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Abstract—Erasure codes tolerate disk failures by pre-storing a low degree of data redundancy, and have been commonly adopted in

current storage systems. However, the attached requirement on data consistency exaggerates partial stripe write operations and thus

seriously downgrades system performance. Previous works to optimize partial stripe writes are relatively limited, and a general

mechanism is still absent. In this paper, we propose a Parity-Switched Data Placement (PDP) to optimize partial stripe writes for any

XOR-coded storage system. PDP first reduces the write operations by arranging continuous data elements to join a common parity

element’s generation. To achieve a deeper optimization, PDP further explores the generation orders of parity elements and makes any

two continuous data elements associate with a common parity element. Intensive evaluations show that for tested erasure codes, PDP

reduces up to 31.9 percent of write operations and further increases the write speed by up to 59.8 percent when compared with two

state-of-the-art data placement methods.

Index Terms—Partial stripe writes, XOR-coded storage systems, data placement, parity generation

Ç

1 INTRODUCTION

ERASURE coding has been commonly adopted in distrib-
uted storage systems to promise data reliability by pre-

storing a low degree of data redundancy [1], [2], [3], [4]. One
typical class of erasure codes is Maximum Distance Separa-
ble (MDS) codes [5], [6], [7], [8], [9], [10], which provides the
optimal storage efficiency. MDS codes are typically operated
by two parameters k and m: an ðk;mÞ MDS code takes k
pieces of original data as input, and produces anotherm par-
ity pieces, such that any k out of kþm pieces are sufficient to
reconstruct the original data. The kþm dependent pieces
collectively form a “stripe” and are distributed to kþm
disks, such that anym disk failures are tolerated. A family of
MDS codes is XOR-based erasure code [7], [8], [9], [10], [11],
[12], [13], [14], which only performs XOR operations for fast
parity calculation and data reconstruction. XOR-based era-
sure codes have been popular solutions in current storage
systems [15], [16], [17] (we call them “XOR-coded storage
systems”). In XOR-coded storage systems, a data piece (resp.
parity piece) will be partitioned into many “data elements”
(resp. “parity elements”) with equal-size.

One major issue that current XOR-coded storage systems
suffer is how to efficiently handle the writes to the kept data.
A write operation is usually processed by two write modes,
i.e., read-modify-write mode for small writes (i.e., the updated
size is less than half the stripe length) [8], [19] and recon-
struct-write mode for large writes (i.e., the updated length is

more than half the stripe length) [20], [21]. However, small
writes are usually dominant operations in many real storage
applications. We analyze several real workloads selected
from MSR Cambridge Traces [18] in Fig. 1, which indicates
that the small writes whose sizes are no larger than 8 KB take
up more than 70 percent of all the write operations. There-
fore, in this paper wemainly consider write operations in the
read-modify-writemode.

The read-modify-write mode first retrieves the wanted
data and then writes it back after modification. For such
kind of operations, the attached consistency requirement
will also trigger extra writes to the associated redundant
information (i.e., parity elements). As a result, the size of
data to be written is amplified and the system performance
is downgraded. Meanwhile, write operations in XOR-coded
storage systems can be classified into full stripe writes and
partial stripe writes according to the different sizes of oper-
ated data in a stripe. Full stripe writes completely write all
the data elements in a stripe and the optimal complexity of
full stripe write can be achieved by MDS codes [8]. As a
comparison, partial stripe writes only operate a subset of
data elements in a stripe and they are still concerned in cur-
rent storage system designs [6], [8], [9], [22], [23]. In this
paper, we mainly consider partial stripe writes to continuous
data elements, as other kinds of partial stripe writes (e.g., par-
tial stripe writes to non-continuous data elements) can be
treated as the combination of these basic operations.1 There-
fore, the optimization techniques for partial stripe writes to
continuous data elements can also have a good effect on
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1. For example, if a write operation updates non-continuous data
elements f#1,#2,#4,#5g, then it can be treated as the combination of
the write operation to continuous data elements f#1,#2g, and the one
to continuous data elements f#4,#5g. #i means the ith data element
in a stripe.
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improving the performance of partial stripe writes to non-
continuous data elements.

Some explicit RAID-6 codes (i.e., H-Code [8] andHVCode
[9]) have considered the optimization of partial stripe writes
under the premise that data elements are horizontally placed,
yet two limitations remain. First, the existing works [8], [9]
are specific RAID-6 codes. They are useless to optimize par-
tial stripe writes for the storage systems that select other
RAID-6 codes for data protection. For example, NetApp
RAID-DP [16] (selects RDP Code [14] for RAID-6 protection
[24]) and EMC Symmetrix DMX [15] (selects EVENODD
Code [25] for RAID-6 protection). Second, the proposed
RAID-6 codes for partial stripe write optimization only toler-
ate at most double disk failures. They cannot be deployed on
the storage systems that require higher fault tolerance (e.g.,
the triple failure tolerance requirement inNetApp [26]).

Besides these two RAID-6 codes, RAID-Z [27] is an inter-
esting scheme that is proposed to address the “write hole”
problem2 when combined with the “copy-on-write” transac-
tional semantics in ZFS [28]. Additionally, RAID-Z also
makes every block be its own stripe, such that every write
in RAID-Z can be handled as a full stripe write and the
stripe length in RAID-Z will be various. However, the data
reconstruction in RAID-Z requires the understanding of
RAID-Z geometry by scanning the file system metadata,
which is hard to meet when the file system and RAID array
are separate products [27]. Besides, RAID-Z can only resist
no more than three disk failures [29], which is not suitable
for the storage systems that have higher fault tolerance
requirements [17]. Moreover, the realization of RAID-Z can-
not be applied to current XOR-coded storage systems [15],
[16], [17] that usually select fixed stripe length.

Due to these limitations, there is still no methodology to
optimize partial stripe writes for any XOR-coded storage
system, thus motivating our work.

In this paper, we propose a Parity-Switched Data Place-
ment (PDP) scheme to optimize partial stripe writes for any
XOR-coded storage system. As the triggered update to asso-
ciated parity elements is the core reason that deteriorates a
partial stripe write operation, PDP accordingly proposes
several techniques to decrease the update operations to par-
ity elements and thus improve the partial stripe writes

performance. First, different from previous obstinate data
placements, PDP respects the parity generation principle of
any XOR-based code and arranges continuous data ele-
ments to generate parity elements. This design effectively
reduces the updates to parity elements, especially for the
write operation that operates the continuous data elements
associated with a common parity element. Second, PDP also
carefully designs the generation orders of parity elements
and makes any two continuous data elements involved in a
common parity element’s generation. To our best knowl-
edge, it is the first work to optimize partial stripe writes for
any XOR-coded storage system.

Our contributions can be summarized as follows:

1) We propose a data placement design named Parity-
Switched Data Placement to optimize partial stripe
writes for any XOR-coded storage system by
decreasing parity updates. To this end, PDP gener-
ates parity elements by using continuous data
elements, explores generation orders of parity ele-
ments, and arranges any two continuous data ele-
mentsto share a common parity element.

2) We implement PDP in a real storage system eq-
uipped with several representative XOR-based era-
sure codes, and compare PDP with two start-of-the-
art data placement methods. Results show that PDP
decreases up to 31.9 percent of write operations and
increases the write speed by up to 59.8 percent.

The rest of this paper continues as follows. Section 2 will
introduce the research background. The motivations will be
presented in Section 3. We then describe the detailed design
of PDP in Section 4. Finally, we evaluate PDP in Section 5
and conclude our work in Section 6.

2 BACKGROUND

2.1 Notations and Descriptions

We first summarize the terms and notations that will be fre-
quently referred throughout this paper. Meanwhile, we also
list the symbols and their descriptions in Table 1.

Data element and parity element. Element is the basic infor-
mation unit operated in XOR-coded storage systems. Data
elements contain original data information, while parity
elements keep redundant information of data elements. In
figures of this paper, we use shapes to represent elements
and use numbers to denote their logical orders. The data
elements are continuous if their logical orders are neighbor-
ing. For instance, Fig. 2 shows the placement of data ele-
ments in a stripe, where #i means the ith data element in a
stripe, and #1 and #2 are two continuous data elements.

Fig. 1. Small write ratio of real workloads [18].

TABLE 1
Frequently Used Symbols and Descriptions

Symbols Descriptions

p prime number used to configure the stripe size
� XOR operation
#i the ith data element in a stripe
Ci;j cell in the ith row and the jth column
Ri the ith redundant parity element
w number of parity elements in a stripe
n number of data elements in a stripe

2. It is the inconsistency risk between data information and parity
information. It is caused by accident system crash when a write opera-
tion does not complete.
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There are several methods to calculate parity elements,
such as horizontal parity and diagonal parity. The horizon-
tal parity element is calculated by performing XOR opera-
tions among the data elements in the same row. In this
paper, we use Ri to denote the ith parity element in a stripe.
For instance, in Fig. 2a, the horizontal parity element
R1 :¼#1�#2�#3�#4. The diagonal (resp. anti-diagonal)
parity connects the elements following the diagonal (resp.
anti-diagonal) line. For example, the anti-diagonal parity
element R5 :¼#13� #2� #7 � #12 as shown in Fig. 2b.

Cell. “Cell” denotes the storage area (e.g., sector) to store
an element in this paper. We use Ci;j to represent the cell
whose position is at the ith row and the jth column in a
stripe. For example, C1;1 hosts the data element #1 in Fig. 2.

XOR-based erasure codes. XOR-based erasure codes calcu-
late parity elements by just performing XOR operations.
This kind of erasure codes owns better encoding/decod-
ing/update efficiency, compared to the codes constructed
over complicated operations in the finite field, such as
Reed-Solomon Code [30] and SD Codes [31]. The represen-
tative XOR-based erasure codes include EVENODD Code
[25], RDP Code [14], X-Code [10], P-Code [13], HDP Code
[7], H-Code [8], HV Code [9], D-Code [32], STAR Code [33],
and Cauchy Reed-Solomon Code [34].

Stripe. A maximal set of data elements and parity ele-
ments that have dependent relationship connected by an
erasure code. Fig. 2 shows the layout of a stripe in H-Code.

Parity chain. A parity chain is composed of a collection of
data elements and the parity element generated by them. In
this paper, the elements in the same parity chain are marked
in the same shape. For example, #1 involves in two parity
chains in Fig. 2, i.e., f#1, #2, #3, #4; R1g for the horizontal
parity chain in Fig. 2a and f#1, #6, #11, #16, R8g for the
anti-diagonal parity chain in Fig. 2b. Therefore, when #1 is
written, R1 and R8 should be correspondingly renewed for
data consistency.

2.2 Existing Data Placement Methods

Data placement is usually established before data storage
and will guide next data accesses to the locations where
the requested elements reside. Currently, two data place-
ment methods are commonly adopted in XOR-coded stor-
age systems, i.e., horizontal data placement and vertical
data placement.

Horizontal data placement. Horizontal data placement
“horizontally” lays continuous data elements across disks.

For example, Figs. 2 and 3 illustrate the layout of H-Code
[8] and X-Code [10] under the horizontal data placement.

The horizontal data placement brings two benefits. First,
it takes full advantage of parallel technology [35]. For exam-
ple, when requesting the data elements f#1, #2g in Fig. 2,
the storage system can execute this operation in parallel by
reading #1 from disk 1 and retrieving #2 from disk 3, thus
the needed time will be shortened. Second, applying the
horizontal data placement to a code with horizontal parity
chains can effectively decrease the number of updated par-
ity elements in partial stripe writes. For example, when #3

and #4 in Fig. 2 are written, then only 1 horizontal parity
element (i.e., R1 in Fig. 2a) and two anti-diagonal parity ele-
ments (i.e., R6; R7 in Fig. 2b) will be renewed, as these two
data elements share a common horizontal parity element
R1. At last, only three parity elements are updated in this
partial stripe write operation.

However, for the codes (e.g., X-Code [10], and P-Code
[13]) that do not have horizontal parity chains, the horizon-
tal data placement will lose the second advantage. This is
because the continuous data elements laid on the same row
may not have a common parity element in these codes. For
example, Fig. 3 illustrates the layout of X-Code where data
elements are horizontally placed. When the data elements
#3 and #4 are written, the associated four parity elements
(i.e., the anti-diagonal parity elements R1 and R2, and the
diagonal parity elements R6 and R10) will be correspond-
ingly renewed, requiring one more element update than the
same write operation in H-Code (shown in Fig. 2).

Vertical data placement. Vertical data placement puts con-
tinuous data elements along columns. As a comparison
with Fig. 2, the layout of H-Code under the vertical data
placement is illustrated in Fig. 4.

However, this placement method has two limitations.
First, it restricts the parallel accesses of storage systems. For
example, when reading data elements f#8, #9, #10g in
Fig. 4, the disk 3 has to sequentially execute this operation.
Second, the vertical data placement cannot provide a satisfied
performance on partial stripe writes, as the continuous data
elements stored in the same disk usually do not have any
common parity element. For example, if data elements f#3,
#4g in Fig. 4 are renewed, then the associated four parity ele-
ments (i.e., the horizontal parity elementsR3 andR4, and the
anti-diagonal parity elements R5 and R6) will be updated.
Fig. 5 also presents the layout of X-Code under the vertical
data placement. As the data elements #3 and #4 do not share

Fig. 2. The layout of H-Code under the horizontal data placement over
pþ 1 disks (p ¼ 5). A write operation to data elements #3 and #4 will
need to update three parity elements. The dashed lines label the oper-
ated elements in this write operation.

Fig. 3. The layout of X-Code under the horizontal data placement over p
disks (p ¼ 5). A write operation to data elements #3 and #4 will need to
update four parity elements. The dashed lines label the operated ele-
ments in this write operation.
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any common parity element, a partial stripe write to them
will also renew four parity elements (i.e.,R2,R5,R9, andR10).

2.3 Existing Works to Optimize Partial Stripe Writes

To optimize partial stripe writes, several impressive works
have been proposed, which can be classified into the follow-
ing categories.

1) The optimization in RAID-5 [36]. Jin et al. [22] dis-
cuss different cases of partial stripe writes in RAID-
5, and propose an adaptive control algorithm to
reduce caused I/O operations.

2) The optimization in RAID-6. Two impressive works
are H-Code [8] and HV Code [9], both of which are
designed under the horizontal data placement. The
layout of H-Code is shown in Fig. 2. H-Code owns a
typical feature that any two continuous data ele-
ments share a common parity element. Therefore the
writes to any two continuous data elements will
renew three related parity elements. For example,
both of data elements #3 and #4 join the generation
of R1. When performing a write to them, the horizon-
tal parity element R1 and the anti-diagonal parity
elements R6 and R7 will be updated. This design
principle is also followed by HV Code [9].

3) The optimization in RAID-Z [27]. RAID-Z avoids
partial stripe writes by treating a block as a stripe,
such that every write to a block can be handled as a
full stripe write. The current realizations of RAID-Z
includes RAIDZ-1 (like RAID-5), RAID-Z2 (tolerates
double disk failures), and RAIDZ-3 (tolerates triple
disk failures) [29].

2.4 Remaining Limitations of Existing Works

Though these impressive works [8], [9], [22], [27] can to
some extent improve the performance of partial stripe
writes, they still have significant limitations without being
well addressed.

1) Both of H-Code and HV Code are two specific codes,
they do not figure out how to optimize partial stripe
writes in the storage systems equipped with other
RAID-6 codes, such as NetApp RAID-DP [16]
(selects RDP Code [14] for RAID-6 protection [24])
and EMC Symmetrix DMX [15] (selects EVENODD

Code [25] for RAID-6 protection). Besides, they can
only offer the protection of at most two disk failures.
They are useless to the storage systems that have
higher reliability requirements (e.g., the triple failure
tolerance requirement in NetApp [26]).

2) As referred above, RAID-Z introduces variable stripe
length, which is different from other XOR-based era-
sure codes [8], [9], [10], [14], [25]. This change makes
the data reconstruction in RAID-Z more complex. It
requires to scan the file system metadata to under-
stand the RAID-Z geometry. This requirement is
impossible to be fulfilled when the file system and
RAID array are separate products [27]. Besides, cur-
rent realizations of RAID-Z can only resist triple disk
failures [29]. They cannot be deployed on the storage
systems that have higher fault tolerance requirement
[17]. Moreover, the realization of RAID-Z cannot be
applied to current XOR-based erasure codes that
have constant stripe length.

3 MOTIVATION

Based on the above problems, we thus pose the following
question: Is there a methodology to optimize partial stripe writes
for any XOR-coded storage system?

As parity update is the key reason that deteriorates the
performance of partial stripe writes, we then accordingly
propose to optimize partial stripe writes by decreasing
parity updates. Previous works [8], [9] achieve this by
completely redesigning new parity generation principles
under the horizontal data placement. Though this method
is effective, it changes the parity generation principle and
cannot be used for any XOR-based erasure code.

On the contrary, in this paper, we suggest respecting the
protogenic parity generation principle of each XOR-based
erasure code and associating parity elements with continu-
ous data elements through data placement. For any XOR-
based erasure code, this method does not alter the parity genera-
tion, and thus does not change the fault tolerance of the original
scheme. In summary, the motivating arguments for our
work are as follows.

Data placement principle. We first consider the optimiza-
tion of partial stripe writes in a common parity chain. As
referred above, we observe that the codes with horizontal
parity chains can reduce the number of parity elements to
be updated. This is because the horizontal parity in these

Fig. 4. The layout of H-Code under the vertical data placement over
pþ 1 disks (p ¼ 5). A write operation to data elements #3 and #4 will
need to update four parity elements. The dashed lines label the operated
elements in this write operation.

Fig. 5. The layout of X-Code under the vertical data placement over p
disks (p ¼ 5). A write operation to data elements #3 and #4 will need to
update four associated parity elements. The dashed lines label the oper-
ated elements in this write operation.
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codes makes continuous data elements in the same row
share a common horizontal parity element, and then
decreases the number of parity updates for a write opera-
tion to them. Inspired by this finding, for a code that does
not have horizontal parity chains, such as X-Code [10] and
P-Code [13], we can also accordingly place continuous data
elements to generate parity elements. Therefore, when the
data elements in a common parity chain are written, the
number of parity elements to be updated will decrease. For
example, we adopt “the anti-diagonal data placement” for
X-Code by laying continuous data elements along the anti-
diagonal line to produce the anti-diagonal parity elements
in Fig. 6a. In this case, when writing continuous data ele-
ments f#1, #2, #3g, the number of anti-diagonal parity ele-
ments to be renewed will decrease to 1 (i.e., R1). On the
contrary, it needs to update three anti-diagonal parity ele-
ments (i.e., R1, R4, and R5) when writing f#1, #2, #3g
under the horizontal data placement (shown in Fig. 6b).

Parity generation order. Based on the data placement prin-
ciple referred above, we also wish to optimize partial stripe
writes across parity chains. For any such operation, we can
always find a value i such that the data elements to be writ-
ten are included in the i parity chains. For example, when
writing f#2,#3,#4g in Fig. 6a, these operated data ele-
ments are covered by the data elements f#1,#2,. . .,#6g in
the 2 parity chains (i.e., the parity chains that generate R1

and R2). Thus, the number of associated parity elements to
be updated in this partial stripe write operation is no more
than that of completely writing the data elements f#1,
#2; . . . ;#6g in this 2 parity chains.

Derived from this observation, for the partial stripe write
across parity chains, we propose to optimize it by lowering
its upper-bound on the number of updated parity elements.
Suppose there are w parity elements and n data elements in
a stripe. Let the number of data elements in the first i parity
chains be ni (ni � n). Pi is the number of updated parity ele-
ments when writing all the ni data elements in the first i
parity chains. Our objective can be formulated as:

Minimize Pi: (1)

Our second observation is that Pi will be influenced by the
generation orders of parity elements. Two examples that have
different parity generation orders in X-Code are shown in
Figs. 7 and 8 respectively, both of which are under the anti-
diagonal data placement.3 Fig. 7 indicates that the generation
of the first 2 parity elements fR1; R2g (i.e., i ¼ 2) will place
data elements f#1, #2,. . ., #6g (i.e., n2 ¼ 6). A write opera-
tion to these placed data elements will renew P2 ¼ 7 parity
elements. As a comparison, Fig. 8 generates the first 2 parity
elements in the order of fR1; R4g, and consequently updates 6
parity elements (i.e., P2 ¼ 6) for the same write operation.
Thus the parity generation order should be carefully designed
to optimize partial stripewrites across parity chains.

Position adjustment of data elements. The partial stripe
writes can be further optimized by adjusting the positions
of data elements, so that any two continuous data elements
will always associate with a common parity element. This
arrangement will further decrease the updates to parity ele-
ments, especially for the small write operations.

For instance, Fig. 8 gives the data placement before posi-
tion adjustment, where two continuous data elements #3

and #4 do not in a common parity chain, thus a write opera-
tion to them will update 4 parity elements (i.e., R1, R4, R8,
and R9). A new data placement after adjustment is shown
in Fig. 9. The data elements #3 and #4 in this layout share
the common diagonal parity element R10 (shown in Fig. 9b),
and thus a write operation to them will renew only 3 parity
elements (i.e., R1, R4, and R10).

4 PARITY-SWITCHED DATA PLACEMENT

From the motivation of Section 3, we propose a new data
placement method called Parity-Switched Data Placement.

Fig. 6. Data placement principle. The generation of anti-diagonal parity
elements in X-Code under the anti-diagonal data placement and the hor-
izontal data placement, respectively.

Fig. 7. Parity generation orders. An example when generating R1 andR2.
In this case, when data elements f#1,. . .,#6g are written, then there are
extra seven parity elements needed to update. The dashed lines indicate
the parity elements generated by continuous data elements.

Fig. 8. Parity generation orders. An example when generating R1 andR4.
In this case, when data elements f#1; . . . ; #6g are written, then there are
extra six parity elements need to be updated. The dashed lines indicate
the parity elements generated by continuous data elements.

3. The encoding principle of X-Code can be reviewed in Fig. 3.
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PDP includes two algorithms. The first algorithm explores
the generation orders of parity elements, where continuous
data elements will be placed by following the protogenic
parity generation principle to calculate the parity elements.
The second algorithm tries to make any two continuous
data elements share a common parity element.

4.1 Determination of Parity Generation Orders

To obtain the optimal generation orders of parity elements
that satisfy Equation (1), enumerating the orders has a high
computational complexity. For example, for X-Code, its
stripe has 2p parity elements;4 thus, there will be ð2pÞ! per-
mutations to seek the optimal parity generation orders.
Therefore, we propose to explore the parity generation
orders based on the greedy approach [37] as shown in
Algorithm 1. Itsmain idea is to greedily select a parity element
and generate it in the ith step (1 � i � w), such that the gen-
eration will cause the least parity elements to update when
writing all the data elements in the first i parity chains.

Details of Algorithm 1. To place the data elements, we first
assume that all the cells are initially blank and not placed
with data elements. Suppose there are w parity elements
and n data elements. Let X keep the parity elements that are
finally selected to be generated by continuous data elements
in this algorithm. X is first initialized as an empty set and
gradually appended with one parity element after each
greedy selection. Once a parity element is appended to X ,
continuous data elements will then be placed on the corre-
sponding cells to generate it. Suppose jXj denotes the num-
ber of parity elements in X . The physical meaning of X is
the optimal order of the first jXj data elements generated by
continuous data elements, such that the minimal number of
parity updates will be caused when writing all the data ele-
ments in the first jXj parity chains.

We then use M to include the updated parity elements
when writing all the data elements in the first jXj parity
chains, and suppose jMj represents the number of parity
elements inM. Then the objective of Algorithm 1 is to deter-
mine X , such that jMj is minimized.

In the initialization, both X and M are first set as empty
sets, and U includes all the w parity elements (step 1). In
each iteration, the algorithm scans each candidate parity
element Ri 2 U. If continuous data elements are placed on
the corresponding cells to generate Ri, then Yi denotes the

parity elements to update when writing all the data ele-
ments in the parity chain of Ri (step 3). Therefore, if Ri is
chosen to generate and appended to X in this iteration, then
M[Yi includes the related parity elements to renew when
completely writing all the data elements in the first ðjXj þ 1Þ
parity chains. We record the number of parity elements in
M[Yi (step 4). We then select the one Rj among the
remaining candidates in U, whose generation will result in
the fewest parity updates when writing all the data ele-
ments in the first ðjXj þ 1Þ parity chains (step 5). After this
selection, X , U, and M will be accordingly updated (step 6).
To calculate Rj, the continuous data elements starting at the
data element ranked first among the unplaced data ele-
ments, will be laid on the corresponding cells (step 7). The
iteration will repeat until the generation of parity elements
in X successfully places all the data elements (step 8).
Finally, the remaining parity elements in U will be produced
to complete the encoding process (step 9).

Algorithm 1. Parity Generation Orders

1 Set X ¼ ;,M ¼ ;, U includes w parity elements
2 for each candidate parity element Ri 2 U do
3 Obtain Yi

4 Calculate jM [ Yij
5 Find Rj, where jM [ Yjj ¼ MinfjM [ YijjRi 2 Ug
6 X ¼ X [ fRjg, U ¼ U � fRjg,M ¼ M[Yj

7 Place next continuous data elements to generate Rj

8 Repeat step 2�7 until all the data elements are placed
9 Generate the remaining parity elements in U
10 Return X

An example. We take X-Code with p ¼ 5 as an example. In
the initialization, both of X and M are set as empty sets,
and U ¼ fR1; R2; . . . ; R10g. We first consider R1 (shown in
Fig. 7a). Generating R1 will place continuous data elements
f#1,#2,#3g on the cells fC1;3; C2;4; C3;5g. A write operation
to them will renew four associated parity elements (i.e.,
Y1 ¼ fR1; R7; R9; R10g5). Therefore, if we select R1 as the
first parity element to generate in X , then jM [ Y1j ¼ 4. It
means that four parity elements will be updated when all
the data elements in the first 1 parity chain are written. Fol-
lowing the same rule, we will calculate jM [ Yij ¼ 4 for
1 � i � 10. Without loss of generality, we select R1 as the
first parity element to generate by placing f#1,#2,#3g,
and append R1 in X . We then update M ¼ fR1; R7; R9; R10g
and U ¼ fR2; R3; . . . ; R10g.

In the second run, we first consider R2, whose generation
will lay f#4,#5,#6g on the cells fC1;4; C2;5; C3;1g as shown
in Fig. 7a. Writing all the data elements in the parity chain
of R2 will renew four related parity elements (i.e.,
Y2 ¼ fR2; R6; R8; R10g). Therefore, if we select R2 as the sec-
ond parity element to generate, then writing all the data ele-
ments in the first 2 parity chains will update jM [ Y2j ¼ 7
parity elements. Following this method, we then test other
candidate parity elements in U. For R4 2 U, its generation
will place f#4,#5,#6g on fC1;1; C2;2; C3;3g as shown in
Fig. 8. When writing all the data elements in the parity chain

Fig. 9. Position adjustment of data elements. The layout of data ele-
ments after adjustment. The dashed lines indicate the parity elements
generated by continuous data elements.

4. p is a prime number, and is usually a parameter to configure the
stripe size for RAID-6 codes.

5. R1 is the anti-diagonal parity element associated with the three
data elements (see Fig. 7a), while R7, R9, and R10 are diagonal parity
elements associated with the three placed data elements (see Fig. 7b).
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of R4, the set of related parity elements is Y4 ¼ fR4; R7;
R8; R10g. Therefore, if we select R4 as the second parity ele-
ment to generate, then writing all the data elements in the
first 2 parity chains should update jM [ Y4j ¼ 6 (<
jM [ Y2j ¼ 7) parity elements (shown in Fig. 8). Finally, we
update X ¼ fR1; R4g, U ¼ fR2; R3; R5; R6; . . . ; R10g and
M ¼ fR1; R2; R7; R8; R9; R10g.

The iteration will repeat until all the data elements are
placed. Finally, we can obtain X ¼ fR1; R4; R2; R3; R5g that
are generated by continuous data elements, and then calcu-
late the remaining parity elements in U ¼ fR6; R7; . . . ; R10g
based on the placed data elements.

4.2 Positions Adjustment of Data Elements

Given the data layout derived from Algorithm 1, any two
continuous data elements will either have a common parity
element (e.g., #2 and #3 in Fig. 8a have the common parity
element R1) or associate with two parity elements in X
whose generation orders are adjacent. For example, as
shown in Fig. 8a, the continuous data elements #3 and #4

are in the parity chain of R1 and R4 whose generation orders
are adjacent (refer to the example of Algorithm 1). For the
second case, these two data elements may not have a com-
mon parity element and a write operation to them will cause
many extra updates to parity elements. Targeting at this
problem, Algorithm 2 proposes to further adjust the posi-
tions of data elements, such that any two continuous data
elements will associate with a common parity element.

Algorithm 2. Adjustment of Data Element Positions

1 Set Rcur as the first parity element in X
2 Find the next parity element Rnxt 2 X after Rcur

3 for each data element #i in the parity chain of Rcur do
4 for each data element #j in the parity chain of Rnxt do
5 if they are not fixed and in a common parity chain then
6 Perform the position adjustments
7 Fix the two continuous data elements
8 Set Rcur ¼ Rnxt

9 Repeat Step 2�8 until Rcur is the last parity element in X

Details of Algorithm 2. The algorithm starts from the first
parity element in X and ends at the last one. Let Rcur be the
currently generated parity element in X , and Rnxt 2 X be
the next parity element to be produced after Rcur (step 1�2).
As the generation orders of Rcur and Rnxt are adjacent in X
and data elements are placed continually in order when
generating Rcur and Rnxt, the last data element in the parity

chain of Rcur and the first data element in the parity chain of
Rnxt are continuous. For example, R1 and R4 are two parity
elements that are adjacently generated (shown in Fig. 8).
The last data element in the parity chain of R1 is #3 and the
first data element in the parity chain of R4 is #4. These two
data elements are continuous. Therefore, the next step is to
find the appropriate cells to place these two data elements,
such that they will associate with a common parity element.
Once these two continuous data elements are adjusted, they
will be fixed and not be moved in next steps.

The algorithm then scans every pair of data elements (#i,
#j), where #i and #j are in the parity chains led byRcur and
Rnxt, respectively (step 3�4). If the data elements #i and #j

are not fixed (i.e., they can be moved to other cells) and join a
common parity element’s generation (step 5), we then switch
the position of #iwith that of the last data element in the par-
ity chain of Rcur, and swap the position of #jwith that of the
first data element in the parity chain ofRnxt (step 6). Thus the
last data element in the parity chain of Rcur and the first data
element in the parity chain of Rnxt will associate with a com-
mon parity element. Subsequently, these two continuous
data elements will be fixed and not allowed to be moved in
next steps (step 7). We then turn to the next parity element
Rnxt (step 8). The loop will terminate when Rcur is the last
parity element inX (step 9).

An example. We take X-Code with p ¼ 5 as an example in
Fig. 10. In Fig. 10a, as referred in Algorithm 1, R1 and R4 are
the first two parity elements to be generated in X . We first
set Rcur ¼ R1 and Rnxt ¼ R4, and scan every pair of data ele-
ments in these two parity chains. Fig. 10b shows that data
element #1 (i.e., #i in Algorithm 2) and #5 (i.e., #j) have a
common parity element R10. We then perform the move-
ment by switching #1with the last data element in the parity
chain of R1 (i.e., #3) and swapping #5with the first data ele-
ment in the parity chain of R4 (i.e., #4). Thus the two contin-
uous data elements (i.e., #3 and #4) will still associate with
a common parity element (i.e., R10) as shown in Fig. 10d.
After the adjustment, #3 and #4are not allowed to be
moved in next position adjustments.

4.3 Enhancements

PDP also provides some potential enhancements, which are
helpful to further pursue a better data placement layout.

1) We can also try more candidate parity elements that
are considered to be included in X . For example, we
can try other candidate parity elements in Algo-
rithm 1 when they have the same value of jM [ Yij.

Fig. 10. An example of adjustment of data element positions. The shape with dashed line denotes the generated parity element in X .
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2) Besides making any two data elements share a com-
mon parity element, we can also make the data ele-
ments which have the same parity element close in
order. For example, we can further exchange the
positions of #5 and #6 (i.e., move #5 to the cell C3;3

and shift #6 to C1;1) in Fig. 10d, and then #5 and #2

will have a common parity element R7. As a conse-
quence, less updates to parity elements will be
caused when writing f#2,#3,#4,#5g.

3) We can also define the granularity when optimizing
the partial stripe writes across parity chains. For
example, we can set the granularity to be 2. In this
example, the objective will be changed to reduce
the total number of updated parity elements when
writing two parity elements whose generation
orders are adjacent.

4.4 Complexity Analysis

Computation complexity. Suppose there are w parity elements
and n data elements. As Algorithm 1 requires to scan every
parity element, its complexity is OðwÞ. For Algorithm 2, as
the number of data elements in a parity chain is much less

than n, the complexity of step 2�7 is no more thanOðn2Þ and
these steps will repeat at most w times. Therefore, the com-

plexity of Algorithm 2 is Oðwn2Þ. Overall, both of these two
algorithms preserve polynomial complexity.

Storage overhead. After the placement of data elements is
determined, to record the localization of data elements in a
stripe, PDP merely needs to keep an extra mapping table.
Suppose a stripe has r rows and c columns, then the map-
ping table is composed of the tuples (#ELEMENT_ID, POSI-

TION_ID), indicating that the data element #ELEMENT_ID is
stored in the cell Cposition id=c;position id%c. Suppose there are n

data elements in a stripe, then PDP only keeps n tuples and
thus the storage complexity is OðnÞ.

5 PERFORMANCE EVALUATION

In this section, we mainly evaluate the efficiency improve-
ment brought by PDP when applying it over the following
representative XOR-based erasure codes.

� EVENODD Code [25] (over pþ 2 disks). EVENODD
Code has horizontal parity chains and is a popular
RAID-6 code in storage applications. We would like
to know if PDP can further improve the performance
of partial stripe writes for the codes with horizontal
parity chains.

� X-Code [10] (over p disks). It is another impressive
RAID-6 code constructed over diagonal parity chains
and anti-diagonal parity chains. This evaluation will
show the effect when applying PDP to the codes that
do not have horizontal parity chains.

� HDP Code [7] (over p� 1 disks). It is a recent RAID-6
code proposed for load balancing. It consists of hori-
zontal parity chains and anti-diagonal parity chains.

� STAR Code [33] (over pþ 3 disks). It tolerates triple
disk failures. We select it to show whether PDP can
have effect on the codes with higher fault tolerance.

5.1 Evaluation Setup

In the tests, we choose p ¼ 7, which is used to configure the
number of disks in a stripe. Under this value, the number of
disks in the stripe of EVENODD Code, X-Code, HDP Code,
and STAR Code is 9, 7, 6, and 10, respectively. This setting
is similar with the configured parameters in many well-
known erasure-coded storage systems [2], [38], [39]. For
example, the number of disks in the stripe of GFS II [38] is 6.
As the working principle of PDP is independent with the
scale of storage systems, we believe that PDP will also sus-
tain its effect when the storage systems expand. The test is
run on a Linux server with an X5472 processor and 8 GB
memory. The operating system is SUSE Linux Enterprise
Server and the filesystem is EXT3. The deployed disk array
consists of 15 Seagate/Savvio 10K.3 SAS disks, each of
which has 300 GB storage capability and 10,000 rmp. The
machine and the disk array are connected by a Fiber cable
with the bandwidth of 800 MB/sec. These codes are realized
based on Jerasure 1.2 [40], a widely-used library to realize
erasure coding storage systems.

We select several real block-level traces with various
access characteristics from the repository of MSR Cambridge
Traces [18]. These traces are collected from 36 volumes con-
sisting 179 disks on 13 servers for one week.We extract write
patterns of each trace. Each write pattern describes the offset
to trigger the write operation and the size of written data.We
present their characteristics in Table 2.

We configure the disk array as a JBOD [41]. The element
size is set as 4 KB, which is consistent with the block size in
the disk. We then generate the data elements. For each code,
the data elements are dispersed under the horizontal data
placement, the vertical data placement, and our proposed
PDP, respectively. Finally, we encode them by using every
evaluated code.

For each trace, we strictly replay its write patterns to the
data elements at the specified offsets and operate the same
sizes of data. Every trace is repeated for five runs and we
record the average results.

5.2 Storage Overhead to Maintain the Mapping
Table

In this experiment, we vary the selection of p and record the
storage space that a mapping table requires. The results are
presented in Table 3. We can observe that the additional
storage overhead caused by the mapping table is marginal.
Take STAR Code as an example, the mapping table will

TABLE 2
An Analysis on Selected MSR Cambridge Traces

Traces rsrch_1 rsrch_2 src2_1 wdev_2 wdev_3 web_3

Function Research project Research project Source control Test web server Test web server Web/SQL server
Num. of Write Operations 13,738 71,222 14,104 181,077 671 21,330
Average Write Size 12.2 KB 4.3 KB 13.4 KB 8.1 KB 4.4 KB 20.9 KB
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cause merely 0.61 KB when p ¼ 13. Therefore, we believe
that the storage overhead of PDP is acceptable.

5.3 Total Number of Write Operations

Suppose a trace includes Np partial stripe write operations.
For the ith (1 � i � Np) partial stripewrite operation, assume
the number of write operations (i.e., the elements to be
updated in a write pattern) is Wi, and then the total number

of write operations is Wsum ¼ PNp
i¼1 Wi. We replay the six

traces and record the total number of elements to be updated
in every trace. The final results are shown in Fig. 11.

We have two observations from Fig. 11. First, the vertical
data placement usually introduces the most write opera-
tions. This is because continuous data elements in the same
column usually do not have any common parity element,
making the vertical data placement be less effective in par-
tial stripe write optimization.

Second, for each code, PDP triggers the fewest write
operations among the three data placements for all the eval-
uated traces. This result also demonstrates the generality of
PDP to decrease the number of updated parity elements in
partial stripe writes. Take the trace wdev 3 as an example,
the reduction on the total number of write operations
brought by PDP will be up to 19.2 percent (compared with
the horizontal data placement) and 31.9 percent (compared
with the vertical data placement).

5.4 Write Speed

Suppose the write speed under PDP is Sp and the write
speed under the horizontal (resp. vertical) data placement

is Sh (resp. SvÞ, and then the improvement brought by PDP

is Iph ¼ Sp
Sh

compared with the horizontal data placement,

and Ipv ¼ Sp
Sv

compared with the vertical data placement. For

each code, we replay the six traces and record the comple-
tion time. To clearly illustrate the gap among these three
placement methods, we normalize the write speed under
the horizontal data placement as 1. Besides, we also
illustrate the error bars of the evaluation results as shown
in Fig. 12.

We can derive two observations from Fig. 12. First, verti-
cal data placement usually needs the most time to complete
a write pattern in most cases. For example, when replaying
the trace wdev 3 to the data encoded by EVENODD Code,
the write speed of vertical data placement is 19.7 and 28.4
percent slower than those of horizontal data placement and
PDP, respectively.

Second, PDP significantly accelerates the write opera-
tions compared with both the horizontal data placement
and the vertical data placement. For example, when
replaying the trace rsrch 2 to the data encoded by STAR
Code, the write speed of PDP is 38.9 percent (resp. 59.8
percent) faster than that of the horizontal data placement
(resp. the vertical data placement). The error bars
also demonstrate that PDP will reach a faster write speed
compared with the horizontal/vertical data placement for
most cases.

5.5 Write Operations on the Most Loaded Disk

We also evaluate these three placement methods by measur-
ing the number of write operations on the most loaded disk.
Suppose the storage system consists of Nd disks and the ith
disk serves Qi write operations during the trace execution.
This metric can be obtained by Qmax ¼ MaxfQij1 � i �
Ndg. The results are shown in Fig. 13.

We can find that the vertical data placement usually
causes the maximum number of write operations on the
most loaded disk, especially for the traces rsrch 2 and
wdev 3 whose average write sizes are around 4 KB. This is

TABLE 3
Storage Overhead to Maintain A Mapping Table

Codes EVENODD Code X-Code HDP Code STAR Code

p ¼ 5 0.06 KB 0.08 KB 0.03 KB 0.08 KB
p ¼ 7 0.16 KB 0.14 KB 0.07 KB 0.16 KB
p ¼ 11 0.43 KB 0.39 KB 0.31 KB 0.43 KB
p ¼ 13 0.61 KB 0.56 KB 0.47 KB 0.61 KB

Fig. 11. The total number of write operations for evaluated traces. The smaller value indicates lighter load on the disks.
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because in vertical data placement, the written data ele-
ments may usually lay in the same disk especially for the
case with a small number of written data elements.

Moreover, PDP can effectively lighten the write burden
on the most loaded disk. For example, in the trace wdev 3,
compared with the vertical data placement (resp. the hori-
zontal data placement), PDP decreases up to 56.0 percent of

write operations (resp. 40.2 percent of write operations) on
the most loaded disk.

5.6 Comparison

Table 4 summarizes the comparison among PDP, the hori-
zontal data placement, and the vertical data placement. The
comparison indicates that PDP is more general for partial

Fig. 12. The write speed improvement. The larger value indicates the faster write speed.

Fig. 13. The number of write operations on the most loaded disk. The smaller value indicates the less write operations on the most loaded disk.

TABLE 4
A Brief Comparison among Various Data Placement Methods

Data Placement Parallel Access Support Effect on Partial Stripe Write Optimization

Horizontal Data Placement Yes Works for the codes with horizontal parity chains
Vertical Data Placement No Easily introduce many parity updates for small writes
PDP Yes Works for any XOR-based erasure code
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stripe write optimization and it also supports parallel
access, which also make its read performance of PDP similar
with that of the horizontal data placement.

6 CONCLUSION

In this paper, we propose a Parity-Switched Data Placement
scheme to optimize partial stripe writes for any XOR-coded
storage system. To decrease parity updates, PDP respects the
parity generation principles of each code and selects parity
elements to generate by using continuous data elements.
In addition, PDP also explores further optimization by inves-
tigating parity generation orders and makes any two con-
tinuous data elements share a common parity element.
Evaluations show that PDP reduces up to 31.9 percent ofwrite
operation and increases thewrite speed by up to 59.8 percent.
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