
Secure Storage System and Key Technologies

Jiwu Shu, Zhirong Shen, Wei Xue, Yingxun Fu

Department of Computer Science and Technology

Tsinghua University

{shujw,xuewei}@tsinghua.edu.cn, {czr10,fu-yx10}mails.tsinghua.edu.cn

Abstract— With the rapid development of cloud storage, data
security in storage receives great attention and becomes the top
concern to block the spread development of cloud service. In this
paper, we systematically study the security researches in the stor-
age systems. We first present the design criteria that are used to
evaluate a secure storage system and summarize the widely adopt-
ed key technologies. Then, we further investigate the security re-
search in cloud storage and conclude the new challenges in the
cloud environment. Finally, we give a detailed comparison among
the selected secure storage systems and draw the relationship be-
tween the key technologies and the design criteria.

I. INTRODUCTION

With the rapid development of information technology, the

human has witnessed the data explosion in recent years. Ac-

cording to a survey [39] issued by IDC, tenfold growth of dig-

ital universe are achieved over the last five years (from 2006

to 2011). The increased size of data not only causes expensive

storage overhead, but also introduces complicated data man-

agement, incurring tremendous burden to the users. Based on

the considerations above, more and more users choose to mi-

grate their data to the remote storage servers, in order to avoid

the facility purchase and the troublesome data management.

However, since the data are out of user’s physical control, a set

of security challenges arises, arousing the users’ worries about

whether their data are safe for the following reasons. First, the

user’s privacy is under the threat of malicious adversary, since

the sensitive data (e.g. personal email, financial data, health

recode) may be learned or altered without the data owner’s per-

mission. Second, the user’s data may be at the risk of being

unavailable due to the unexpected accidents or mistaken oper-

ations, which will seriously affect the user’s business (e.g. the

online data operations). Thus, data security against unprivi-

leged access and data availability are the two emergency prob-

lems.

To secure data in the remote storage servers, secure stor-

age systems [15][9][6][8][11][38][16][40][43] have been well

studied for the last two decades, during which various key tech-

nologies have been proposed to effectively solve the different

security problems, promoting the evolution of secure storage.

However, to fully understand this field, track the footprint that

storage security has passed through is an important step to con-

clude its development and forecast the future tendency. Al-

though some essential reviews (e.g. [16],[38]) have been pub-

lished to present the challenges and research statuses of secure

storage at that time, a lot of new advances have been proposed

since then. Especially when the applications of cloud storage

are rapidly developing recently, some security problems (e.g.

data audit) neglected in the previous studies are exposed and

drawing great attention, leading to the inapplicability between

the previous technologies and the new problems. Thus, a time-

ly review for the secure storage is intensively needed to give

a comprehensive understanding about its recent development.

This paper gives a detailed introduction about the key technolo-

gies in the existing secure storage systems and presents some

extensively considered applications that are derived recently.

In particular, we summarize our contributions as follows:

• We introduce the common design criteria of secure stor-

age, summarize the key technologies that are widely used

in the previous secure storage systems, and give a detailed

comparison between several typical secure storage sys-

tems.

• We present the extended applications in the cloud environ-

ment and discuss the corresponding technologies.

The rest of this paper is organized as follows. Section II will

introduce the common design criteria to evaluate current secure

storage systems. Then we will summarize the key technologies

in section III and provide some new developed security ser-

vice in section IV. Finally, a comparison between some typical

secure storage systems will be presented in section V and a

conclusion will be given in section VI

II. THE DESIGN CRITERIA OF SECURE STORAGE

The secure storage aims to protect the data in the storage sys-

tems from malicious attacks or abuses. In fact, the information

security has three basic references, i.e., confidentiality (C), in-

tegrity (I), and availability (A), which are widely known as the

principle of ”CIA”. As secure storage systems have different

design concerns under various real-world scenarios, few sys-

tems (e.g. Venus[41]) have taken enough efforts to achieve all

the three metrics. Instead, they focus on what their scenarios

really concern.

Confidentiality means that the data information should be

kept secret against the unauthorized access. Among the designs

in various secure storage systems, data encryption is a widely

used approach to achieve data confidentiality, where the data

either are encrypted before storing on the media, or are kept

in plaintext form in storage and encrypted before transferring

through the network channel, separating most of the existing

secure storage systems into two classes, i.e., encrypt-on-disk

systems and encrypt-on-wire systems. In addition, the encryp-

tion operation also draws out some related key technologies,

978-1-4673-3030-5/13/$31.00 ©2013 IEEE

4D-3

376

such as the access control to the ciphertext, the privilege man-

agement of users, and secret key distribution, which will be

discussed in section III later.

Integrity in this paper generally refers to two aspects, i.e.,

unpermitted modification prevention and unpermitted modifi-

cation detection [16]. The former aspect indicates that no one

can alter the data except the authorized users, while the latter

one denotes the unpermitted alteration should be timely detect-

ed to stop the users from being misleaded by the incorrect data.

The above considerations suggest users to check the integrity

of the data first before accessing the file content, to ensure that

the data to access are correct. In secure storage systems, the

unpermitted alteration to the data are assumed to happen when

data are either rested on the disk or transferred through the net-

work, thus it is strongly suggested that the access regulation

(e.g. access control mechanism) be effectively executed to pre-

vent the unpermitted modification. To timely detect whether

the data are illegally broken, the recalculation and maintenance

of a compressed value (e.g. cryptographic hash value and dig-

ital signature) for every checking granularity (e.g. file or file

block) are demanded.

Availability indicates that an authorized user can execute a

data operation within an acceptable period of time. Actual-

ly, the researches in the field of secure storage do not care

how to make the failure servers be available, but focus on how

to supply the data service continually even a failure happens.

The requirement leads to the development of data redundancy

technologies to decrease the probability of data unavailability.

However, different methods to produce data redundancy usu-

ally incurs different storage costs, thus it is still a significant

work to assure the data availability while maintaining a accept-

able storage overhead.

Furthermore, secure storage also has the following concerns,

such as the performance and the trust relationship of the secure

storage systems. Since many computational intensive opera-

tions (e.g. data encryption and cryptographic hash calculation)

are introduced to provide security protection, the system per-

formance will be inevitably downgraded if the key technolo-

gies to secure data in the storage are adopted; therefore how

to balance the security and performance remains a complicated

problem. In addition, according to the various scenarios with d-

ifferent trust models, how to establish the trust relations among

the entities in the system and how to shape their responsibilities

require further exploration.

III. BASIC TECHNOLOGIES

In this section, we summarize some basic technologies that

are widely used in secure storage systems to meet the design

criteria above.

A. Authentication

Authentication is the first guard of secure storage system,

which is to ensure the authenticity of user’s identity. Existing

authentication schemes in secure storage systems are generally

sorted into the following categories:

• Public key infrastructure-based authentication. In secure

storage systems, PKI is the most traditional authentication

method. In PKI system, every user needs a certificate or

public-private key pair to check the identity of each other.

For examples, Corslet [14] uses certificates to authenticate

between trust domain server (TDS) and users; Plutus[9]

allows users to employ 1024 bit RSA public-private key

pair to authenticate each other.

• User ID and authentication key pairs-based authentica-

tion. This way usually needs a trusted third-party to gener-

ate IDs and authentication keys. For instance, each user in

CRUST [8] has its own pair which contains userID and a

individual authentication key generated by a trust agency

to authenticate his identity.

B. Secret Key Distribution

As we mention before, data files are usually stored in the en-

crypted form to resist the illegal access. In the scenario that

data files are shared among multiple users, both the encrypt-

ed file content and the secret keys are required to distribute to

authorized users. Therefore, an efficient and scalable distribu-

tion mechanism for the secret keys is important to the whole

system.

Existing key distribution schemes can be generally clas-

sified into storage servers-dominated schemes, data owner-

dominated schemes, and trusted third party-dominated

schemes. In the storage servers-dominated scheme, it usual-

ly requires the data owners and the data users to place full trust

on the storage servers, which is inadequate to some threat mod-

els where the storage servers are assumed to be untrusted[14]

or ”honest-but-curious”[1][4]. In the data owner-dominated

scheme, although it reduces the trust level of storage servers,

the data owners are forced to be always online to process the

user’s access request and distribute the corresponding secret

keys, incurring considerable management overhead; for exam-

ple, the file owners and the file users share a long-term key in

the design of CRUST[8] to distribute the file specific keys; in

Plutus[9], the data owners distribute the relevant keys to data

users via an out-of-band channel. In the trusted third party-

dominated scheme, it not only avoids putting complete trust

on the storage servers, but also saves data owners from cum-

bersome management, however, it needs a fully trusted party,

which is assumed to be unaware of the ciphertext; for instance,

SiRiUS[6] employs the existing key distribution infrastructure

(e.g. PGP public key server or IBE master key server) to in-

volve in the key distribution and Corslet[14] introduces the

TDSs for each trusted domain to verify user’s access permis-

sion and return the appropriate keys.

C. Integrity Checking

When data are stored in the unreliable storage or transferred

through the untrusted network channel, they are in danger of

being altered or broken due to the accident operations and the

attacks launched by the malicious adversaries. These poten-

tial risks draw out a challenging problem, i.e., how to time-

ly detect the unauthorized change of the data. A straightfor-

ward way is to calculate the hash value for the whole file (e.g.

SiRiUS[6] calculates a hash value of each data file), but even

the access to part of the file demands the whole file download

4D-3

377

Fig. 1.: The technologies summarization introduced in this paper.

and re-computation of the hash value, which not only causes

expensive cost but also leads to poor experience of random ac-

cess operation. Aim to address these drawbacks, an alternative

way is to partition the files into many file blocks with constant

size and construct a data structure (generally, hash tree) based

on the integrity information of the file blocks. During the con-

struction of the hash tree, the leaf nodes store hash values of file

blocks, while the internal nodes store hash values of the con-

catenation of their children, thus the root node guarantees the

whole tree’s integrity. Therefore, either file update or integrity

checking needs to re-calculate the hash values of the nodes on

the path from the associated nodes to the root node and com-

pare them with the pre-computed hash values stored in the cor-

responding nodes. For example, Plutus[9] and FARSITE[15]

organize the integrity information and file block keys into a

Merkle Hash Tree, in which the leaf nodes store the hash val-

ues of associated file blocks and the corresponding file block

keys while the root is signed by a private key; CRUST[8] or-

ganizes a hash tree, where the leaf node stores the hash value

of a single file block, and the internal node has m children and

keeps the hash value computed from the concatenation of its

children.

Nowadays, the increasing amount of data that are migrated

to the cloud storage triggers the appearance of another research

branch of integrity checking, i.e., how to efficiently and se-

curely perform the remote data integrity checking, where the

security design is quite different. (See section IV-C for more

detail).

D. Availability Assurance

As users’ data are stored on the remote storage servers, users

are forced to give up the physical control of their data, handing

over the availability assurance to the storage servers. However,

data stored in the storage servers will suffer from various kinds

of Byzantine failures, putting their availability at the edge of

risk. Therefore, promise the data availability is an extremely

essential research to secure them in the storage.

Data redundancy across multiple servers is the most widely

used technology to assure data availability. These technologies

can be classified into replication-based solution (RBS), erasure
code-based solution (ECBS), and regenerating code-based so-
lution (RCBS). RBSs demand to duplicate the data and store

the copies across different servers, where the data can be suc-

TABLE I: A comparison between RBS, ECBS, and RCBS.

Solution Storage Requirement Repair Traffic

RBSa tM M
ECBS n

k
M M

RCBSb (2n−2)
k(2n−k−1)

M (2n−2)
k(2n−k−1)

M

asuppose the number of copies is t
bsuppose the adopted code is the minimal bandwidth regenerat-

ing(MBR) code, where k is the number of connected healthy servers.

cessfully retrieved as long as one copy of data survives. The

possession of a file copy over each storage server makes RBSs

support concurrent read/write operations very well, but they re-

quire t times of storage capacity to tolerant (t-1) failures, incur-

ring huge storage cost. In ECBSs, each file is first partitioned

into k file blocks, which will be further encoded into n cod-

ed blocks by employing a (n,k)-erasure code scheme. Finally,

the coded blocks are distributed to different servers. The orig-

inal data can be successfully recovered as long as no less than

k coded blocks can be retrieved. Compared to RBSs, ECBSs

greatly reduce the storage overhead while promising the data

availability. However, one main drawback of ECBSs is that the

high repair traffic is required for repairing an altered block. To

reduce the communication cost in the repair process, RCBSs

are proposed to balance the storage overhead and repair traf-

fic, in which users can configure the storage cost and network

overhead according to their needs. Generally, less repair traffic

demands more storage overhead in RCBSs. The performance

comparison of these three solutions is presented in Table I.

E. Random Access Support

Random access is an important operation, as well as a criti-

cal metrics to evaluate the performance of secure storage sys-

tems, since the whole-file read/write operation easily leads to

expensive computation cost (e.g. file-level decryption and en-

cryption) and network overhead (e.g. file-level transmission)

especially when the file is large. To support random access, a

general method is to set the encryption granularity to be file

block-level, so users can fetch the least file blocks that cov-

er the access range. For example, SiRiUS[6] and CRUST[8]

represent each file with a series of file blocks, use the block

to be the granularity of encryption and integrity checking, and

4D-3

378

compute a signature of the root of hash tree to avoid swapping

attacks.

F. Access Control

Considering the users assigned with different access permis-

sions in the storage systems, it is essential to differentiate and

limit the operations within the allowable range of each user’s

permission. In general the existing methods that are frequently

used fall into the following classes:

• Public/private key pair-based access control. This way

usually gives writers the private key and delivers the pub-

lic key to readers, thus writers are authorized to append a

signature to the updated files using the private key, while

the readers only perform the verification to check whether

the signature is legal . For example, readers (resp. writers)

in Plutus[9] employ file-verify key (resp. file-sign key) to

verify (resp. sign) the cryptographic hashes of file blocks,

and reader in SiRiUS[6] is delivered with the public key of

FSK to verify the correctness of signature while the writer

is allowed to produce the signature using the private key

of FSK.

• Secret keys and cryptographic hash-based access control.

This way is similar to the previous one, except that the

writers are permitted to produce the keys that are assigned

to the readers, which significantly reduces the amount of

keys that should be delivered. For example, the readers

in CRUST[8] are only allowed to obtain the ”file reader
MAC key” to verify the signature of file blocks, while the

writers are assigned with a ”file writer MAC key” to sign

the file blocks and given the cryptographic hash function

to derive the file reader MAC key.

• Symmetric keys-based access control. This method usu-

ally originates from the concern that asymmetric crypto-

graphic operation is far more expensive than symmetric

cryptographic operation. Compared with the readers, the

writers are granted extra key (keys) to append a signature.

For example, Corslet[14] gives the reader a symmetric key

LBK to decrypt the encrypted file blocks and grants the

writer with LBK and another symmetric key FSK to up-

date the file blocks and sign the root of Merkle Hash Tree.

• Access control list (ACL) and the user’s public-private

keys-based access control. This approach alleviates the

burden of secret key distribution and cuts down the

amount of keys that are required to manage at the client

machines. For example, FARSITE [15] uses the autho-

rized reader’s public key to encrypt the file key that is used

to encrypt the file, and stores an ACL of the writer’s public

keys in the metadata.

G. Permission Revocation

As a frequent operation especially in the scenario where the

massive users are granted with different permissions, permis-

sion revocation happens when the file owner decides to change

the permission of a certain user to the file, such as when a us-

er quits a group or when a user behaves dishonestly. In the

case that data files are stored on the trusted storage servers, the

revocation only needs to delete the revoked user [15].

However, things are different when the files are hosted on the

untrusted storage servers where the metrics of efficiency and

security need to be taken into account. Trade-off between the

two metrics derives two widely used revocation mechanism-

s, i.e., aggressive revocation mechanism and lazy revocation
mechanism. Aggressive revocation mechanism [6] usually de-

mands to re-encrypt the involved files with the new secret keys

and re-distribute the new secret keys to the survival users once

the revocation happens. Although it can timely prevent the re-

voked users from accessing the file content, it may cause the

computation burst due to immediate re-encryption of all in-

volved files, resulting in the instability of the whole system.

On the contrary, lazy revocation mechanism is proposed to

alleviate the sudden re-encryption of the whole file and defer

the re-encryption of the file blocks to the first time when the

file blocks are updated after the revocation. In lazy revocation,

only the secret information, whose size is far smaller than that

of file blocks, should be renewed at once when the revocation is

executed. The rule of lazy revocation mechanism is that it only

keeps the revoked users from accessing the updated content, in-

dicating that the revoked users can still read the unchanged file

content even after the revocation is completed. At first glance,

lazy revocation improves the system performance by partial-

ly sacrificing the system security, however, its adherents claim

that the revoked users in the aggressive revocation mechanism

can also recover the original file information, either by reading

them from the cache or by copying them before the revocation,

indicating that the security of lazy revocation will be not lost

when compared to that of its competitor. Furthermore, lazy

revocation generally needs hierarchical key management and

it makes things worse when files are classified into many file

groups where the files in each group originally share the same

secret key, since the multi-version keys management in a file

group will be activated when the revocations occur. To alle-

viate the problem, Plutus[9] proposes key rotation mechanism

to establish the relation between the newest version of the key

and the previous versions, so that a user can derive the previous

keys from the current key he possesses.

H. Storage-based Intrusion Detection System

Storage-based intrusion detection system (SIDS) is a signif-

icant part of intrusion detection field to prevent unauthorized

data access by analyzing access patterns and properties in stor-

age device layer. SIDS has the following features.

First, intrusion behavior is usually accompanied with some

illegal data operations. Therefore, SIDS can easily detect intru-

sion attack [20] by analyzing the behavior of data operations.

Second, because SIDS is generally independent of other de-

vices without being interrupted by the intruder, thus it is work-

able even if the host is invaded [21][22].

Because of these characteristics, SIDS has been widely used

in secure storage systems. Molina et al [22] present an inde-

pendent auditor which is attached in PCI bus to check whether

the system has been intruded. Based on data mining, Li et al

[23] propose a new scheme, which extracts the relativity of data

blocks from applications to implement this function.

4D-3

379

IV. EXTENDED TECHNOLOGIES

With the fast developing of cloud storage, the increasing

amount of data is concentrated on the cloud leads to new de-

mands for cloud security. In this section, we select some attrac-

tive technologies that are developed recently and give a system-

atical introduction.

A. Searchable Encryption

Data encryption is frequently used before uploading the data

files to provide data security. Although this approach effective-

ly refuses unauthorized accesses, new problems are activated

especially when the amount of data rapidly increased, i.e., how

to efficiently and securely retrieve the files that satisfy certain

conditions. Two straightforward methods are either to down-

load all the files and perform keyword search over plaintext,

or to send the secret keys to the cloud server and let it perfor-

m keyword search after decryption. Unfortunately, these ap-

proaches either incur huge network bandwidth and computa-

tion cost, or demand users to give up the security protection.

To address these problems, the designs of searchable encryp-
tion (SE) are proposed and receive great attention recently.

The general approach to perform keyword search over en-

crypted data obeys the following steps. 1) The data owner pre-

extracts the representative keywords according to the file con-

tents and pre-builds a searchable index before uploading the

encrypted data files to the storage servers. 2) Whenever a da-

ta user wishes to access the files, he sends the search query

to the data owner to apply for the corresponding search trap-

door, which will be issued to the storage servers later. 3) With

the search trapdoor and the keyword taken as input, the storage

servers perform the pre-design functions and send the satisfied

files back to the user.

From the aspect of the constructed algorithms, the exist-

ing SE schemes can be divided into symmetric key-based SE

schemes and public key-based SE schemes. In the former

branch, the pseudorandom functions and cryptographic hash

functions are employed, while in the latter branch, bilinear pair-

ing is the most frequently used primitive and the security of SE

is mapped to the complexity of a hard problem.

In addition, the development of SE can be classified into fol-

lowing categories, i.e., the works that aims to support flexi-

ble search query in the field of cryptography, and the work-

s to support the application scenarios in the field of applied

cryptography. On one hand, the flexible query significantly has

an effect on the search efficiency and user’s experience in SE

schemes, which expresses user’s search favor accurately, ob-

servably reduces the network bandwidth, and remarkably saves

the efforts to process the search outputs. The support of search

query is generally partitioned into three different types, i.e.,

single keyword query[1], conjunctive search query[45], and

multi-dimensional search query with range, subset, and equal-

ity search over every dimension[44]. On the other hand, the

support for different applications mainly focuses on the vari-

ous application scenarios, including ranked keyword search[1],

multi-keyword ranked search[4], fuzzy keyword search[2], etc.

In these applications, the storage servers (or the cloud server-

s) are requested to learn as little information as possible and

some sensitive information derived from the application should

be kept secret, for example, the cloud servers should not infer

the actual relevance score of each file in secure ranked keyword

search[1], but only the ranked order.

With the fast growing of data stored in the cloud, the design-

s of SE schemes for different application scenarios remain a

hotspot in near future.

B. Attribute-based Encryption

To enforce access control to the data stored on the remote

storage servers, a generally adopted way in traditional secure

storage systems is to encrypt the data files with certain encryp-

tion primitive and distribute the keys only to the authorized

users. This method effectively prevents the unprivileged users

(including the storage servers) from decrypting the ciphertext,

but results in the consequence that the amount of keys grows

linearly with the number of data files, which makes key man-

agement an expensive task in the scenarios with massive data

files and greatly limits the scalability of the system. Attribute-
based Encryption (ABE) [12][13] is an encryption primitive

to realize expressive types of encrypted access control mecha-

nism, where each ciphertext is tied with a pre-designed access

structure and each user’s private key is specified by a set of

attributes according to his identity. To regulate the access to

the remote data files, data owners specify a set of access struc-

tures and encrypt the data file under the corresponding struc-

ture. Only when the attributes satisfy the structure can the us-

er obtain the secret keys to decrypt the ciphertext, thus users

in the design of ABE only need to manage the attribute keys.

This design significantly decreases the amount of keys that re-

quired to be kept at the client machines and allows the owners

to design flexible access formulas (e.g. conjunctive/disjunctive

normal form). The main research in ABE can be sorted in-

to the following categories: the design of ABE schemes (e.g.

CP-ABE [12], KP-ABE [13]), the revocation design of ABE

schemes [17], the accountability of ABE schemes [19], and

the design of multi-authority ABE schemes [18]. For example,

Cryptographic Cloud Storage [11] introduces the application

of ABE in cloud storage service to establish the security guar-

antee based on cryptography, rather than legal protection and

manual control.

C. Data Auditing

Given that storage servers may conceal the accidents of da-

ta damage to preserve their business reputation and the unau-

thorized users may try to steal or tamper user’s data, storage

servers and unauthorized users are assumed to be untrusted in

some threat models of secure storage systems. For the data

owners, they are unaware of the status of their data before ac-

cessing them, leading to the delayed knowledge of their data

status. To efficiently and securely audit the data status, various

data auditing methods are proposed, which can be generally

classified into the following branches.

Data Provenance Auditing : As the information which helps

to describe the derivation history of data [24], provenance au-

diting is widely believed to be an important part in data audit-

ing. For instance, Muniswamy-Reddy et al [25] make the case

that provenance is crucial for cloud storage system, examine

4D-3

380

current cloud offerings, and design three protocols for main-

taining data provenance to audit the origin of data. In all, Data

Provenance is a crucial tool in secure cloud storage to analyze

data history.

Provable Data Possession(PDP): Nowadays, with the dra-

matic amount of data migrated in the storage servers, verifica-

tion of the data authenticity has emerged as a critical service.

PDP mechanism[26] allows users to challenge the remote stor-

age servers to prove their possession of the data without access

the entire file. To respond to the challenges, remote server-

s need to access part of the exact data and generate a proof

to demonstrate the possession of the raw data. Current PDP

mechanisms have three research branches. 1) The research to

improve the efficiency of typical PDP mechanism. For exam-

ple, Lou et al [27] propose a batch audit mechanism to decrease

the computation overhead and network traffic. 2) The research

to support data dynamic update over PDP mechanism. For ex-

ample, Erway et al [29] propose D-PDP mechanism, which al-

lows data dynamic update based on PDP mechanism. 3) The

research to check whether data file has stored in servers with

multiple replications. For example, Curemola et al [30] pro-

pose the MR-PDP scheme that enable users to check the pos-

session of every replica effectively.

Proof of Retrievability(POR): PDP allows clients to check

remote data’s integrity, but lacks the retrievability once the da-

ta are broken. In contrast, POR scheme [31], which is com-

posed of data possession checking mechanism and data re-

trieval mechanism, allows client to conditionally retrieve the

broken data. The data possession checking of POR is similar

as that in PDP, while the retrieval mechanism usually accom-

plishes by adopting the technologies of availability assurance

(i.e. replica-based scheme, erasure coding-based scheme, and

network coding-based scheme).

D. Data Assured Deletion

As we mention before, various kinds of schemes are pro-

posed in many secure storage systems to strengthen data relia-

bility, which however, also brings a potential risk once the user

determines to delete his data permanently. Thus the most likely

outcome is the storage servers still possess many versions (even

the current version) of this data due to the effect of availability

assurance technologies, which far deviates from the user’s ex-

pectation. For this purpose, it needs to consider how to achieve

data assured deletion.

The first data assured deletion is proposed by Perlman [32],

which introduces the definition of assured deletion and designs

a prototype system called ephemerizer to reach the effect once

the life cycle expires. Tang et al [33] propose FADE to support

a generalized policy-based assured deletion, which allows the

user to delete the data that are formulated by complicated logic.

Different from the above schemes that use a trusted third-party

to provide assure deletion service, Geambasu et al [34] imple-

ment a proof-of-concept prototype called Vanish based on un-

trusted third-party (e.g. P2P). In Vanish, data will be encryptd

with a key, which is then divided into k shares, encoded into

n shares by using a (n,k)-erasure code scheme, and distributed

to random DHT nodes. According to the feature of DHT, it is

nearly impossible for anyone to obtain k shares to reconstruct

the key when a certain cycle (usually 8 hours) elapses. Wol-

chok et al [35] quest about Vanish’s premise, and use low-cost

Sybil attack to defeat it.

E. Secure Data Deduplication

Cloud storage exposes a strong demand of deduplication, as

large amount of plaintext before encryption may be duplicated.

However, security protocols make deduplication in secure stor-

age systems much more challenging for the following reasons.

First, encryption of file data makes deduplication more dif-

ficult. Since data files are encrypted into distinct ciphertext us-

ing different keys, resulting in that two identical plaintexts will

usually produce almost different ciphertets with overwhelming

probability. Thus traditional deduplication methods which are

designed for plaintext are ineffective on ciphertext, leading to

a low probability of deduplication. Due to the above reasons,

rarely paper about this point appears in recent years, except one

using convergence encryption[36].

Second, the access control protocol holds back the data d-

eduplication due to data leakage concerns. For example, in the

access protocol, users are asked to upload the file hash to s-

torage servers first to check whether the file has already been

kept in the servers, if it already exists, then the servers will not

upload the file actually and believe the user possesses the file;

thus the users can easily cheat the servers to download a target

file as long as he knows the corresponding hash. Mulazzani et

al [37] officially propose this problem in ”online slack space”.

V. COMPARISON AND ANALYSIS

In this section, we give a comparison between several typical

secure storage systems in Table II and draw the relationship

between the key technologies and the designed goals of secure

storage systems in Figure 2.

Table II shows the comparison on key technologies of sev-

eral typical systems. Plutus [9] is a secure storage system that

aims to provide secure file sharing without placing much trust

over the file servers, in which the file owner executes the op-

erations of access control and key distribution. CRUST [8]

is a stackable file system layer to provide secure file sharing

over untrusted storage system and supports random access and

lazy revocation. SUNDR [43] is designed to store data on un-

trusted servers, which supports unpermitted modification de-

tection and places many attention to achieve fork consistency.

As a platform that provides data sharing over untrusted SSP,

SHAROES [40] tries to provide rich data sharing semantics and

reduce the user involvement during setup and key management.

Tahoe [42] is a system that supplies secure service for distribut-

ed storage. It uses cryptographic tools to achieve the protection

of confidentiality and integrity, and employs erasure codes to

improve data availability. Venus [41] is a service which aims

for the data integrity and consistency over the untrusted cloud

storage. Different from the above works, FARSITE [15] aims

to provide reliable data storage. Corslet [14] is a stackable stor-

age system that aims to provide secure file storing and sharing

over existing file systems without any modification.

In Figure 2, we sort the key technologies referred in sec-

tion III into four branches, which are usually employed to serve

4D-3

381

TABLE II: The comparison between several typical secure storage systems.

Systems Authentication Key Distribution Integrity Checking Random Access Access Control Revocation

CRUST[8] Use userID and individual keys Owner uses metedata Hash Tree Yes Distribute keys to reader/ Lazy revocation

to authenticate between users to distribute the keys writer via the lockboxes

Plutus[9] Use Public-private key pairs Owner gives keys to users Merkle Hash Tree Yes Use read-write keys to Lazy revocation

between users via secure channel in out-of-band channel differentiate reader and writer

SUNDR[43] Use public-private key pair User exchanges public File Block Hash Yes NA NA

keys with superuser

FARSITE[15] Use user, machine and Owner encrypts file-key Merkle Hash Tree Yes Use ACL and public Issue CA the

namespace signing certificates and stores them with files -private keys of users revoked user

Tahoe[42] NA Owner stores encrypted Merkle Hash Tree Yes Use the capability NA

keys on the server. access control model

Venus[41] Use signature public key NA Hash Tree NA Directly use commodity NA

and email address storage interfaces

SHAROES[40] Use public-private key pairs Owner uses metadata NA Yes Use a cryptographic Aggressive

to distribute keys in-band access control primitive revocation

Corslet[14] Use certificates to authenticate TDS distributes keys that Merkle Hash Tree Yes Use ACL, and two symmetric Lazy revocation

between users and TDS are stored in metedata keys LBK and FSK

aNA here generally indicates that the technology is not referred in

the system.

as the design criteria for evaluating a secure storage system.

Access control, authentication, key distribution, intrusion de-

tection and permission revocation are contained in the field of

confidentiality protection, since any invalidation of these tech-

nologies will lead to data leakage to the unauthorized users. For

example, if the permission revocation is carried out incorrect-

ly, then the revoked user can still read the updated information

after the revocation, which violates confidentiality protection.

Based on the two metrics in integrity (i.e., unpermitted modifi-

cation prevention and unpermitted modification detection), the

field of integrity protection is composed of four technologies,

i.e., access control, key distribution, intrusion detection, and

integrity checking. For example, if the access control mecha-

nism fails, then the reader may be allowed to modify the data

files, which should be actually forbidden in the pre-designed

protocol and violates the principle of unpermitted modification

prevention. The integrity checking is to timely detect the u-

nauthorized modification, obeying the principle of unpermitted

modification detection. Besides, the technologies of permis-

sion revocation and random access constitute the field of per-

formance, based on the following considerations that the sup-

port of random access can significantly reduce the overhead of

read/write operations when compared to the file-level access,

and the metric of performance is usually considered during the

design of permission revocation which promotes the emergen-

cy of lazy revocation. Finally, the technology to ensure data

availability is assigned to the field of availability assurance.

VI. CONCLUSIONS

In this paper, we present a systematic survey on the research

of secure storage. We describe the research background of se-

curing data in the storage and give out the design criteria of se-

Fig. 2.: The relationship between the technologies and the de-

sign criteria.

cure storage systems. To make the research status be more eas-

ily understood, we extract the key technologies that are adopted

in the existing secure storage systems, classify the technologies

into different categories, and discuss their merits and weak-

nesses. Based on cloud storage, the new storage form which

has drawn much attention recently, we also present the chal-

lenges of security in the cloud storage environment. Finally,

we conclude and give the comparison of several typical secure

storage systems.

VII. ACKNOWLEDGMENTS

This work was supported by the National Science Founda-

tion for Distinguished Young Scholars of China under Grant

No.60925006, the National High Technology Research & De-

velopment Program of China under Grant No. 2013AA010101,

and research fund of Tsinghua-Tencent Joint Laboratory for In-

ternet Innovation Technology.

4D-3

382

REFERENCES

[1] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou. Secure ranked keyword

search over encrypted cloud data. in Proc. of ICDCS’10, 2010.

[2] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou. Fuzzy keyword

search over encrypted data in cloud computing. in Proc. of IEEE INFO-

COM’10,2010.

[3] M. Li, S. Yu, N. Cao and W. Lou. Authorized Private Keyword Search

over Encrypted Personal Health Records in Cloud Computing. In Proc. of

ICDCS’11,2011.

[4] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou. Privacy-preserving multi-

keyword ranked search over encrypted cloud data. In Proc. of IEEE IN-

FOCOM’11, 2011.

[5] E. Shi, J. Bethencourt, T. Chan, D. Song, and A. Perrig. Multidimensional

range query over encrypted data. In Proc. of IEEE S&P ’07, 2007.

[6] E. Goh, H. Shacham, N. Modadugu, and D. Boneh, SiRiUS: Securing
Remote Untrusted Storage, In Proc. of NDSS’03, 2003.

[7] R. C. Merkle, A digital signature based on a conventional encryption
function, In CRYPTO, volume 293, pages 369-378, 1987.

[8] E. Geron, A. Wool, CRUST: Cryptographic remote untrusted storage
without public keys, In Proc. of IEEE SISW’07, 2007.

[9] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, Plutus-
scalable secure file sharing on untrusted storage.,In Proc. of FAST’03,

2003.

[10] S. Kamara, and K. Lauter,Cryptographic Cloud Storage, In Proc. of

FC’10,2010.

[11] M. Chase. Multi-authority attribute based encryption. In Theory of Cryp-

tography Conference (TCC ’07), volume 4392 of Lecture Notes in Com-

puter Science, pages 515-534. Springer, 2007

[12] J. Bethencourt, A. Sahai, and B. Waters,Ciphertext-Policy Attribute-
Based Encryption. In Proc. of IEEE S&P’07, 2007.

[13] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryp-
tion for fine-grained access control of encrypted data. In Proc. of ACM

CCS’06, 2006.

[14] W. Xue, J. Shu, Y. Liu, and M. Xue. Corslet: A shared storage system
keeping your data private. In SCIENCE CHINA Information Sciences,

2011, pp.1119-1128.

[15] A. Adya, W. Bolosky, M. Castro, G. Celmak, R. Chaiken, J. Douceur, J.

Howell, J. Lorch, M. Theimer, and R. Wattenhofer. FARSITE: Federated,
available, and reliable storage for an incompletely trusted environment.
In Proc. of OSDI’02, 2002.

[16] P. Stanton. Securing Data in Storage: A Review of Current Research.

CoRR, cs.OS/0409034, 2004.

[17] M. Pirretti, P. Traynor, P. Mcdaniel, and B.Waters. Secure attribute-based
systems. In Proc. of ACM CCS’06, 2006.

[18] M. Chase. Multi-Authority attribute based encryption. In Proc. of TC-

C’07, 2007.

[19] J. Li, K. Ren, B. Zhu, Z. Wan. Privacy-Aware attribute-based encryption
with user accountability. In Proc. of ISC’09, 2009.

[20] G. Ganger and D. Nagle. Better Security via Smarter Devices. In proc. of

IEEE HOTOS’01, 2001.

[21] G. Ganger, J. Strunk, and A. Klosterman. Self-storage: Brick-based stor-
age with automated administration. Carnegie Mellon University Techni-

cal Report, 2003.

[22] J. Molina, and W. Arbaugh. Using Independent Auditors as Intrusion
Detection Systems. In Proc. of ICICS’02, 2002.

[23] Z. Li, Z. Chen, S. Srinivasan, and Y. Zhou C-Miner: Mining Block Cor-
relations in Storage Systems. In Proc. of FAST’04, 2004.

[24] Y. Simmhan, B. Plale and D. Gannon. A Survey of Data Provenance Tech-
niques. Technical Report IUB-CS-TR618, 2005.

[25] K. M-Reddy, P. Macko and M. Seltzer Provenance for the cloud. In Proc

of FAST’10, 2010.

[26] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,

and D. Song. Provable data possession at untrusted stores. In Proc. of

ACM CCS’07, 2007.

[27] C. Wang, Q. Wang, K. Ren, and W. Lou. Privacy-preserving public au-
diting for data storage security in cloud computing. In Proc. of INFO-

COM’10, 2010.

[28] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li. Enabling public auditabil-
ity and data dynamics for storage security in cloud computing. Journal

IEEE Transaction on Parallel and Distributed System, Volume 22 Issue 5,

2011.

[29] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia. Dynamic prov-
able data possession.. In Proc. of ACM CCS’09, 2009.

[30] R. Curtmola, O. Khan, R. Burns, and G. Ateniese. MR-PDP: Multiple-
Replica provable data possession. In Proc. of ICDCS’08, 2008.

[31] A. Juels, B. JR. Pors: proofs of retrievability for large files. In Proc. of

ACM CCS’07, 2007.

[32] R. Perlman. File system design with assured delete. In Proc. of the Third

IEEE International Security in Storage Workshop, 2007

[33] Y. Tang, P. Patrick and C. Lee, J. Lui, and R. Perlman. FADE: Secure
overlay cloud storage with file assured deletion. In Proc. of the 6th In-

ternational Conference on Security and Privacy in Communication Net-

works, 2010

[34] R. Geambasu, T. Kohno, A. Levy, and H. Levy. Vanish: Increasing da-
ta privacy with self-destructing data. In Proc. of USENIX Security’09,

2009.

[35] S. Wolchok, O, Hofmann, N. Heninger, E. Felten, J. Halderman, C. Ross-

bach, B. Waters, and E. Witchel. Defeating vanish with low-cost sybil
attacks against large DHTs. In Proc. of NDSS’10, 2010.

[36] W. Storer, K. Greenan, D. Long, and E. Miller. Secure data deduplica-
tion. In Proc. of the 4th ACM International Workshop on Storage Security

and Survivability, 2008.

[37] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber, and E. Weippl.

Dark clouds on the horizon: using cloud storage as attack vector and
online slack space. In Proc. of SEC’11, 2011.

[38] V. Kher and Y. Kim. Securing distributed storage: challenges, tech-
niques, and systems. In Proc. of StorageSS’05, 2005.

[39] J. Gamtz, C. Chute, A. Manfrediz, S. Minton, D. Reinsel, W. Schlichting,

and A. Toncheva. The diverse and exploding digital universe: an updated
forecast of worldwide information growth through 2011. IDC white paper,

2008.

[40] A. Singh, and Ling Liu. SHAROES: A Data Sharing Platform for Out-
sourced Enterprise Storage Environments. In Proc. of ICDE’08, 2008.

[41] A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky, and D. Shaket.

Venus: Verification for Untrusted Cloud Storage. In Proc. of CCSW’10,

2010.

[42] Z. Wilcox-O’Hearn, and B. Warner. Tahoe-The Least-Authrity Filesys-
tem. In Proc. of StorageSS’08, 2008.

[43] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure Untrusted Data
Repository(SUNDR). In Proc. of OSDI’04, 2004.

[44] M. Li, S. Yu, N. Cao and W. Lou. Authorized Private Keyword Search
over Encrypted Personal Health Records in Cloud Computing. In Proc.

of ICDCS’11,2011.

[45] P. Golle, J. Staddon, and B. Waters. Secure conjunctive keyword search
over encrypted data. in Proc. of ACNS’04, 2004.

4D-3

383

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

