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o We propose a new system architecture for secure file sharing in cloud scenario.
o We implement a stackable secure storage system named Shield.

e A hierarchical key organization is designed for convenient keys management.

e Shield adopts lazy revocation to accelerate the revocation process.

e Shield supports concurrent write access by employing a virtual linked list.
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storage systems either require users to completely trust the storage provider or impose the considerable
burden of managing files on file owners; such systems are inapplicable in the practical cloud environment.
This paper addresses these challenging problems by proposing a new secure system architecture and
implementing a stackable secure storage system named Shield, in which a proxy server is introduced to
be in charge of authentication and access control. We propose a new variant of the Merkle Hash Tree

é(:g::g;d:}.lstem to support efficient integrity checking and file content update; further, we have designed a hierarchical
Cryptographic controls key organization to achieve convenient keys management and efficient permission revocation. Shield
Keys management supports concurrent write access by employing a virtual linked list; it also provides secure file sharing
Proxy server without any modification to the underlying file systems. A series of evaluations over various real
Secure sharing benchmarks show that Shield causes about 7%~13% performance degradation when compared with
Permission revocation eCryptfs but provides enhanced security for user’s data.

Concurrent writes © 2014 Elsevier Inc. All rights reserved.

1. Introduction their data by handing it over to the cloud server, which may put the
data information at risk of theft or being compromised caused by

As a new kind of online storage over network, cloud storage  unauthorized access. Derived from this worry, the research reports
delivers elastic storage service and provides virtually unlimited on data leaks have increasing]y emerged in recent years, Causing
storage capacity without requiring users to perform complex sys-  public concern about the security when their sensitive data are
tem configurations or buy expensive storage devices. Owing to its stored in the public storage. The report released by IDC [8] further

conyenience and economy, data owners are willing to concentrate points out that data security have been treated as a top priority in
their data to the cloud. cloud computing.

Although cloud storage dramatically improves thg efficiency of Many secure storage systems [15,17,13,40,3,14,16,19] have
data management, data owners have to sacrifice physical control of . . .
been proposed for protecting data security by using several key

technologies such as encrypt-on-disk [17], but most of them are
mostly based on the outdated models of either requiring the cloud
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extreme trust models, complete trust or no trust, either invite
potential security threats or involve significant inconveniences.
When the cloud server is given complete trust, users may worry
about the status of their sensitive data once the cloud server does
not behave neutrally or is fully controlled by hackers, and the cloud
server may also fear to get into the risks of economic disputes and
reputation losses, once user’s data are leaked because of either sud-
den accidents or careless operations. In another case, if file owners
are required to bear the burden of trusting themselves, they will
be forced to be always online to handle access requests and exe-
cute access control, causing a considerable management burden.
There are extra works that make some impressive efforts to allevi-
ate the shortcomings of the above two architectures. For example,
Castiglione et al. [5] try to move the management burden to users
by utilizing secret sharing mechanism. They require any data ac-
cess should receive the permissions from at least k users. However,
it may also introduce considerable computation and management
burden to users. Though another work [7] introduces a generic cre-
dential authority to manage keys and enforce access control. Users
in this architecture are responsible for keys management for the
version signature. This may cause considerable management bur-
den once a user joins many groups. Meanwhile, it also introduces
many public-key encryption computations, which are far more ex-
pensive than symmetric-key encryption.

To address these problems, we analyze the threat models of file
sharing among multiple users in public storage, establish a new
trust system, and propose a new system architecture in which users
can store files and share them efficiently under multi-party shared
public storage and network environments. Based on this architecture,
we develop a stackable secure storage system named Shield, which
strives to provide secure file sharing and free file owners from
cumbersome keys management in the cloud scenario. To improve
portability, Shield requires no modification to the file system and
can be directly deployed on top of existing file systems to provide
extended end-to-end security and efficient access control, both of
which are independent of cloud storage systems or administrators.

In addition, to prevent the cloud server from accessing plaintext
when encrypting/decrypting data, Shield migrates operations of
data encryption/decryption and integrity checking to be performed
at the client side. This change also benefits the scalability of the
whole system. Moreover, Shield concentrates on the mechanisms
that provide efficient permission revocation and support write
concurrency when data files are shared among multiple users. Our
contributions are as follows:

First, we propose a new architecture for secure file sharing that
neither places complete trust over the cloud server nor imposes
cumbersome management burdens on file owners. In this archi-
tecture, we use the proxy server (PS) to manage access control and
distribute secret keys. To avoid the problem of the PS being a bot-
tleneck, a PS-Group can be easily constructed to decrease the bur-
den and trust over every individual PS.

Second, we develop a hierarchical key organization to lighten
the complexity of keys management, design a variant of the Merkle
Hash Tree (MHT) for integrity checking, adopt lazy revocation to
improve the efficiency of revocation operations, and exploit the
virtual hash linked list to support concurrent writing to a file.

Third, by employing some representative benchmarks, inten-
sive tests are conducted to evaluate the performance of Shield. The
final results show that Shield causes about 7%-13% performance
degradation when compared with eCryptfs but provides enhanced
security and a single PS can support more than 45,000 users’ re-
quests in one second.

The remainder of the paper continues as follows: We review the
related work in Section 2, describe the design goals and assump-
tions in Section 3, and introduce the key techniques in Section 4.
Section 5 describes the protocols for file reading, file writing, and

permission revocation. Subsequently, we analyze the security of
Shield in Section 6, discuss its implementation in Section 7, and
evaluate its performance in Section 8. Finally, we conclude our
work in Section 9.

2. Related work

CFS [3] is the earliest work of encrypt-on-disk file systems,
which uses a single key to encrypt the whole file directory. As
its variants, Cryptfs [40], Cepheus [32], and TCFS [6] are proposed
later. Cryptfs associates symmetric keys and file groups, allowing
group file sharing. Cepheus introduces a lockbox for group man-
agement and firstly proposes lazy revocation. TCFS designs trans-
parent cryptographic file systems by integrating the encryption
service with file systems. However, all of them miss the considera-
tions of read-write differentiation and lack an efficient keys man-
agement mechanism.

To support wide file sharing service, NCryptfs [37] implemented
at the kernel level supports multi-user sharing on the same ma-
chine. The Swallow [30] implements access control by executing
encryption at the client level. However, Swallow neither offers file-
sharing nor differentiates read-write operations. NASD [14] pro-
vides data security for network-attached storage. It keeps data in
the form of plaintext and the security guarantee requires the par-
ticipation of storage devices.

SFS [25] has to rely on the trusted server to enforce access con-
trol. It provides authentication for remote file systems, and the
communication channel with the server is encrypted by a session
key. CryptosFS [28] also trusts the storage servers to verify user’s
access and uses public-key encryption instead of existing access
control mechanism in NFS to regulate user’s access. Derived from
CryptosFS, eCryptfs [16] is designed to enforce data confidentiality
on secondary storage belonging to a single host, however, it cannot
support file sharing because of the absence of keys management
and access control.

With the system scales up, the data reliability and durabil-
ity becomes important design criteria for large storage systems.
OceanStore [20] and FARSITE [1] mainly focus on the availability
and fault-tolerance while providing security for those distributed
file systems. To protect long-term data, POTSHARDS [33] uses se-
cret splitting and approximate pointers to secure data, which may
only be cracked after decades, and SafeStore [19] spreads data
across autonomous SSPs using informed hierarchical erasure cod-
ing to increase data durability.

The Secure Untrusted Data Repository (SUNDR) [24] relies on a
storage server to execute access control while providing data confi-
dentiality with per-file key encryption and file integrity with hash
trees. PCFS [12] is a file system with proof-carrying authorization
that provides access control with policy support by formal proof
and capability. Maat [21] is designed for object-based storage and
it uses extended capabilities, automatic revocation and secure del-
egation to secure distributed file systems. SNAD [26] employs a
lockbox to protect integrity. However, neither Maat nor PCFS can
provide on-disk security, leaving data exposed to adversaries.
What is more, all of SUNDR [24], SNAD [26] and Maat [21] require
new types of storage servers, while Shield does not demand a new
infrastructure and allows users to manage their own access with-
out relying on storage servers.

Besides disordering data by encryption, some representative
works protect data security by forbidding the illegal access to the
data. I3FS [29] is a file system with build-in integrity checking that
uses cryptographic checksums to provide integrity validation for
files. Kerberos [27] provides authentication service for clients in
insecure network environments. Clients have to interact with AS
(Authentication Server) and TGS (Ticket Granting Server) for au-
thentication before applying for this service.
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Table 1
Comparison between some related secure storage systems.

Systems Encryption Keys Integrity Lazy revocation Concurrent write
FARSITE [1] Block level Asymmetric MHT No No
CRUST [13] Block level Symmetric MHT Yes No
Horus [23] Block level Asymmetric - No No
SNAD [26] Block level Asymmetric Block hash No No
SiRiUS [15] File level Asymmetric File hash No No
Plutus [17] Block level Asymmetric MHT Yes No
Shield Block level Symmetric MHT Yes Yes

To securely share data with massive users through network,
a versatile secure storage system should include various mecha-
nisms, such as authentication, access control, keys management,
integrity protection, and permission revocation. SiRiUS [15] can
work over insecure file systems as a cryptographic storage layer
to supply storage security. Plutus [17] offers cryptographic group
sharing with lazy revocation, random access, and file name encryp-
tion. CRUST [13] is a stackable secure file system with completely
symmetrical encryption and in-band key distribution. However,
Plutus [17], SiRiUS [15] and CRUST [13] all require the file owner
to bear the burden of dominating the access control and key dis-
tribution (although there are some differences in key distribution:
Plutus needs users to get the file key from the file owner, while
SiRiUS and CRUST require pre-sharing of some message of key ma-
terials among users before file access). Moreover, SiRiUS employs
aggressive revocation which requires far more intensive computa-
tions than lazy revocation and CRUST relies on some global shared
data structures to distribute keys and to retrieve previous states for
revocation. Corslet [38] presents a secure storage system to protect
data stored in untrusted cloud storage, but it does not take concur-
rent writing into consideration. As in Shield, the most recent work
by Horus [23] introduces an independent key distribution server
to generate the range keys for users to enforce the secure range
access. Compared to studies by Horus, Shield supports concurrent
writes and improves the efficiency of integrity checking (see Ta-
ble 1).

In the past few years, access control for secure storage sys-
tem received intensive attention. One interesting work is over-
encryption [35,36] which performs two-level encryptions to
regulate user’s access, so that the re-encryption will be exe-
cuted without being shipped to the data owner. However, over-
encryption may cause the publishing of many public tokens and
users in the setting of over-encryption are required to afford the
keys management. The management burden will become large
once a user is allowed to access many files owned by different own-
ers. Shield frees users from complex keys management by design-
ing the hierarchical keys management. Another new cryptographic
primitive called Attribute-Based Encryption (ABE) [39] achieves
the flexible access policy and eliminates the complexity of keys
management for users. As a typical public-key encryption based on
the expensive bilinear pairing operation, ABE may cause consider-
able performance penalty. Moreover, users in ABE usually possess
a set of attribute keys. Once the attribute of a user changes, his
access privilege will correspondingly alter. This requirement will
make the authority to distribute new attribute keys and force the
update of access policy based on the new attribute keys. This pro-
cedure is expensive and tedious. To provide a high performance,
Shield temporarily adopts ACL to record user’s access permission,
which is easy to apply in real scenario.

3. System model and design goals

3.1. System model and threat model

In this paper, we mainly consider a cloud service of data sharing
that consists of four kinds of entities as illustrated in Fig. 1, i.e., the

cloud server, the proxy server group, many file owners, and many
file users.

Trust Domain. To efficiently organize the massive number of users
who are assigned various attributes in the cloud environment,
Shield first defines the concept of trust domain, which actually
specifies the granularity of file sharing and users in the same
domain are treated to have the same security requirements. In fact,
the actual use of this concept appears frequently in real life. For
example, several departments inside the same organization may
share the same storage system but need separate access control
mechanisms and have different security requirements; thus, users
and files belonging to the same department can be organized in the
same trust domain.

The cloud server. On the basis of the following two reasons, Shield
excludes the secret keys management from the responsibility of
the cloud server. First, due to security concern, users will be uneasy
for their privacy once the cloud server grasps both the ciphertext
and secret keys. Second, according to the communication with the
companies planning to provide public cloud service, they are also
afraid of legal dispute and reputation degradation once user’s data
are either lost or leaked. They are more like to store ciphertext only
rather than managing the secret keys with the ciphertext together.

Therefore, our model assumes the cloud server only performs
two fundamental tasks: storing the files reliably and utilizing
existing methods (e.g., Access Control List) to enforce access
control to the ciphertext, where the former task indicates the files
stored in cloud storage will not be maliciously deleted or altered
while the latter ensures only authorized users are allowed to access
the ciphertext.

The proxy server. In Shield, to avoid being always online to process
users’ access requests and manage a large number of keys, file
owners can choose to delegate the execution of key distribution
to a group of proxy server (PSs) that is in the same trust domain. In
this paper, a PS is an independent third party that is responsible for
processing users’ access requests by distributing the corresponding
secret keys according to their access permissions. Furthermore,
to prevent a single PS from becoming a bottleneck in the whole
system, multiple PSs can be organized as a “PS-Group” by
employing a (n, k) secret-sharing mechanism, so that as long as no
more than k PSs are invaded, the confidentiality of plaintext will be
still under protection.

To lighten the burden on a PS, it is designed to be deployed
independently without sharing any information with either the
cloud server or the users, except for maintaining a simple session
between the PS and the user. The simple design of the PS offers
Shield good scalability and alleviates the possibility that the PS will
become a bottleneck in the whole system; moreover, the simple
service can be easily migrated to another PS immediately if an
accident occurs.

The file owners and file users. The file owners are the entities who
create the data files. Apart from the ordinary operations (e.g., read-
ing and writing), they can also determine a user’s access permis-
sion to their files. As the parties who wish to access the file content,
file users, including file readers and file writers, should faithfully
obey the granted access rights.
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Fig. 1. The system model of Shield.

3.2. Design goals

To realize such cloud-data-sharing service, Shield should
achieve the following goals.

Underlying file systems independence. Considering the variety of file
systems operated on users’ machines, Shield should be designed
with no modification to the underlying file systems to ensure good
portability.

End-to-end protection for confidentiality and integrity. As a basic
guarantee of data security, Shield needs to provide end-to-end
confidentiality and integrity, in which unauthorized users cannot
learn actual information from the data and any unpermitted
modification or accidental corruption to the data will be timely
detected.

Keys management and key distribution. With the increasing number
of files, the number of keys to be managed expands dramatically
and owners will be exhausted to manage the massive numbers of
keys, especially when files are encrypted in a smaller unit like file
blocks. To free owners from cumbersome keys management, Shield
needs to have a delicate mechanism for efficient keys management
without the participation of owners. Furthermore, cloud servers
should not be able to participate in keys management due to
security concerns.

Unlike some previous shared cryptographic file systems (e.g.,
Plutus [17]), Shield does not rely on out-of-band mechanisms
or keys shared with each pair of users to distribute keys. In-
stead, Shield should exploit a new mechanism to distribute cor-
responding keys to users according to their access permissions.
This mechanism should combine access control and part of the key
distribution without needing direct online communication be-
tween file owners and users.

Efficient permission revocation. Traditional permission revocation
not only introduces a burst re-encryption for the involved files
but also requires key re-distribution to the surviving users,
resulting in considerable performance degradation. To alleviate
this performance loss, Shield should design an efficient and secure
permission revocation mechanism.

Concurrent writing support. Most cryptographic file systems handle
concurrent reading well, but few of them have good support for
concurrent writing, owing to consistency consideration and the
restrictions to supply efficient integrity checking. To meet the
condition in which multiple users may apply to simultaneously

update a file, Shield should support concurrent writes while
preserving file consistency and maintaining integrity.

4. Design

4.1. Overview

Shield is designed to secure data storing and data sharing inside
the trust domain (e.g., an organization or department) under the
network and storage environments shared among multiple parties,
and to save file owners from tedious management without fully
trusting the cloud server.

Aiming at removing the burden of keys management on the
client side, the security control information (including user’s access
permission, integrity information and decryption keys) of each
data file will be expressed in the form of a normal file (denoted
as security control file, sc-file) and stored with the corresponding
encrypted data file (called data file, d-file) in the cloud storage.

Fig. 2 presents the overview of Shield and Table 2 lists the
abbreviations in Fig. 2. Both sc-file and d-file are stored in the
cloud storage, while PS grasps two keys, PEK and PSK. The d-
file is constituted of many file blocks with constant size that
are encrypted by file block keys (the 1st-level keys). The sc-file
contains three parts, i.e., the access control block (ACB), Merkle
Hash Trees (MHTs) and a root hash list (RHL). The ACB includes
the hashed file name, an access control list (ACL) listing the
authorized users and corresponding access permissions, and the
2nd-level keys (LBK and FSK) encrypted by PEK (the 3rd-level
keys). Moreover, the integrity of ACB is protected by PSK. The MHT
is constructed over a set of both encrypted file block keys and the
hash values, in order to provide integrity promise. The RHL stores
the hash values of the MHTS’ root nodes. As will be discussed later,
the root hash values guarantee the integrity of the whole Merkle
tree and can only be signed by the writer using FSK. The RHL will
also assist the support of concurrent access. Notice that though ACL
may be not very scalable, some improvements can be adopted to
significantly reduce the latency while PS scans the ACL to verify
users’ access rights. For example, Shield can construct a symbol-
based index,! so that the complexity of scanning ACL items can be
reduced from O(n) to O(log nn).

1 The key idea of this construction is that all the items in an ACL sharing a common
prefix have a common node.
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Fig. 2. The overview of Shield.
Table 2 o FBK and FSK here are all symmetric keys, which will greatly reduce
Alist for the abbreviations. the cryptographic cost when users operate the file content.
Abbreviations Concepts

ACB, MHT Access Control Block, Merkle Hash Tree

FBK, LBK, FSK File Block Key, Lockbox Key, File Signature Key
PEK, PSK PS Encryption Key, PS Signature Key

ACL, RHL Access Control List, Root Hash List

EnAlg, EnMod Encryption Algorithm, Encryption Mode

4.2. Hierarchical symmetric key organization

The scale of managed keys and the efficiency of keys regener-
ation after revocation become two extremely important concerns
when designing a shared secure storage system. The straightfor-
ward idea of selecting a random symmetric key for every file suffers
from the sequela of the whole-file re-decryption and re-encryption
for any modification to the file. Maintaining multiple keys for each
file may be another solution, but inefficient key organization would
easily result in complicated system management. Because of the
problems above, Shield exploits a hierarchical key organization
and classifies the symmetric encryption keys into three levels,
which can be referred in Fig. 2.

4.2.1. The 1st-level keys: file block keys

To maintain efficiency when dealing with large files, the files in
Shield will be cut into file blocks with a constant size (e.g., 4 KB),
and each file block will be encrypted by a symmetric key called the
file block key (FBK), which is a random string.

4.2.2. The 2nd-level keys: security control file keys

The 2nd-level keys are the lockbox key (LBK) and the file
signature key (FSK), both of which are kept secretly in the sc-file.
A random LBK will be generated for every file and used to encrypt
that file's FBKs. Therefore, only those who obtain the LBK can un-
lock the lockbox and recover the FBKs to decrypt the encrypted file
blocks. The confidentiality of the root hash is protected by the FSK,
which is also used to differentiate read and write permissions (for
more details about the access control differentiation one can refer
to Section 5.1). Unlike the asymmetric FSKs in Plutus [17], the LBK,

4.2.3. The 3rd-level keys: PS keys

Because FSK and LBK are stored in the sc-file and placed in
public storage, their confidentiality and integrity should be pro-
tected. This protection is achieved by two top-level symmetric keys
possessed by the PS, i.e., the PS Encryption Key (PEK) and the PS
Signature Key (PSK). PEK protects the confidentiality of LBK and
FSK, while PSK involves in the computation of the HMAC value to
guarantee the integrity of ACB. These two keys should be protected
secretly by employing either some hardware-assisted measures
(e.g., a smart card to manage the cryptographic keys) or proactive
cryptographic mechanisms [15,20].

This three-level hierarchical symmetric key system can effi-
ciently organize huge amounts of encryption keys and reduce extra
storage cost.

Discussion: Shield places the protection of top-level keys (i.e., PEK,
PSK) and ciphertext (i.e., sc-file, d-file) on the PS and the cloud
server, respectively. To avoid the single point attack against PS,
we can organize multi-PS to be a PS-Group and partition PEK and
PSK into many shares. Every PS is placed with a share of PEK and
PSK, so that a user can operate the file content only after the
admission of a certain number of PSs. Obviously, the PS-Group is
more secure and reliable than a single PS. In the PS-Group, every
PS possesses symmetric keys {PEK;, PSK;}. LBK and FSK are divided
inton shares {Ibky, ..., Ibk,} and {fsky, ..., fsk,} by usinga (n, k)-
secret-sharing mechanism, and both 1bk; and fsk; are encrypted by
PEK;. When a user plans to access a file, he is required to issue a
request to the PS; for the decryption for Ibk;, so that any k received
responses {Ibk;}* i, from {PSi}ik ¢, canreconstruct LBK successfully.
This improved design can obviously remove the key dependence of
the whole system over every single PS and promise that the general
operations in Shield will not be affected as long as no more than
(n — k) PSs are captured. The adversaries will still be unaware of
either LBK or FSK as long as no more than k PSs are invaded and
moreover, it will be a burdensome task for them to attack multiple
well-protected PSs, so that the security of data files will be well
protected. We are targeting the design of the PS-Group for our
future work.
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4.3. Integrity protection

To improve the access performance, Shield proposes a new
design of MHT as shown in Fig. 3. It keeps a mapping from the
file blocks to the nodes of MHT (including internal nodes), for
example, Shield maps the sequential file blocks to the nodes of
MHT from top (i.e., the root node) to down (i.e., the leaves nodes).
Specifically, every node in Shield’s MHT includes FBK;, fHash;, and
nHash;, where FBK; is the file block key of the ith file block, fHash;
denotes the hash value of that file block, and nHash; is the hash
value of the concatenation of its children. FBK; is then encrypted by
the LBK, while fHash; and nHash; need no encryption. Finally, the
root nodes are signed by FSK and stored in the Root Hash List (RHL)
of the sc-file to authenticate the integrity of the whole file and all
the FBKs. Obviously, the root hash value of an MHT aggregates the
information of all the FBKs, fHashes and nHashes in this MHT.

With this MHT structure, a legal modification will trigger the
following steps: (1) update the corresponding file block; (2) re-
compute the corresponding fHash; (3) renew the nHash of the
involved nodes following the path from the node associated to the
file block to the MHT'’s root; (4) re-sign the root node of the MHT
using FSK. Before accessing the file content, the user should first
check the integrity by re-computing the root hash value following
the path from the nodes assigned to the target file blocks to the root
node, and comparing it with the pre-computed root hash value (an
example is shown in Fig. 3).

4.4. Support for concurrent access

For MHT and other forms of hash trees in existing works [ 15,13],
since only one modifying process of thread is allowed each time
(otherwise the root hash will be confused), concurrent writes are
forbidden even to different parts of a file. To provide writing con-
currency, Shield divides a file into different parts, each of which is
covered by a separate MHT. Thus, concurrent writes are allowed as
long as they are issued to the parts covered by different MHTSs.

However, supporting concurrent writing over multiple MHTSs is
a non-trivial issue. The straightforward way of computing another
hash for the concatenation of all these root hash values would lead
again to poor writing concurrency. To solve this problem, Shield
proposes a new structure called root hash virtual linked list. As
shown in Fig. 4, the root hashes of the MHTs belonging to the
same file are concatenated with an index. For each root hash node
except the last one in the linked list, its index will point to the next
neighbor node (i.e., index; := i + 1, where 1 < i < end) while the
index of the last node will point to itself (i.e., index.nq4 := end).

This design can be used to validate the integrity and the order of
the MHTs. Whenever a root hash node is accessed, Shield will first
check whether the node is at the correct position by using its index

information (for non-end nodes, index; = i + 1; for the last node,
index.,q = end). This necessary checking makes sure the root hash
node in the linked list has not been illegally modified or removed.

In addition, since each root hash node is encrypted by the
FSK, any violent change to the node without FSK would make the
corresponding index unintelligible when the node is decrypted by
authorized users, and thereby, the interpolation will be detected.
The linked list is virtual because the index relation is established by
reading the root hash values sequentially from the sc-file without
any pointers.

Another significant problem is how to maintain the correct
version of data files when multiple different versions are generated
at the same time. To address this problem, the data files are divided
into many sub-files while each sub-file is covered by an MHT.
When authorized users plan to update the files, they can fetch the
targeted sub-files, update the content and the associated MHTSs,
and submit them to the cloud server. It should be noticed that when
a sub-file is updated, the associated MHT will be renewed by either
adding or removing leaf nodes, just according to the changed size of
sub-files. Thus, only the structure of the MHT that associates with
the updated sub-file will be influenced, while that of other MHTSs
will be reserved. In addition, to keep the consistency of each sub-
file, when a sub-file is being written, the cloud server will lock the
associated root in RHL until the operation finishes.

Since every subfile is covered by an MHT where each MHT has
the constant configuration, such as the number of children nodes
that an internal node has and the height of an MHT. Therefore,
every subfile has the same size. For the access control, we currently
assume the granularity of access control is file-level. Extending the
access control to the subfile-level is feasible, but the subsequently
caused cost is considerable. For example, we have to design the ACB
for each subfile, which will significantly increase the storage cost.

4.5. Permission revocation

In many encrypt-on-disk systems [15], permission revocation
usually demands the immediate re-encryption of the targeted file
and the re-distribution of new keys to the surviving data users
to that file. This behavior incurs a performance penalty caused by
burst operations and potentially breaks the system stability. Shield
considers the revocation when the file owner revokes a user’s
access permission to a certain file and this operation will not affect
other files that the revoked user can access; this is different from
the revocation banishing a user from a user-group.

Shield adopts lazy revocation [32], which defers the re-
encryption until the first time when the file is updated after the
revocation. Lazy revocation only renews the involved file’s secu-
rity information, but it usually requires complex key organization.
When permission revocation occurs in Shield, PS will generate a
new LBK and a new FSK into the ACB and re-encrypt all the FBKs
and the root hash values of this file (not the whole file set), the
size of which is far smaller than that of the whole file. Compared to
aggressive revocation, lazy revocation can significantly reduce the
amount of data to be suddenly re-encrypted; for instance, if the file
block size is 64 KB and the adopted hash algorithm is SHA-1, then a
revocation for a 1 GB file will cause re-encryption for the FBKs and
root hashes, whose size is only 320 KB.?

When some file blocks are modified after the revocation, the
writer will unlock the original FBKs to decrypt the data, update the
content, select other random strings to serve as the new FBKs and
produce the new ciphertext using these newer FBKs. This step nei-
ther requires complicated mechanisms, nor demands extra space

2 Compared to FBKs, the number of root hash values is less by orders of
magnitude, thus their cost can be ignored.
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Fig. 4. The root hash virtual linked list.

to keep the historical statuses of FBKs when compared to other
lazy revocation mechanisms [17], reducing considerable storage
and computation overhead.

Lazy revocation seems to be a trade-off between efficiency and
security; however, the security of the whole system is not actually
weakened. In fact, even if the re-encryption of the involved files is
executed once the revocation happens, the revoked user can still
recover the original data information either by reading them from
the cache of local machines or by copying them before revocation.
Moreover, if we try to cover the security about the non-changed
content by monitoring the status for all the file content, the com-
plexity will significantly increase. Thus, it is much more practical
to prevent revoked users from accessing the updated file content
after the revocation.

4.6. Key distribution and read-write differentiation

Shield uses an sc-file to store all the relevant keys of the data file
without requiring users to manage them. Users can get the sc-file
from the cloud server and decrypt the FBKs after passing the per-
mission checking executed by the PS. During the key distribution,
file owners and users do not have to be online at the same time to
communicate with each other and need not keep any keys at local
machines. The PS and each user should share a security channel for
sending a small amount of security information data; this channel
is established with PKI (public key infrastructure) when a new user
joins the system and thus will not slow down the file sharing.

The access rights of readers and writers to files should be differ-
entiated. An alternative solution of employing a public-key system
[17,26,15] (i.e., send the public keys and private keys to readers
and writers, respectively) will lead to a considerable computation
burden. Shield exploits a symmetric method with the help of FSK,
i.e., the writer obtains LBK, root hash values and FSK to access the
file content and re-signs the MHT'’s root hash after the update,
while the reader only gets LBK and root hash values to read the
file content.

5. Access protocol

5.1. File writing and file reading

The steps for writing a file are shown in Fig. 5. The writer
first sends the requests to the cloud server for the retrieval of the
wanted d-file and sc-file. The cloud server will then check if the
writer has the access permission to the files and returns them if
his access checking is passed. The writer then takes the ACB and the
RHL from sc-file and sends them with the write request to the PS.
After receiving the request, the PS first calculates the HMAC value
of the ACB by using PSK to ensure the integrity of ACB, and searches
through the ACL to validate whether his access permission con-
firms the request. After that, the PS decrypts the LBK and FSK us-
ing PEK and recovers root hash values using FSK, and returns all of
them to the writer (step 3, 4, 5, 6). The writer decrypts FBKs using
LBK, re-computes the MHTSs’ root hash values and compares them
with those returned from the PS to verify the integrity of the MHT.
Then he writes the new encrypted data to the d-file and updates
the MHTs including the nodes and the roots to the sc-file (steps 7,
8, 9). Finally, the writer submits the updated sub-files and corre-
sponding MHTs to the cloud server (step 10).

The steps for reading a file are similar as file writing, except that
the reader will only obtain LBK and the decrypted root hash values
from the PS. The reader will also check the data integrity before
accessing the content.

5.2. User revocation

Fig. 6 shows the procedures of permission revocation. When
revocation happens, (1) the file owner first fetches the needed files
from the cloud server and sends the ACB and a list of revoked users
to the PS (steps 1, 2); (2) the PS confirms the identity, deletes the
revoked users from the original ACL, and generates a new lockbox
key LBK’ and a new file signature key FSK’ for the file (steps 3, 4, 5).
Then the PS re-encrypts LBK’ and FSK’ with the PEK, replaces the old
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ACB with the new ACB’ (including the modified ACL, LBK’ and FSK’),
and then re-computes the HMAC' of ACB’ using PSK (step 5). Next,
the PS returns ACB’, FSK, FSK’, LBK and LBK’ to the file owner (step
6); (3) the owner then decrypts all FBKs (resp. root hash values)
using the LBK (resp. FSK) and re-encrypts these FBKs (resp. root
hash values) using LBK’ (resp. FSK’) and updates the sc-file (step
7) ; (4) finally, the owner sends the updated sc-file and ACL to the
cloud server (step 8).

6. Security analysis

In this section, we mainly discuss the security protection offered
by Shield and show how Shield can resist these attacks.

Shield keeps encrypted data on the disk and for a user without
hosting the proper secret key (i.e., FBK) it will be extremely hard to
recover the plaintext. FBK is then locked by LBK. Therefore, to read
the data, one must obtain LBK first to free FBK from the lockbox.

Shield uses cryptographic hash values to concentrate the data
information and constructs MHT to guarantee the integrity of FBKs

and file blocks, therefore any unauthorized change to FBKs and the
file blocks will be sensed. In addition, Shield pays more attention to
protect the security of updated data when a permission revocation
happens. The excluded user cannot obtain the updated data by
using the expired keys.

The permission differentiation between readers and writers is
achieved by FSK, which is used to prove the legitimate update
operation by signing the root hash values. Without the knowledge
of the FSK, the reader cannot produce the valid signature even if
he tries to update the file content. This incorrect signature will
be detected by other authorized writers when they check the
data integrity before writing. Shield cannot prevent the readers
from infusing garbage into the files, since unauthorized writes
prevention is out of the research scope of this paper.

As an independent party, the PS may suffer many malicious at-
tacks aiming at PEK and PSK. To stably grasp these two keys, the
following practical methods can be adopted. First, Shield can use
Tamper-Resistant Hardware to store PEK and PSK to prevent the
leakage of PS keys once PS is invaded, for example, utilize a Hard-
ware Security Module (HSM) or a smart card that is employed for
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the management of cryptographic keys [4]. Second, Shield can em-
ploy existing proactive cryptographic methods to protect user’s in-
formation against PS, such as proxy re-encryption [2]. Third, special
security hardware can also be used to execute the encryption and
decryption to LBK and FSK without revealing PEK and PSK. A more
practical way is to design a PS-Group constituted by multiple PSs,
as we mentioned in Section 4.2.3, to reduce the trust over each PS,
so that even if a number of PSs (no more than the threshold in the
adopted secret sharing scheme) are captured, the data security is
still preserved. Even if PEK and PSK are obtained by the malicious
user, he cannot learn the information exceeding his access privi-
lege either, since the access control performed by the cloud server
will forbid the illegal attempt to fetch the sc-file and d-file exceed-
ing his access permission.

The attackers may even launch DoS (Denial of Service) attack
against PS by aggressively requesting the service of PS, making it
too exhausted to handle other users’ requests. Due to the PS’s sim-
ple logic and statelessness, Shield can mitigate this attack with ease
by applying a PS-Group with a load balance mechanism to render
services.

A malicious actor can perform rollback attacks by misleading
users into accessing stale data. A typical scenario happens when a
revoked user replaces the current sc-file, the ACL of which does not
include this user, with an obsolete version he kept before the revo-
cation was executed. Then this revoked user will pass the verifica-
tion of PS and still have file access permission which should have
been invalidated, since the PS cannot distinguish the freshness of
the sc-file. SiRiUS resists this attack by periodically calculating the
timestamp of the owner’s file hash hierarchy, organizing them to
be a hash tree, and signing the root; this method can also work in
Shield just by introducing a symmetric key to re-sign the root.

Another possible attack is the replay attack, where a pretended
user may eavesdrop on conversations between valid users and the
PS, and submit stolen information to pass the PS’s authentication.
This kind of attack can be mitigated by applying some assisted
techniques, such as the application of one-time session tokens.

PS may suffer the attack when the malicious user tries to in-
vade the PS and read the key information from the memory, such
as FSKs and LBKs. This is a common method of attack against soft-
ware encryption systems, and many ways have been developed to
prevent such attacks, such as implementing encryption using hard-
ware, changing the server’s configuration, and blocking the ports.
Hardware key-deletion techniques can also be employed to erase
the keys when the PS is idle.

There is also a potential collusion attack that an attacker con-
trolling the PS tries to collude with the cloud server. As mentioned
above, due to the worry of both economical loss and reputation
degradation, the cloud server is actually not willing to passively
leak user’s information. Moreover, we can extend the single PS to
the PS-Group consisting of multiple semi-trusted PSs to increase
attacker’s efforts to invade these PSs. In reality, it is extremely hard
to steal PEK; and PSK; when these keys are well protected.

7. Implementation

Shield is implemented on Linux using the FUSE [10] (Filesystem
in User space) framework and OpenSSL [34], where FUSE is inde-
pendent of specific underlying file systems and offers good porta-
bility. Moreover, the OpenSSL is used to carry out the cryptographic
operations.

Shield has three components: the PS, Shield clients, and the un-
derlying file system, as shown in Fig. 7. As we mentioned above,
only a few simply symmetric cryptographic computations (e.g., the
decryption of LBK and FSK, and HMAC verification of ACB) are im-
plemented at the PS and it does not need to keep user’s status
except for maintaining a cryptographic communication channel
between each user and the PS. This simple logic brings three ad-
vantages: (1) low workload. The lightweight workload on the PS
greatly improves its support capability; (2) simplicity for achiev-
ing system reliability and availability. Any PS with the same PEK
and PSK can immediately take over the service of a crashed PS;
(3) good scalability. The number of PSs can be easily extended.

Shield takes PKI [11] to act as proof of the identities of the
composed parties and will not be involved in any cryptographic
computation. A new user will apply for certification from an RA
(Registration Authority) before using Shield. Although PKI is based
on asymmetric encryption, it is a one-time cost only when a new
user joins Shield; after that, only symmetric encryption needs to be
carried out during the file access, avoiding too many performance
penalties. Notice that the purpose of using PKI here is different
from that of SiRiUS: Shield uses PKI merely to identify users while
SiRiUS [15] and SNAD’s Scheme 2 [26] use it to distribute keys and
perform asymmetric cryptographic operations.

Shield moves most cryptographic computations (including en-
cryption, decryption, and integrity checking) at clients, which im-
prove the system scalability. The communication between clients
and the PSis done by SSL/TSL[31]. In addition, Shield supports mul-
tiple requests by utilizing the different threads in FUSE. To guar-
antee semantic correctness and data consistency, Shield exploits
POSIX pthread library to deal with synchronization and mutual ex-
clusion between different threads that share some common data
structures and status.

8. Performance evaluation

In this section, we present a series of evaluations for frequent
file operations in real-world scenarios. We first analyze the la-
tency of permission operation. To illustrate the generic file oper-
ations in daily usage, we deploy Shield on top of NFS in the clus-
ter, conduct two benchmarks (i.e., PostMark [ 18] and Filebench [9])
that are widely employed to portray the file operations in differ-
ent real applications, and compare the performance of Shield with
that of eCryptfs [ 16]. Finally, we evaluate the PS’s support capabil-
ity through a pressure test.
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Fig. 8. Filebench results over cluster. The larger OPS (Operations Per Second) and throughput generally indicate better performance.

Table 3
Comparison of permission operation cost.
Operation Time of Shield (s)  Time of aggressive revocation (s)
Permission granting  0.033 -
Permission update 0.035 -
Revocation 0.234 19.32

The reasons for choosing eCryptfs as a reference of Shield are
as follows. First, eCryptfs has some design criteria in common with
Shield, such as good portability and confidentiality protection. Sec-
ond, eCryptfs offers less security protection compared to Shield,
such as integrity protection and efficient revocation, thus the per-
formance comparison can to some extent indicate the feasibility of
deploying Shield in real application.

The performance evaluation is conducted on several nodes
connected by a 1000 Mbps Ethernet link. The node that acts as the
client machine and the PS is equipped with a quad-core Intel(R)
Xeon X5472 processor running at 3 GHz and 1 GB RAM, while
the node serving as the file server is configured with a quad-core
Intel(R) Xeon X5472 processor running at 3 GHz and 8 GB RAM.
The operating system of every node is Ubuntu 10.04.3 LTS and the
kernel is the 2.6.32-33-server. We choose AES-256 as the cipher
for both Shield and eCryptfs, employ SHA-1 as the hash function,
select SHA-1 based HMAC as the MAC algorithm, and use 4 KB as
the size of the file block.

8.1. Permission operation cost

We first evaluate the time overhead of modifying user’s access
permissions, including granting read permission to a new user, up-
dating a user’s permission, and revoking a user’s privilege. The test
sets include a PS and a client machine and the size of the targeted
file is specified to 1 GB. Meanwhile, we also define the size of sub-
file as 512 MB. We first grant the read permissions of the file to
1000 users, update those permissions to write permissions, and
then separately revoke all these permissions. We also test the per-
formance of aggressive revocation by recoding the time of decryp-
tion and re-encryption for the specified file. The operation time for
each user is averaged in Table 3.

When granting the permission to a new user, Shield simply in-
serts the user’s name and permission into the ACL and re-computes
the HMAC of the ACB, so the latency is very short (about 0.033 s).
Updating an existing user’s permission will cause the update of the
corresponding item in ACL and the re-computation of HMAC for the
updated ACB, leading to overhead similar (about 0.035 s) to that of
permission granting. When revoking an existing user, Shield has to
re-sign all root hashes of the file and re-encrypt the FBKs; thus, it
takes more time (about 0.234 s).

Aggressive revocation needs to re-decrypt the targeted file by
using the original secret key and re-encrypt it by using the new
generated key, to forbid the excluded user from accessing the file
content after the revocation. This intensive operation will cause
high latency (about 19.32 s) at the client node. Compared to the
size of targeted file, the size of its FBKs to be re-encrypted in Shield
is much smaller, resulting in the efficiency improvement of several
orders of magnitude brought by the adoption of lazy revocation.

8.2. Filebench over cluster

To evaluate the performance of ordinary file operations at
Shield clients, we conduct the benchmark using Filebench [9]. We
choose the “fileserver” workload Filebench to simulate generic file
operations on file servers, such as creating/deleting/closing files,
and reading/writing/appending data.

This test is set up on a set of clusters with seven nodes, including
a PS, afile server and five client machines. The version of Filebench
is 1.4.9.1. Every client machine mounts Shield and eCryptfs over
NFS respectively and invokes the “fileserver” workload at the same
time. The number of threads is limited to 1 at every client side. We
set the mean file size to be 6 MB (the size of the subfile equals that
of the file in this evaluation) and specify the number of files to be
1000, so that the size of file set can mitigate the disturbance caused
by the memory cache. We perform the test ten times and show the
averaged performance of a client machine in Fig. 8.

Given the necessary cryptographic operations performed at the
client machines to protect data confidentiality, the OPS of both
eCryptfs and Shield inevitably suffers a loss when compared with
that of raw NFS. In addition, compared with eCryptfs, Shield offers
extra security protection, such as integrity protection and secret
keys management. These extra-secure protocols require users
to contact the PS for authentication, perform integrity checking
while reading files, and maintain the MHT when updating the file
content. These additional security protection measures will cause
about 13% performance degradation on the client machines when
compared with eCryptfs, as proved by the test results of Filebench
in Fig. 8. Given that Shield supplies many extra security guarantees,
we argue that the performance of the daily operations of Shield in
the network environment is reasonable and acceptable.

8.3. PostMark over cluster

In this test, we use PostMark [18] to give a picture of perfor-
mance in ephemeral file operations. In the design of PostMark, a
large pool of continually changing files whose sizes can be nar-
rowed among a pre-configured range is built first and a configured
number of transactions is executed later. The transactions consist
of the following two types of operations: (1) Create File or Delete
File, and (2) Read File or Append File.
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Fig.9. PostMark results over cluster.

This test is performed on a set of seven nodes, including five
client machines, a PS and a file server. The version of PostMark is
v1.5.In this test, the file size is allowed to vary in a range from 5 MB
to 6 MB and the number of files is set to 1000, making the total
size of test suits multiple times larger than the system memory to
reduce the effect of memory cache. We also set the size of subfile
as the file size. The transactions are performed 5000 times and the
elapsed time is accumulated. We deploy Shield and eCryptfs on
top of NFS respectively and invoke PostMark at the client nodes
simultaneously. 1242 files are created during the test, of which 984
files are deleted alone while the remaining files are deleted in the
transactions. The averaged results are presented in Fig. 9.

In Fig. 9(a), both Shield and eCryptfs require a bit more time to
finish the whole test and transaction, due to the supplementation
of security methods. Meanwhile, both the total elapsed time
and the transaction time of Shield are about 6% and 13% larger
than those of eCryptfs respectively, which seem reasonable when
considering the different design criteria between Shield and
eCryptfs. From Fig. 9(b), we can observe that the read (resp. write)
performance of eCryptfs slightly outperformed that of Shield, being
about 11% (resp. 14%) quicker; this is because Shield needs users
to check (resp. update) the hash values of some involved nodes in
MHT when reading (resp. writing) the file content.

8.4. A pressure test for proxy servers

To evaluate the PS’s support capacity, we design and implement
a benchmark by using one server to act as the PS in this test.

As mentioned above, PS is responsible for authenticating the
user’s privilege and distributing keys when the user issues an open
file request along with the ACB. PS does not involve in the later
operations, such as reading, writing, and closing files which are
actually done by the users at the client nodes, so we can measure
the PS’s support capacity by testing how many open requests
(i.e., the processing of ACB and encrypted root hash values) could
be accommodated during one second.

Our benchmark first initiates N threads on the PS to deal with
the file-open requests with read/write permission and launches
the “pthread_exit” command after it finishes a response (i.e., the
secret keys, such as LBK). Our benchmark waits until all N threads
finish. We record the running time from creating N threads to
when they all finish as Request Handle Time (RHT).

We perform four tests for N = 1000, 2000, 4000, and 8000
respectively and show the results in Fig. 10, from which we
conclude three points. First, there is a linear relationship between
the RHT and the thread number N. Second, a PS can handle more
than 5000 file-open requests in one second. According to previous
research [22], the proportion of open operation in the desktop
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Fig. 10. Pressure test for the support capacity of a proxy server.

and enterprise workloads is about 12%, which indirectly means
that one PS can support near 46,296 users online at the same
time. Hence, only a small number of PSs are required in a real-life
scenario even with massive number of users, proving that the PS is
suitable for large-application usage.

9. Conclusion

This paper presents a new system architecture for secure file
sharing in public storage and designs a secure and efficient stack-
able storage system named Shield. In Shield, we construct a hierar-
chical key organization to efficiently manage secret keys, and use a
variant of MHT to accelerate integrity checking. Shield adopts lazy
revocation to improve the efficiency for user’s permission revoca-
tion. In addition, Shield supplies concurrent writing with the data
structure of the root hash virtual linked list. A series of evaluations
demonstrate that Shield causes about 7%-13% performance degra-
dation when compared with eCryptfs but provide enhanced secu-
rity and a single PS can support more than 45,000 user’s requests
in one second.
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