresponding encoding
granularity, and the size of the additional information (i.e.,
prefix, mask word, and tag), where h denotes the size (in unit
of byte) of a cache line.

B. Write and read workflow

Write procedure: Figure 6 illustrates the write procedure in
SimiEncode. SimiEncode first generates a mask word based
on the k words within the same cache line (Step 1©, where k =
8). It then encodes the cache line by XORing each word with

Mask word

Word 1 Word 2 Word 3 Word 4 Word 5 Word 6 Word 7 Word 8

Word 1 Word 2 Word 3 Word 4 Word 5 Word 6 Word 7 Word 8

00 01010011 Word 2 Word 4 Word 7 Word 8

Original cache line

Coded cache line

Generate
Encode

Mask word

Zero Word

Tag

Coded words

Write

Prefix

Fig. 6. Write procedure of SimiEncode.

Mask word

Word 1 Word 2 Word 3 Word 4 Word 5 Word 6 Word 7 Word 8

Word 1 Word 2 Word 3 Word 4 Word 5 Word 6 Word 7 Word 8

00 010100011 Word 2 Word 4 Word 7 Word 8

Original cache line

Coded cache line

Read

Mask word

Tag

Decode

Prefix

①

④

Generate③
00 Read②

Data payload

Fig. 7. Read procedure of SimiEncode

the mask word (Step 2©). To further reduce the bit writes after
generating zero words, SimiEncode maintains an additional
tag along with the coded cache line. The tag is composed of
k bits, where the i-th bit is set as ‘0’ once the i-th coded word
is identified as a zero word (where 1 ≤ i ≤ k). For example,
as Word 1 in Figure 6 is a zero word, the first bit of the tag
is set as ‘0’, while the second bit of the tag is marked as ‘1’
since Word 2 is a non-zero word. When writing a coded cache
line, SimiEncode simply writes the prefix, the mask word of
this cache line, the corresponding tag, and the non-zero coded
words to NVMs (Step 3©).

Read procedure: Figure 7 illustrates the read procedure in
SimiEncode. When reading a cache line, SimiEncode first
identifies the encoding granularity (i.e., the word size) based
on the prefix values according to Table I (Step 1©). Suppose
that the encoding granularity is l. It then extracts the mask
word (Step 2©) and recovers each coded word by scanning
each tag bit: if the i-th tag bit is ‘0’ (where 1≤ i≤ k), SimiEn-
code is aware that the i-th coded word is a zero word and
generates a l-bit zero word directly; otherwise, SimiEncode
reads the subsequent l bits from the data payload to resemble
the i-th coded word (Step 3©). For example, after identifying
that the first bit of the tag in Figure 7 is ‘0’, SimiEncode
generates a zero word as Word 1; SimiEncode then reads
the second bit of the tag which is ‘1’, and retrieves the first l
bits from the payload to serve as Word 2. SimiEncode finally
recovers the original words by XORing each coded word with
the mask word (Step 4©).

Cutting down more tag bits: SimiEncode further reduces
more bit writes through cutting down the additional informa-
tion introduced by data encoding. We find that the resulting
zero cache line after encoding (i.e., the cache line with all zero
bits) occupies a considerable proportion of the coded cache
lines. Figure 8 shows that the percentage of the zero cache
lines encoded by SimiEncode reaches 23.8% on average for

4

6.76

41.02 46.51

2.88
9.80

0.05 1.15 3.47

33.73

4.01

31.77

84.37

29.40 31.68 30.61

ble
nd
er

cac
tuB
SS
N

fot
on
ik3
d gcc lee

la mc
f

nab

per
lbe
nch x2

64

xal
anc
bm
k

bo
dy
tra
ck

ded
up

fer
ret

rtv
iew

sw
apt
ion
s

0%

20%

40%

60%

80%

100%
Pe
rc
en
ta
ge

(%
)

SPEC CPU 2017 Benchmark PARSEC Benchmark

Fig. 8. Percentage of zero cache lines encoded by SimiEncode for real-world
benchmarks.

b l e n
d e r

c a c t
u B S S N

f o t o
n i k 3

d g c c l e e l a m c f n a b
p e r l

b e n
c h x 2 6

4

x a l a
n c b

m k
b o d

y t r a
c k

d e d
u p f e r r e

t
r t v i e

w
s w a p t i

o n s
0

2 0

4 0

6 0

8 0

1 0 0

Per
cen

tag
e (%

)

 4 - b y t e 4 - s u b - w o r d 8 - b y t e 8 - s u b - w o r d 1 6 - b y t e 1 6 - s u b - w o r d

S P E C C P U 2 0 1 7 B e n c h m a r k P A R S E C B e n c h m a r k
Fig. 9. Percentage of generated zero words for different encoding granularities
and sub-words.

15 benchmarks. In this case, SimiEncode introduces one tag
bit for a zero cache line to indicate whether a coded cache
line is a zero cache line after encoding. If it is, SimiEncode
directly writes the tag bit of the zero cache line, the prefix, and
the mask word to NVMs. Therefore, compared to the original
design of SimiEncode that needs to record numerous tag bits,
this optimized method can dramatically reduce the bit writes
for zero cache lines, hence further prolonging the lifetime and
improving the performance of NVMs.
Sub-word: SimiEncode now identifies and eliminates zero
bits at the word granularity. This approach, however, may
have poor effect when the word size increases, even when
the words in the cache line are highly similar. Apparently, it
is inefficient to identify zero words with the same size as the
encoding granularity. To effectively exploit the word similarity
in the cache line, SimiEncode further divides a coded word
into a number of fixed-size sub-words and examines the
zero bits at the sub-word granularity. If the sub-word size is
too large, the number of identified zero words will be low.
Conversely, if the sub-word size is too small, more tag bits are
needed. In SimiEncode, the sub-word size is set to 2 bytes,
the same as the minimum encoding granularity employed by
SimiEncode. Figure 9 shows the percentage of generated zero
words using 4, 8, and 16 bytes as the encoding granularity and
the percentage of generated zero words by further breaking
the coded word into sub-words. The number of zero words
is increased by 8.4%, 32.5%, and 24.8%, respectively, when
using 4, 8, and 16 bytes as the coding granularity with 2-byte
sub-words.

C. Encoding and decoding logic

In this section, we elaborate the design of encoding and
decoding logic. Figure 10 shows the encoding logic consists
of 5 separate encoder units, including 4 different granularity

64-byte Original Cache Line

2-byte
Encoder Unit

4-byte
Encoder Unit

8-byte
Encoder Unit

16-byte
Encoder Unit

Zero
Encoder Unit

Selector (based on coded cache line size)

Coded Cache line (CCL)

EoN &
CCL

EoN &
CCL

EoN &
CCL

EoN &
CCL

EoN &
CCL

Encodable or
Not ? + Coded

Cache Line(CCL)

Fig. 10. The encoding logic consists of 5 separate encoder units.

Word1 Word2 ······ Word15 Word16

Mask Word Generator

Mask Word

Zero word? Zero word? Zero word? Zero word? Zero word?

Filter (filter zero word and generate tag bits)

Is the total size less than 64 bytes ?

Mask Word Tag Bits XORi ······ XORj

4 bytes

Original Cache line
Yes No

i <= j &&
j – i < 31

BSW

Breaking into
Sub-words

XOR1 XOR2 ······ XOR15 XOR16
BSW BSW BSW BSW

Fig. 11. Implementation of a 4-byte granularity encoder unit to encode a
64-byte cache line.

encoder units and a zero encoder unit. Each encoder unit takes
a cache line as inputs and outputs after determining whether
the cache line can be coded by this unit. If the cache line can
be coded, the unit outputs the coded cache line. Otherwise,
the original cache line is the output. Therefore, we need an
additional bit to indicate whether the cache line is raw or
coded. All encoder units can be executed in parallel. The
Selector logic is used to determine whether the 5 encoder
units can be successfully coded for the cache line. If multiple
encoder units are available, the Selector selects the coded
cache line with the smallest size.

Figure 11 illustrates the implementation of a 4-byte granu-
larity encoder unit to encode a 64-byte cache line. The encoder
divides the cache line into 16 4-byte words (Word1, Word2, ...
, Word16). The Mask Word Generator generates a mask word
based on these 16 words, and then encodes each word with the
mask word by XOR operations. The resulting values (XOR1,
XOR2, ..., XOR16) are further divided into 2 2-byte sub-words.
The Filter logic sequentially assigns a tag bit to each sub-word
to indicate whether the sub-word is a zero word or not. If a
sub-word is a zero word, the Filter assigns a ‘0’ tag bit and
filters out the sub-word. Otherwise, the Filter assigns a ‘1’ tag
bit. If the total size of the coded cache line is less than 64
bytes, the coded cache line can be stored as a mask word,
tag bits and a set of non-zero sub-words. Otherwise, the coder
unit fails to code.

5

TABLE II
SYSTEM CONFIGURATIONS.

Processor and Cache
CPU 4 cores x86-64 processes, 3.2 GHz

L1 I/D cache private, 32 KB/core, 8-way, 64 bytes per cache line
L2 cache private, 256 KB/core, 8-way, 64 bytes per cache line
L3 Cache shared, 6 MB, 12-way, 64 bytes per cache line

PCM-based Memory
Capacity 4 GB, 1 channel, 1 rank, 2 banks

Memory controller FCFRFS
Read Latency 100 ns

Set latency 37.5 ns for each 32-bit word
Reset latency 12.5 ns for each 32-bit word

The decoding logic is simplistic. For a coded cache line, all
the XORed words are first restored according to the tag bits.
Then, these XORed words are decoded by executing XOR
operations with the mask word to restore the original cache
line and returned to the upper layer.

D. Discussion

SimiEncode is a general design and can be applied for
different NVMs with the diversity of write asymmetric. For
example, the characteristics of STT-RAM indicate that writing
the bit ‘1’ induces a higher bit error rate than writing the
bit ‘0’. Therefore, by producing more zero bits in a cache
line, SimiEncode can improve the reliability of STT-RAM.
On the other hand, the endurance of PCM is more vulnerable
to writing the bit ‘0’. Hence, we can simply flip the bits of
the cache line encoded by SimiEncode, making the bit ‘1’
predominate in the cache line and hence yielding in more
endurable writes for PCM.

IV. PERFORMANCE EVALUATION

A. Evaluation Setup

We deploy SimiEncode atop of PCM to evaluate its
lifetime, performance and energy. Specifically, we implement
SimiEncode on the GEM5 Simulator [14] with NVMain [19].
Table II shows the major system configurations. To demon-
strate the flexibility of SimiEncode, we select 10 bench-
marks from SPEC CPU 2017 [5] and another 5 benchmarks
from PARSEC [3]. We conduct two categories of evaluations
with different objectives: performance-oriented evaluations
and complementarity-oriented evaluations.

Performance-oriented evaluations: These evaluations are to
show the advantages gained by SimiEncode, in terms of
lifetime improvement, read/write latency reduction, and energy
consumption saving. We select the following four related
studies for comparison.
• Baseline: Baseline system directly writes the arrival data

to NVMs without any operation.
• BDI [18]: BDI exploits small tail differences among the

data (i.e., only the last few bytes of data in the same
cache line are distinct) and uses an implicit zero base,
an explicit non-zero base, and an array of differences to
represent the cache line, so as to reduce the data size.

• DFPC [8]: DFPC compresses the cache line with the aid
of static and dynamic data patterns. Static data patterns

b l e n
d e r

c a c t
u B S S N

f o t o
n i k 3

d g c c l e e l a m c f n a b
p e r l

b e n c
h

x 2 6
4

x a l a
n c b m

k
b o d

y t r a
c k

d e d u
p

f e r r e
t

r t v i e
w
s w a p t i

o n s
0

1

2

3

4
1 7 . 11 6 . 61 5 . 36 . 9

Lif
etim

e

5 . 7
 B a s e l i n e B D I D F P C Z D - F V C S i m i E n c o d e

S P E C C P U 2 0 1 7 B e n c h m a r k P A R S E C B e n c h m a r k
Fig. 12. The lifetime results (the larger the better).

are predefined, while dynamic data patterns are dynami-
cally extracted based on the data distribution characteris-
tics of the application during execution.

• ZD-FVC [13]: ZD-FVC encodes zero and non-zero
words with 1-bit and 4-bit tags, respectively. 1 bit is used
to indicate whether the word is a zero word or not. For
non-zero words, FVC [25] is used to further encode with
3-bit tags.

Complementarity-oriented evaluations: These evaluations
are to demonstrate that SimiEncode is orthogonal to and can
be easily incorporated into existing bit flipping schemes to get
further improvements. We mainly consider the following three
bit flipping schemes.
• DCW [24]: It first reads the old data and compares it

with the new written data, and only writes the different
bits to reduce unnecessary bit writes.

• FNW [6]: FNW adaptively stores the original state or the
flipped state selectively, based on which state can reduce
more bit writes. In this experiment, we assign a tag bit
for each 16 data bits to indicate whether the data bits are
flipped or not.

• READ [22]: A variant of FNW that adjusts the encoding
granularity based on the number of dirty words.

• SimiEncode + DCW/FNW/READ: We first use
SimiEncode to encode the cache line, and then execute
DCW/FNW/READ to further reduce the bit writes.

B. Evaluation Results and Analysis

We evaluate the overall performance from the following
aspects: lifetime, write latency, read latency, energy con-
sumption, and complementarity. For clear presentation, we
normalize the experimental results to those of the Baseline.
Lifetime: We first assess the lifetime improvement gained by
SimiEncode. We assume that the wear leveling approaches
[13] are well performed to balance the bit writes, such that
the lifetime of the PCM cells is directly determined by the
number of bit writes. Figure 12 presents the lifetime results
driven by different benchmarks, showing that by eliminating
the writes for zero words and zero lines, SimiEncode dramat-
ically prolongs the PCM lifetime by 382.0%, 177.1%, 66.2%
and 42.0% on average, compared with the Baseline, BDI,
DFPC and ZD-FVC, respectively. Both SimiEncode and ZD-
FVC reduce the zero-word writing with the assistance of tag
bits, but SimiEncode utilizes the word similarity much more
effectively and reduces 20% more zero words than ZD-FVC.

6

b l e n
d e r

c a c t
u B S S N

f o t o
n i k 3

d g c c l e e l a m c f n a b
p e r l

b e n c
h

x 2 6
4

x a l a
n c b m

k
b o d

y t r a
c k

d e d u
p

f e r r e
t

r t v i e
w
s w a p t i

o n s
0 . 0

0 . 4

0 . 8

1 . 2
Wr

ite
La

ten
cy

 B a s e l i n e B D I D F P C Z D - F V C S i m i E n c o d e

S P E C C P U 2 0 1 7 B e n c h m a r k P A R S E C B e n c h m a r k
Fig. 13. Write latency results (the lower the better).

b l e n
d e r

c a c t
u B S S N

f o t o
n i k 3

d g c c l e e l a m c f n a b
p e r l

b e n c
h

x 2 6
4

x a l a
n c b m

k
b o d

y t r a
c k

d e d u
p

f e r r e
t

r t v i e
w
s w a p t i

o n s
0 . 0

0 . 4

0 . 8

1 . 2

Re
ad

La
ten

cy

 B a s e l i n e B D I D F P C Z D - F V C S i m i E n c o d e

P A R S E C B e n c h m a r kS P E C C P U 2 0 1 7 B e n c h m a r k
Fig. 14. Read latency results (the lower the better).

Although ZD-FVC further compresses non-zero words, each
non-zero word requires 3 additional tag bits, which offsets the
lifetime improvement achieved.

Write latency: We then evaluate how much write latency
can be reduced by SimiEncode. Figure 13 shows the write
latencies of different approaches, indicating that SimiEn-
code effectively reduces the write latencies by 41.4%, 6.4%,
4.7% and 0.1% on average, compared with Baseline, BDI,
DFPC and ZD-FVC, respectively. Although BDI, DFPC, and
SimiEncode all strive to eliminate unnecessary bit writes to
NVMs, SimiEncode can reduce more bit writes by only using
a tag bit to represent a whole zero word. The reason is the
same as that of the lifetime improvement by reducing more bit
writes. However, since these schemes only reduce the number
of bit writes, they still need to perform the write operations
in the cache line. Thus, the write latency reduction is limited
to some extent, compared with the lifetime improvements.

Read latency: Figure 14 shows the read latencies of different
approaches. We can see that SimiEncode reduces the read
latencies by 45.1%, 7.4%, 5.3% and 0.8% on average, com-
pared with Baseline, BDI, DFPC and ZD-FVC, respectively.
The read latency is mainly composed of two parts: the time
of reading data from NVMs to the cache, and the waiting
latency in the queue which accounts for a majority part [8].
SimiEncode reduces the write latency and hence accelerates
the dispatching speed of the read requests in the waiting
queue. In PCM, when a bank is busy handling the ongoing
write request, the subsequent read requests should wait in
the queue until the write completes [2], [12], [20], [26].
Thus, by significantly reducing the write latency, SimiEncode
finally reduces the waiting time of the read requests and
hence reducing the overall read latency. Though SimiEncode
performs additional steps before reads, the induced extra
latency overhead is actually negligible.

Energy consumption: Energy consumption is mainly intro-

b l e n
d e r

c a c t
u B S S N

f o t o
n i k 3

d g c c l e e l a m c f n a b
p e r l

b e n c
h

x 2 6
4

x a l a
n c b m

k
b o d

y t r a
c k

d e d u
p

f e r r e
t

r t v i e
w
s w a p t i

o n s
0 . 0

0 . 4

0 . 8

1 . 2

En
erg

y

 B a s e l i n e B D I D F P C Z D - F V C S i m i E n c o d e

S P E C C P U 2 0 1 7 B e n c h m a r k P A R S E C B e n c h m a r k
Fig. 15. Energy consumption results (the lower the better).

L i f e t i m e W r i t e L a t e n c y R e a d L a t e n c y E n e r g y C o n s u m p t i o n0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

(t h e l o w e r t h e b e t t e r)(t h e l o w e r t h e b e t t e r) (t h e l o w e r t h e b e t t e r)

 Ex
per

im
ent

al R
esu

lts

 D C W S i m i E n c o d e + D C W F N W S i m i E n c o d e + F N W R E A D S i m i E n o c d e + R E A D

P e r f o r m a c e M e t r i c s
(t h e l a r g e r t h e b e t t e r)

Fig. 16. Complementarity results on top of DCW, FNW and READ schemes.

duced by the collective execution of read and write requests,
and most of them is contributed by the write requests. The
fundamental reason is that the PCM cell needs a high cur-
rent to change the state to accomplish the write requests
(Section II-A). Figure 15 shows the energy consumption
results of different approaches. By significantly eliminating the
bit writes, SimiEncode reduces the energy consumption by
37.1%, 5.2%, -2.9%, 19.0% on average respectively, compared
wtih Baseline, BDI, DFPC, and ZD-FVC.

Complementarity: We finally demonstrate that SimiEncode
can further prolong the lifetime and improve the performance
by being deployed atop of existing bit flipping schemes, such
as DCW [24], FNW [6] and READ [22]. Figure 16 shows the
complementarity results. We can see that compared with the
original bit flipping schemes, the SimiEncode-based schemes
further prolongs the lifetime by 69.0%, reduces the write la-
tency by 17.8%, reduces the read latency by 18.2%, and saves
the energy consumption by 9.7% on average. These bit flipping
schemes only exploit the similarity between the old and the
new cache line to reduce the bit writes. By integrating our
proposed SimiEncode scheme, the resulting SimiEncode-
based schemes can also exploit the data similarity among the
words within a cache line, which further reduces the bit writes,
thus improving the performance and prolong the lifetime of
PCM devices.

V. RELATED WORK

In view of high write latency and limited endurance that
still trouble NVMs, a lot of studies have conducted to relieve
the writes to NVMs by opportunistically reduce the changed
bits in the writes. These studies can be categorized into the
following two aspects: bit flipping and data compression.

Bit flipping: Bit flipping schemes [6], [9], [10], [15], [22]
transform the newly written word to another equal-length
coded word, with the objective of reducing the bit writes to

7

NVMs. They opportunistically write either the newly written
word or the flipped value of it after inspecting the bit difference
between the new and the original words. FNW [6] ensures that
the number of changed bits finally loaded to NVMs is always
no more than half of the original word. As opposed to the
one-to-one mapping in bit flipping, Coset coding [9] maps a
word to a set of coded words and selects to write the one
with fewest changed bits compared to the original word, so
as to minimize the number of bits that must be written to
NVMs. However, bit flipping schemes need additional reads
of original words to check the bit difference between the new
and original words.
Data compression: Data compression aims to represent a
word with fewer bits. Frequent pattern compression (FPC)
[1], [8] maintains a set of patterns and shrinks the word
into a corresponding prefix if the word matches the recorded
patterns. BDI (also called B∆I) [18] uses a common pattern
with an array of differences to represent the original cache
line. COE [21] combines data compression with bit flipping to
further reduce the number of changed bits. ComEx coding [17]
integrates FPC and BDI with the codes using the low energy
states. However, these existing data compression schemes
cannot sufficiently exploit the word similarity in the same
cache line.

By contrast, our proposed SimiEncode partitions a cache
line into many fixed-size words. It then carefully generates
a mask word which has minimized the differences from the
words within the same cache line to exploit the word similarity.
Thus, the word similarity within a cache line is fully identified
and utilized to reduce the bit writes to NVMs.

VI. CONCLUSION

This paper presents SimiEncode, an encoding approach
that exploits the word similarity to improve the performance
and prolong the lifetime of NVMs. The main idea of SimiEn-
code is to dig the similarity among the words of the same
cache line and strive to transform them into zero words/sub-
words. By using a single tag bit to represent a whole zero word
after transformation, SimiEncode dramatically reduces the bit
writes to NVMs. Compared with the state-of-the-art schemes,
extensive evaluations with 15 real-world benchmarks show the
efficiency of SimiEncode.

ACKNOWLEDGEMENT

This work is supported by the National Natural Sci-
ence Foundation of China under Grant No. U1705261, No.
61972325, No. 61872305, and No. 62072381, CCF-Tencent
Open Fund WeBank Special Fund, CCF-Huawei Innovation
Research Plan (CCF2021-admin-270-202102), Zhejiang Lab
(2021KF0AB01).

REFERENCES

[1] A. Alameldeen and D. Wood. Frequent Pattern Compression: A
Significance-based Compression Scheme for L2 Caches. Technical
report, University of Wisconsin-Madison, 2004.

[2] M. Arjomand, M. T. Kandemir, A. Sivasubramaniam, and C. R. Das.
Boosting access parallelism to pcm-based main memory. In Proc. of
ISCA, 2016.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. In Proc. of PACT,
2008.

[4] J. Boukhobza, S. Rubini, R. Chen, and Z. Shao. Emerging NVM: A
Survey on Architectural Integration and Research Challenges. ACM
TODAES, 23(2):1–32, 2017.

[5] J. Bucek, K.-D. Lange, and J. v. Kistowski. SPEC CPU2017: Next-
Generation Compute Benchmark. In Proc. of ICPE, 2018.

[6] S. Cho and H. Lee. Flip-N-Write: A Simple Deterministic Technique
to Improve PRAM Write Performance, Energy and Endurance. In Proc.
of MICRO, 2009.

[7] S. Eilert, M. Leinwander, and G. Crisenza. Phase Change Memory: A
New Memory Enables New Memory Usage Models. In Proc. of IEEE
International Memory Workshop, 2009.

[8] Y. Guo, Y. Hua, and P. Zuo. DFPC: A Dynamic Frequent Pattern
Compression Scheme in NVM-based Main Memory. In Proc. of DATE,
2018.

[9] A. N. Jacobvitz, R. Calderbank, and D. J. Sorin. Coset Coding to Extend
the Lifetime of Memory. In Proc. of HPCA, 2013.

[10] M. Jalili and H. Sarbazi-Azad. Captopril: Reducing the Pressure of Bit
Flips on Hot Locations in Non-Volatile Main Memories. In Proc. of
DATE, 2016.

[11] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu. Eval-
uating STT-RAM as an Energy-Efficient Main Memory Alternative. In
Proc. of ISPASS, 2013.

[12] B. Li, S. Shan, Y. Hu, and X. Li. Partial-set: Write speedup of pcm
main memory. In Proc. of DATE, 2014.

[13] H. Liu, Y. Ye, X. Liao, et al. Space-oblivious compression and wear
leveling for non-volatile main memories. In Proc. of MSST, 2020.

[14] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, S. Bharadwaj, G. Black, et al.
The Gem5 Simulator: Version 20.0+. arXiv preprint arXiv:2007.03152,
2020.

[15] R. Maddah, S. M. Seyedzadeh, and R. Melhem. CAFO: Cost Aware
Flip Optimization for Asymmetric Memories. In Proc. of HPCA, 2015.

[16] P. J. Nair, C. Chou, B. Rajendran, and M. K. Qureshi. Reducing read
latency of phase change memory via early read and turbo read. In Proc.
of HPCA, 2015.

[17] P. M. Palangappa and K. Mohanram. CompEx++: Compression-
Expansion Coding for Energy, Latency, and Lifetime Improvements in
MLC/TLC NVMs. ACM TACO, 14(1):1–30, 2017.

[18] G. Pekhimenko, V. Seshadri, O. Mutlu, M. A. Kozuch, P. B. Gibbons,
and T. C. Mowry. Base-Delta-Immediate Compression: Practical Data
Compression for On-Chip Caches. In Proc. of PACT, 2012.

[19] M. Poremba, T. Zhang, and Y. Xie. NVMain 2.0: A User-Friendly
Memory Simulator to Model (Non-)Volatile Memory Systems. IEEE
Computer Architecture Letters, 14(2):140–143, 2015.

[20] M. K. Qureshi, M. M. Franceschini, and L. A. Lastras-Montano. Improv-
ing read performance of phase change memories via write cancellation
and write pausing. In Proc. of HPCA, 2010.

[21] J. Xu, D. Feng, Y. Hua, W. Tong, J. Liu, and C. Li. Extending the
Lifetime of NVMs with Compression. In Proc. of DATE, 2018.

[22] J. Xu, D. Feng, Y. Hua, W. Tong, J. Liu, C. Li, G. Xu, and Y. Chen.
Adaptive Granularity Encoding for Energy-efficient Non-Volatile Main
Memory. In Proc. of DAC, 2019.

[23] C. J. Xue, Y. Zhang, Y. Chen, G. Sun, J. J. Yang, and H. Li. Emerging
Non-Volatile Memories: Opportunities and Challenges. In Proc. of
CODES+ISSS, 2011.

[24] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and B.-G. Yu.
A Low Power Phase-Change Random Access Memory Using a Data-
Comparison Write Scheme. In Proc. of ISCAS, 2007.

[25] J. Yang, Y. Zhang, and R. Gupta. Frequent value compression in data
caches. In Proc. of MICRO, 2000.

[26] J. Yue and Y. Zhu. Making write less blocking for read accesses in
phase change memory. In Proc. of MASCOTS, 2012.

[27] W. Zhang and T. Li. Characterizing and Mitigating the Impact of
Process Variations on Phase Change Based Memory Systems. In Proc.
of MICRO, 2009.

[28] Y. Zhang, X. Wang, Y. Li, A. K. Jones, and Y. Chen. Asymmetry of
MTJ Switching and Its Implication to STT-RAM Designs. In Proc. of
DATE, 2012.

[29] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A Durable and Energy Efficient
Main Memory using Phase Change Memory Technology. In Proc. of
ISCA, 2009.

8

	Introduction
	Background and Motivations
	Write problem in NVMs
	Workload characteristic
	Motivation

	Design of SimiEncode
	Encoding workflow
	Write and read workflow
	Encoding and decoding logic
	Discussion

	Performance Evaluation
	Evaluation Setup
	Evaluation Results and Analysis

	Related Work
	Conclusion
	References

