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Abstract—Cloud computing cuts down large capital outlays in
facilities purchase and eliminates complex system management
for users. To protect data confidentiality in cloud utilization,
sensitive data are usually stored in encrypted form, making
traditional search service on plaintext inapplicable. Thus, en-
abling keyword search over encrypted data becomes a paramount
urgency. Given massive data users with various search pref-
erences, it becomes necessary to support preferred keyword
search and output the data files in the order of the user’s
preference. In this paper, for the first time, we investigate the
challenging problem of preferred keyword search over encrypted
data (PSED). We first establish a set of privacy requirements
and utilize the appearance frequency of each keyword to serve
as its ”weight”. A preference preprocessing mechanism is then
explored to ensure that the search result will faithfully respect
the user’s preference and the Lagrange polynomial is introduced
to express the user’s preference formula. We further represent
keyword weights of each file by using vectors, convert the
preference polynomial into the vector form, and securely calculate
their inner products to quantitatively characterize the relevance
measure between data files and a query. Finally, an extensive
performance evaluation demonstrates the proposed scheme can
achieve acceptable efficiency.

I. INTRODUCTION

Cloud computing centralizes a large amount of materials
and offers pay-as-you-use service. However, the data hosted
in the cloud may suffer from the unsolicited access from both
of the cloud server and other unauthorized users. To protect
confidentiality, sensitive data are hosted in encrypted form
in the cloud, making it different from the traditional data
service based on plaintext keyword search. The trivial solution
of downloading all the data and decrypting them locally
is extremely expensive. Thus, exploring an efficient search
service over encrypted data becomes a paramount urgency.

On one hand, the scale of massive files in the cloud requires
flexible search query to retrieve accurate search results without
receiving the unneeded files. On the other hand, given the large
amount of users in cloud environment, different users may find
different things relevant when searching because of different
preferences [14], indicating the necessity of preferred search
support to cope with users’ various preferences. Thus, explor-
ing a flexible search service with preferred search support over
encrypted data is extremely meaningful in cloud environment.

During last several years, searchable encryption (SE) [2]–
[11] has been evolved in pursuit of search over encrypted
data under different applications. For schemes [2], [8], [10]
that realize the flexible search, they only support ”Boolean
keyword search” and pay limited attention to the relevance

between files and a query. For schemes [9], [11] that enable
ranked keyword search, they either just support single keyword
search [9] or may return inaccurate results [11]. Even more
important, most of the existing works ignore the user’s prefer-
ence, easily leading to the following drawbacks. First, a user
who does not have any pre-understanding about the encrypted
data has to endure the labor-intensive task of manually picking
out their interested files. Secondly, the naive search output
without preference consideration will easily cause network
congestion because of the transmission for all the matching
files. Meanwhile, in the branch of information retrieval (IR)
and database (DB), some search schemes with preference
[13]–[17] have been proposed to quantify the retrieved files,
however, they cannot be directly applied in the context of
encrypted cloud data retrieval due to the limited attention on
security and privacy for both queries and files. In short, the
absence of preferred search with privacy preserved and flexible
search query support is still a typical shortage in existing SE
schemes.

In this paper, we study the problem of preferred keyword
search over encrypted data (PSED) for the first time. We first
specify a set of privacy requirements and use the appearance
frequency of each keyword to a file to act as its weight. A
flexible search query (e.g., the query over multiple keyword
fields) is converted into polynomial form and the Lagrange
polynomial is utilized to characterize the user’s preference
query. Then we convert the search polynomial and the prefer-
ence polynomial into vector forms, and propose a secure inner
product computation mechanism to capture the correlation
of files to the query. Thorough the analysis investigating
efficiency and privacy is given, and the intensive evaluations on
a real-world dataset demonstrate the efficiency of the proposed
solution.

II. PROBLEM FORMULATION
A. System Model and Threat Model

Figure 1 presents the system model. The data owner hosts
a collection of encrypted files C = {F1, . . . , F|C|} in the
cloud and allows authorized users to search through them.
The data user is the entity who wishes to fetch the files
according to his interest. He should generate a search query
Q and a search preference P , and request for the search
trapdoor TQ,P . The cloud server keeps data files and responds
users’ search requests. When receiving TQ,P , the server will
locate the matching files by scanning the indexes I, calculate
corresponding relevance scores, and return the ranked result.
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Fig. 1. The system model of PSED.

Like many previous works [9], [11] of SE, the cloud
server is treated as ”honest but curious”, meaning the server
will ”honestly” execute the designed protocol, but he is also
”curious” to learn the search query and the preferences.

B. Design Goals
Flexible search query with preferences. PSED should sup-
port preferred search over multiple keyword fields, including
equality, range, and subset query over each keyword field, such
as conjunctive normal form (CNF) policy.
Index privacy. The index privacy generally means the key-
words (resp. keyword weights) should be kept secret against
the server to prevent it from learning the keywords in the query
and the file content (resp. the characteristics) of the files.
Trapdoor privacy. Trapdoor privacy can be partitioned into
query privacy and preference privacy. Query privacy means the
server cannot guess whether two trapdoors are generated from
the same query, while preference privacy denotes the server
should be unaware of the user’s preference for each keyword.
Relevance privacy. Though the cloud server knows the ranked
order according to the calculated scores, it is forbidden to
sense the actual relevance of each file to a query, otherwise it
can deduce the file content based on the actual relevance.
Efficiency The proposed scheme should introduce lightweight
operations to the user/owner, and promise the search efficiency.

C. Variables and Notations
Preference and Relevance score. Users can specify some
numbers called preferences to characterize his different levels
of interests for keywords. The larger preference generally
means the higher priority order. Since keywords and their
frequencies are practical tools to characterize the file content
and their significance, the relevance of a file to a query
can be divided into many ”sub-relevances” to represent the
”correlation” of the file to keywords in the query. We adopt
the product of the preference and the keyword weight to
server as this ”sub-relevance”, and take the accumulated ”sub-
relevances” to act as the relevance score of the file to the
query. Therefore, we can express the keyword weight and the
keyword preference in vector form (see Section III-A2), so that
their inner product can achieve this kind of effect. Compared
to the ”inner product similarity” [11] model which ignores the
importance of keyword frequency, we argue our model is quite
more practical and reasonable.
Secure inner-product calculation. It means a user can specify
a third party to compute the inner-product of two encrypted
vectors E(~p) and E(~q) without learning the actual values in ~p
and ~q by using random asymmetric splitting, so that E(~p)

T ·
E(~q) = ~pT · ~q . The reader can refer [12] for more detail.

TABLE I
THE FREQUENTLY USED VARIABLES AND NOTATIONS.

Variables Notations

C,u The file collection, the number of keyword fields
W , Wi The keyword space of C, the keyword space of Fi

Wi, wi,j The i-th keyword field, the j-th keyword of Wi

ni, n The number of keywords in Wi,
∑u

i=1 ni

Q,P a search query, a search preference
hi,j , pi,j The weight of wi,j , the preference of wi,j

nQ The number of keywords in Q
Wi,pj The keyword set in Fi whose preferences are pj
hWi,pj

The sum of weights for the keywords in Wi,pj

~Q, ~P A search query vector, a preference vector
TQ,P The trapdoor derived from Q and P
FQ,P The search output of TQ,P
|W|, |C| The number of keywords in W , the number of files in C

III. THE DESIGN OF PSED

In this section, we start with the preference preprocessing.
Then the transformation from the preference query (resp., the
search query) to the preference vector (resp., the search vector)
will be presented. We will further give the detailed design of
PSED and provide an analysis on security and efficiency.
A. Algorithm description

To characterize the matching equality among different files
to a query, we first define the concept of ”Priority order of
files to a search trapdoor”.
Definition 1 (Priority order of files to a search trapdoor).
For files Fi and Fj , Fi is prior to Fj to TQ,P if either of
following two conditions establishes:

(1)Fi matches with the query Q and Fj is rejected;
(2)Both Fi and Fj match with Q. There exists a preference

pm, and two keyword sets Wi,pm ⊂ Wi and Wj,pm ⊂ Wj ,
such that hWi,pm

> hWj,pm
. For other preferences, if there is

pz ∈ P such that pz > pm, then there exist two keyword sets
Wi,pz ⊂ Wi and Wj,pz ⊂ Wj , such that hWi,pz

= hWj,pz
.

Here, we denote the preference pm in case (2) as a ”critical
preference value (CPV)” between Fi and Fj .

1) Preference Preprocessing: Adding the product of every
keyword weight and its preference together to serve as the
relevance score may not output the results that strictly follow
the user’s search priority.

For example, there are two files F1 and F2 containing w1,1

and w1,2 in the field W1 respectively and the corresponding
keyword weights are h1,1 = 10 and h1,2 = 4, then for a
query (w1,1 ∨ w1,2) with a preference (p1,1 = 8 ∨ p1,2 =
10), the relevance score of F1 is p1,1 × h1,1 = 80 which is
larger than that of F2 (i.e., p1,2 × h1,2 = 40), resulting in the
unexpected deviation of ranked order. Therefore, the owner
needs to preprocess the search preference when deriving the
trapdoor, ensuring the search results will faithfully adhere to
the user’s search preference.

To preprocess the preference, besides secret keys, the own-
er can keep some additional secret information, i.e., ζi =
Max{hi,j}, which represents the maximum keyword weight
of the field Wi among the collection C. The preferences of
the keywords which do not appear in the query are assumed



to be 0. Meanwhile, to represent the keywords by numbers,
we can construct a hash function H(·) from the keyword
set W := {wi,j}i∈[1,u],j∈[1,ni] to [1, |W|] without collision,
where u and ni denote the number of keyword fields and the
number of keywords in the filed Wi respectively. Without loss
of generality, a multi-field search query can be expressed as
Q := (w1,1 ∨ ... ∨ w1,d1) ∧ · · · ∧ (wu,1 ∨ ... ∨ wu,du) (1)
where di ≤ ni and wi,j denote the j-th keyword of Wi.

Assume that the preference of keyword wi,j in the query is
pi,j , the search preference of Q can be expressed as
P := (p1,1 ∨ · · · ∨ p1,d1) ∧ · · · ∧ (pu,1 ∨ · · · ∨ pu,du) (2)

The owner preprocesses the search preferences by taking the
following steps. Firstly, the preference of each keyword in P
would be sorted in an ascending order and be converted into
the vector form, for instance, the formula (2) can be sorted
as (p1, . . . , p|d|), where |d| =

∑u
i di and a bijective function

φ(·) : {i, j}i∈[1,u],j∈[1,di] → {t}t∈[1,|d|] can be established.
Then, we set p′1 := p1. For pj , if pj−1 < pj , suppose
φ−1(z) = {iz, jz} where iz denotes the keyword field that
the keyword wiz,jz belongs to, then p′j := 1 +

∑j−1
z=1 p

′
zζiz ;

else if pj−1 equals to pj , then p′j := p′j−1. Finally, we resort
the preprocessed preferences back to the original CNF formula
and get the updated preference
P ′ := (p′1,1 ∨ · · · ∨ p′1,d1) ∧ · · · ∧ (p′u,1 ∨ · · · ∨ p′u,du) (3)

An example. Suppose a original preference formula is (2∨1)∧
(4∨ 3), where {ζi}1≤i≤2=3. The formula will be transformed
into the vector (2, 1, 4, 3) firstly and then be sorted into
(1, 2, 3, 4). In the stage of preprocessing, p′1 := p1 = 1,
p′2 := 1 + p1 · ζ1 := 4, p′3 := 1 +

∑2
z=1 p

′
z · ζiz := 16,

p′4 := 1 +
∑3
z=1 p

′
z · ζiz := 64. Finally, the updated vector

(1, 4, 16, 64) will be flushed back into the original formula
form (4 ∨ 1) ∧ (64 ∨ 16) according to the function φ−1(·).

After the preprocessing, the file containing the larger pref-
erence will always be ranked higher without being affected by
the keyword weight, which is proved by the Theorem 1 and
Lemma 1 (The detailed proofs are shown in the Appendix).
Meanwhile, the preprocessing obeys ”order preserving” rule,
i.e., p′i < p′j (resp., p′i = p′j) will still establish in P ′ if pi < pj
(resp., pi = pj) holds in P .
Theorem 1. The original priority of each file will not be
affected after the preprocessing of preference formula P .
Lemma 1. If Fi is prior to Fj to P , then the relevance score
of Fi is larger than that of Fj to P if both of them match Q.

2) Preference Transformation: After producing the pro-
cessed preference formula (3), we first transform it into the La-
grange polynomial, ensuring the actual preference p′i,j will be
activated to involve in the calculation of ”sub-relevance” with
hi,j , only when the keyword wi,j meets the condition over
the keyword field Wi in the query. During the transformation,
the owner will invoke a hash function H(·) to map keyword
wi,j to the number λi,j and employ Lagrange coefficients to
obtain the polynomials as

∑u
i=1 ϕi(xi) for the keyword field

Wi, where ϕi(xi) is∑di
j=1

(xi−λi,1)...(xi−λi,j−1)(xi−λi,j+1)...(xi−λi,di
)

(λi,j−λi,1)...(λi,j−λi,j−1)(λi,j−λi,j+1)...(λi,j−λi,di
)p
′
i,j(4)

If wi,j meets the requirement over the field Wi, the ”sub-
relevance” will be correctly calculated as p′i,jhi,j ; otherwise,
an incorrect ”sub-relevance” ϕi(λ

′
i,j)hi,j will be produced,

and the cloud server will fail to learn the relevance between the
unsatisfied files and the query even it stealthily computes their
relevance scores to the query. Then, the owner can draw out the
coefficients of xji from equation (4) to denote the preference
vector

~P ′ := (b1,n1 , · · · , b1,0, · · · , bu,nu , · · · , bu,0)T

where bi,j is the coefficient of xji and please notice that
bi,j := 0 for di ≤ j ≤ ni. Suppose the keyword of file Fs
is {W1 = w1,s(1), . . . ,Wu = wu,s(u)}, then the corresponding
keyword weight vector of Fs can be denoted as

~Ws := (t1,n1
, · · · , t1,0, · · · , tu,nu

, · · · , tu,0)T

where ti,j := hi,s(i)·λji,s(i), so that the relevance score of Fs
to P is ~WT

s
~P ′ :=

∑u
i=1 hi,s(i) · ϕi(λi,s(i)) :=

∑u
i=1 hi,s(i) ·

p′i,s(i) if Fs matches the search query.
To mess the real relevance scores against the cloud server,

we introduce random numbers rp, rq and εi, expand ~P ′ as
P̂ := (rp ~P

′, rq), and enlarge ~Wi as Ŵi := ( ~Wi, εi), so that the
calculated relevance score will be ŴT

i P̂ := rp ~W
T
i
~P ′ + rqεi.

Here, we denote ~WT
i
~P ′ and ŴT

i P̂ as the ”actual relevance
score” and the ”calculated relevance score” respectively. The
random value rqεi is used to blind rp ~W

T
i
~P ′, otherwise rp

could be acquired simply through ”greatest common divisor”
computation if the cloud server obtains enough calculated
relevance scores.

To achieve the accurate order even when the random values
εi is introduced, we can narrow the range of εi to [-1/2,1/2]
and make rq ≤ rp. Since the relevance score ~Wi

~P ′ is
represented by the integer, so that the disturbance of rqεi is
still within the minimum distances rp and the relative ranking
between the matching files will be preserved.

3) Flexible search query support: To improve the storage
efficiency, the weight vector can be directly reused to support
the flexible search query just by taking the following steps.

For the search query as formula (1), the owner can choose a
set of random values {ri}ui=1, invoke the hash function H(·) to
map keyword wi,j to the numeral λi,j , and transform the query
into the polynomial form as follows: r1(x1 − λ1,1) . . . (x1 −
λ1,d1) + . . .+ ru(xu − λu,1) . . . (xu − λu,du).

Then the vector (a1,d1 , · · · , a1,0, · · · , au,du , . . . , au,0) can
be derived, where ai,j is the coefficient of xji and ai,0 =

ri(−1)di
∏di
j=1 λi,j . Finally, the query vector is unified as

~Q := (a1,n1
, · · · , a1,0, · · · , au,nu

, · · · , au,0)T

where ni is the number of keywords on the field Wi and is
larger than di. Notice that ai,j := 0 for (di + 1) ≤ j ≤ ni.

For the file Fs that is labeled with the keywords
{W1 = w1,s(1), . . . ,Wu = wu,s(u)}, so when testing whether
Fs matches a query, then the server will calculate

~WT
s · ~Q := h1,s(1)

d1∑
j=0

a1,jλ
j
1,s(1)+· · ·+hu,s(u)

du∑
j=0

au,jλ
j
u,s(u)

The outputs will equal to 0 with overwhelming probability
if the file really matches the search query. The random values



Algorithm 1: The detailed description of PSED
Setup(n, u):

1. generate two invertible (n+ u+ 1)× (n+ u+ 1)
matrices M1,M2, initiate a (n+ u+ 1)-dimension
binary vector ~S and outputs SK := {M1,M2, S};

BuildIndex({M1,M2},{~S}, C):
1. For Fi ∈ C

i) generate the keyword weight vector ~Wi;
ii) expand ~Wi to Ŵi := ( ~Wi, εi), create two random

shares of Ŵi, i.e., Ŵi,1 and Ŵi,2 to meet the
following conditions;

iii) For j=1 to (n+ u+ 1)
if ~S[j] = 1, then Ŵi,1[j] + Ŵi,2[j] := Ŵi[j];
else, Ŵi,1[j] := Ŵi,2[j] := Ŵi[j];

iv) run W̃i,1=MT
1 Ŵi,1,W̃i,2=MT

2 Ŵi,2, and set Ii :=
{W̃i,1, W̃i,2};

2. upload the encrypted files {Fi} ∈ C and I := {Ii}
to the cloud server;

GenTrapdoor(Q, P , {M1,M2}, {~S}):
1. preprocess the preference P to P ′, transform the

query Q and the preference P ′ into ~Q and ~P ′;
2. expand ~Q to Q̂ := ( ~Q, 0), randomly choose rp, rq

(rq ≤ rp), and create P̂ := (rp ~P
′, rq);

3. create two random shares of Q̂ and P̂ , i.e., Q̂1 and
Q̂2, P̂1 and P̂2 respectively;

4. For i=1 to (n+ u+ 1)
if ~S[i] = 0, then Q̂1[i] + Q̂2[i] = Q̂[i], P̂1[i] + P̂2[i]
= P̂ [i];

else, Q̂1[i] := Q̂2[i] := Q̂[i], P̂1[i] := P̂2[i] := P̂ [i];
5. compute TQ[1] =M−11 Q̂1, TQ[2] =M−12 Q̂2,
TP [1] =M−11 P̂1, TP [2] =M−12 P̂2;

6. return search trapdoor TQ,P :={TQ = (TQ[1], TQ[2]),
TP = (TP [1], TP [2])} to the user.

SearchIndex(I,TQ,P )
1. For Fi ∈ C, compute W̃T

i,1 · TQ[1] + W̃T
i,2 · TQ[2];

i) If the calculated result is zero, calculate the
relevance score W̃T

i,1 · TP [1] + W̃T
i,2 · TP [2];

2. rank the satisfied files and return FQ,P ;

{ri}ui=1 can mess the distribution of the query vector, so that
even ~Q and ~Q′ are derived from the same search query Q,
~WT
s · ~Q and ~WT

s · ~Q′ will differentiate as long as Fs is excluded
both by Q and Q′. In addition, we can expand ~Q to Q̂ =
( ~Q, 0), so that ŴT

s · Q̂ = ( ~WT
s , εs)

T · ( ~Q, 0) = ~WT
s · ~Q

B. PSED: Privacy-Preserving Scheme

As an summary of the designs above, our proposed preferred
keyword search scheme is shown in Algorithm 1 as detail.
Setup. The owner initiates the secret keys, including a binary
vector and two invertible matrices, where n =

∑u
i=1 ni and u

is the number of keyword fields.
BuildIndex. The owner generates the keyword weight vector
~Wi (step 1-i), expands ~Wi to Ŵi (step 1-ii), divides the vectors
(step 1-iii), and encrypts them (step 1-iv).
GenTrapdoor. Given a query Q and its preference P , the
owner converts Q into the query vector ~Q and preprocess the

preference (step 1). Then the owner enlarges ~P ′ (resp., ~Q) to
P̂ (resp.,Q̂)(step 2), splits the vectors (step 3, step 4), and
encrypts them with the secret matrices (step 5).
SearchIndex. The server calculates the relevance score for
matching files and returns the ranked results.

C. The Analysis

1) Efficiency Analysis: The stage of BuildIndex
(resp.GenTrapdoor) calls for multiplications between
two (n + u + 1) × (n + u + 1) matrices and one (resp.
two) (n + u + 1)-dimension vector for each file (resp.
each query with preference). In SearchIndex, the cloud
server will only compute two inner-products between four
(n + u + 1)-dimension vectors for each mismatched files.
For the matching files, extra two inner-products between
four (n + u + 1)-dimension vectors are needed. With
respect to storage overhead, the owner should only keep two
(n + u + 1) × (n + u + 1) secret matrices (i.e., M1, M2),
a vector whose lengths is (n + u + 1) (i.e., ~S), and some
secret information (i.e., {ζi}1≤i≤u). The user should store the
trapdoor which is constituted by four (n + u + 1)-dimension
vectors, while the cloud server is required to keep the
encrypted collection as well as the encrypted indexes I.

2) Privacy Analysis: As for the index privacy, because
keywords and their corresponding weights are hashed by the
secret hash function and then be encrypted by the secret
matrices, the cloud server will find it difficult to deduce
the meaning of every item in the index; this security is
guaranteed by the computation complexity of secure kNN
[12]. Based on the same principle, the requested keywords and
the corresponding preferences will be invisible to the cloud
server, thus the query privacy can be achieved.

Because of the randomized splitting and the introduction of
some random values (e.g., {ri}1≤i≤u, rp, and rq), the pro-
duced trapdoors will be various even to the same query. This
non-deterministic property will also make the cloud server
have trouble mining the relationship between two trapdoors by
comparing them directly. Though the cloud server can compare
the matching files and ranked results to judge whether the
targeted queries have internal correlation, this attack will fail
if some puppet files to mess the search outputs are introduced.

3) Relevance privacy: With the protection of random val-
ues, the calculated scores of the matching file Fi will be
(rp ~W

T
i
~P ′ + rqεi), which blinds the actual relevance score

~WT
i
~P ′ against the cloud server. Even the cloud server may

try to collect some actual relevance scores ~WT
i
~P ′ to construct

the linear equations {W̃T
i TP [1] + W̃T

i TP [2] = rp ~W
T
i
~P ′ +

rqεi}1≤i≤t, it will be difficult to recover { ~WT
i
~P ′}1≤i≤t by

solving t equations, since there are (t+2) variables.
For the unsatisfied files to a query, ~WT

i
~P ′ will produce

incorrect relevant scores, because the weight of the excluded
keyword will participate in the calculation and roil the final
result, increasing the hardness for the server to learn the
relevance of the unsatisfied files to a query.



(a) (b)

Fig. 2. The time cost of building index. (a) For the different amount of files
in the whole collection, when n=5000,nQ=100. (b) For the different number
of keywords in the collection,when nQ=100,|C|=5000.

(a) (b)

Fig. 3. The time cost of trapdoor generation. (a) For the different number of
keywords in the query, when n=5000,|C|=1000. (b) For the varying number
of keywords in the whole collection,when nQ=100,|C|=5000.

(a) (b) (c)

Fig. 4. The time cost of query search.(a) For the different number of files in the collection, when n=5000,nQ=100.(b) For the different amount of keywords
in the collection,when nQ=100,|C|=5000.(c) For the varying number of keywords in the query, when n=5000,|C|=1000.

IV. PERFORMANCE EVALUATION

We utilize the ”Connectionist Bench (Nettalk Corpus) Data
Set” from UCI Machine Learning Repository [1] which has 4
keyword fields to evaluate the performance of PSED. We fully
realize PSED on the modern server equipped with 2.10GHZ
Intel r Core 2 Duo CPU and 4GB RAM. The OS running on
the server is Ubuntu (version: 11.04) and the kernel is Linux
Ubuntu 2.6.38-8-generic. We choose MRSE II [11] to act as
the reference, where U in MRSE II is chosen to be 40.
A. Index Building

Figure 2(a) indicates the time to build indexes is linear
with the number of files in the collection, since PSED has to
generate an encrypted index for each file. Meanwhile, when n
varies, the time to generate indexes in PSED scales as O(n2),
because it is usually required to implement O(n2) multipli-
cations and O(n2) addition operations per index generation
when u is fixed. From the comparison, the time to generate
an encrypted index in PSED is nearly the same with that in
MRSE. Since it is a one-time cost to build indexes for the
fileset, we argue that the efficiency is quite reasonable. In
Table II, we compare the storage space of every index in PSED
with that in MRSE and indicate they are approximately same.
B. Trapdoor generation

In Figure 3(a), the number of keywords in the query will
not affect the performance of trapdoor generation very much.
Figure 3(b) indicates the time to generate a trapdoor will
be greatly affected by the total number of keywords in the
collection, since it is required to encrypt the query vector
and the preference vector, involving O(n2) multiplications and
O(n2) addition calculations when u is fixed. Meanwhile, the
performance of PSED is a bit slower than that of MRSE for the
following reasons. Firstly, PSED has to preprocess the pref-
erences before generating the corresponding trapdoor, while
MRSE only produces the trapdoor by encrypting the query
vector. Secondly, PSED has to afford additional encryption of
P to support the preferred search when compared to MRSE.

TABLE II
SIZE OF AN INDEX AND A TRAPDOOR IN MRSE AND PSED

n 1000 3000 5000 8000
MRSE-Index(/Trapdoor) (KB) 8.13 23.76 39.38 62.82

PSED-Index (KB) 7.85 23.48 39.10 62.54
PSED-Trapdoor (KB) 15.70 46.96 78.20 125.08

Moreover, the owner can either distribute the secret matrices
to authorized users or delegate the job of trapdoor generation
to a Trusted Third Party to mitigate the computation burden
at the own’s side. In addition, a trapdoor of PSED takes up
nearly double the amount of storage space than that of MRSE
as shown in Table II, since both the query vector and the
preference vector should be encrypted in PSED.
C. Query

The time in SearchIndex can be divided into the time
to test whether an index matches the query and the time of
relevance score calculation. We use ”hit rate” to serve as
the rate that an index matches the query and consider the
search time under different ”hit rates”. We run three different
performance tests as illustrated in Figure 4. In Figure 4(a), the
search time is linear to the number of files in the fileset, since
it is required to scan every file to test whether it matches the
query conditions. Figure 4(b) indicates the search time is linear
to the number of keywords n among the whole collection,
since O(n) multiplications and O(n) addition operations are
performed in the steps of both matching test and relevance
score calculation when u is fixed. Figure 4(c) shows the num-
ber of keywords in the query will not affect the performance
of query search. Meanwhile, the query time of PSED is a bit
larger than that of MRSE and the gap will narrow as the hit rate
drops, because it usually incurs four inner-products calculation
if the query ”hits” a index in PSED, while in MRSE the inner-
product computation only happens twice.
D. Complexity analysis

From Table III, the computation complexity of PSED is
close to that of MRSE. Different from MRSE which provides
multi-keyword similar search and may return inaccurate search



TABLE III
THE COMPARISON OF COMPLEXITY BETWEEN MRSE AND PSED.

Comparison Metrics MRSE [11] PSED
Time of BuildIndex(/GenTrapdoor) O((n+ U)2) O((n+ u)2)

Time of SearchIndex O(n+ U) O(n+ u)
Flexible query support No Yes

Preferred keyword search No Yes
Accurate search result No Yes

outputs, PSED focuses on preferred search over multiple fields,
which aims to locate the accurate matching files and rank them
according to the calculated scores. The performance difference
between PSED and MRSE lies in the change of U and u,
where u is introduced in keyword weight vector generation
in PSED and U is used to resist know-background attack
in MRSE. Compared to MRSE, PSED is more suitable to
applied in the environment with both preference consideration
and high-accuracy requirement.

V. RELATED WORK

A. Searchable Encryption

Song et al. [3] proposed the first practical scheme of
searchable encryption. Goh et al. [4] presented a scheme that
supports secure indexed over encrypted data by employing
Bloom Filter. Boneh et al. [5] proposed the first searchable
encryption scheme based on public key. Water et al. [7]
proposed a scheme to fulfill searchable audit log. Golle et
al. [8] developed two searchable encryption schemes to realize
conjunctive keyword search. Wang et al. [9] and Cao et al. [11]
investigated secure ranked keyword search on single keyword
and multiple keywords over encrypted data respectively. Shi
et al. [10] presented their method to realize multi-dimensional
range query over encrypted data. However, most of the existing
SE works missed users’ preferences when performing search.

B. Keyword Search with Preference

Leubner et al. [13] showed prioritization would be explained
as the subspace preferences in vector space model. Koutrika
et al. [14] established a preference model and presented pro-
gressive personalized answers. Chomicki et al. [15] presented
the framework for formulating preferences. Kiessling et al.
[16] proposed strictly partial order semantics for preferences.
Georgiadis et al. [17] defined the preorders over attributes and
explored the semantics of preferences expression. However,
most of existing search schemes with preference are inappli-
cable on ciphertext.

VI. CONCLUSION

In this paper, we address the problem of preferred keyword
search over encrypted data. We first establish a set of designed
goals and use the occurrence of each keyword to characterize
its significance to the file. Then we represent the query and
index in the vector form, and employ secure inner-product
computation to calculate the inner-product of the weight vector
and the preference vector to quantitatively characterize the
correlation of files to the query. Thorough analysis concerning
privacy and efficiency is presented, and the intensive evalua-
tion of PSED on a modern server demonstrates its suitability
when deployed in real application.
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APPENDIX

Proof of Theorem1. If Fi is prior to Fj to TQ,P , then we
will prove Fi is still prior to Fj to TQ,P′ . In the case of
Definition1.(1), the conclusion is obviously established. In the
case of Definition1.(2), because the keyword weights of Fi and
Fj are unchanged, so hWi,p′m

= hWi,pm
> hWj,pm

= hWj,p′m
still holds, where pm is the original critical preference value
(CPV) and p′m is the preprocessed preference of pm. Accord-
ing to the order-preserving rule of the preprocessing, if there
exists a value p′z > p′m, then we have hWi,p′z

= hWi,pz
=

hWj,pz
= hWj,p′z

, thus p′m will be the CPV of P ′. Since
hWi,p′m

> hWj,p′m
, then Fi is still prior to Fj to TQ,P′ .�

Proof of Lemma1. If both of Fi and Fj match Q, assume the
CPV between Fi and Fj is pm. Suppose φ−1(z) = {sz, tz},
since {hWi,pz

} will be integers, then the difference of the
relevance score between Fi and Fj will be

∑
p′z
hWi,p′z

p′z −∑
p′z
hWj,p′z

p′z =
∑
p′z>p

′
m
(hWi,p′z

− hWj,p′z
)p′z + (hWi,p′m

−
hWj,p′m

)p′m +
∑
p′z<p

′
m
(hWi,p′z

− hWj,p′z
)p′z ≥ p′m −∑

p′z<p
′
m
hWj,p′z

p′z > 0 �


