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Abstract—3D flash memory relaxes the scaling constraints
but unfortunately arouses the tedious garbage collection (GC)
problem. We identify via an in-depth analysis that the root cause
is the intra-channel relocation in conventional GC operations. We
present ParaGC, an approach that strives to speed up the GC
process via fully exploiting the inter-channel parallelism of 3D
flash memory. ParaGC builds on two elementary designs: (i)
relocation arrangement, which carefully determines the reloca-
tion traffic that each channel affords; and (ii) page assignment,
which dispatches pages based on the access characteristic and the
channel busyness. We implement ParaGC and conduct extensive
experiments with ten real-world traces, showing that ParaGC
can reduce 20.2-41.3% of the read latency, 24.3-38.8% of the
write latency, and 51.5-75.8% of the GC latency.

I. INTRODUCTION

Today’s planar (or 2D) flash memory is heavily plagued
by the scaling constraints, since the conventional method
of simply squeezing more bits into a flash cell is hard to
compensate the growth of bit errors and access interference
[3], [13], [20]. By stacking flash layers (e.g., 24-96 layers
[22], [23]) along the vertical direction within a single chip,
3D flash memory can naturally increase the storage density
without scaling the process technology, hence opening up an
opportunity to break the scaling limits [22].

While achieving larger storage capacity, the 3D flash mem-
ory also comes with an intractable garbage collection (GC)
problem. The reason is that the flash memory updates data
following an “out-of-place” manner; that is, it writes the newly
updated data to another clean flash page, while at the same
time marking the old data and the corresponding resided flash
page invalid [27]. Hence, as the number of clean pages gradu-
ally declines, the flash memory is forced to periodically invoke
GC operations, which can supply clean pages by choosing and
erasing a victim flash block (composed of multiple pages).
Nevertheless, the GC operation amplifies the writes in return,
since it requires relocating the residual valid pages (i.e., the
pages still containing valid data) beforehand. As a block in
the 3D flash memory is enlarged by stacking more layers [8],
the relocation traffic (i.e., the amount of data relocated during
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the GC operation) explosively grows, making the GC latency
prolonged.

In view of this, lots of research studies have been conducted
to accelerate the GC operation for 3D flash memory, which
can be roughly classified into the following branches: (i)
suppressing the relocation traffic [4], [7], [8], [11], [13], [18],
[21], [25], [30], and (ii) shortening the relocation latency [6],
[15], [19], [26], [28], [29]. However, we carefully identify that
most of them still neglect the inter-channel access parallelism
and serialize the GC operations within a single channel,
making the GC operation become time-consuming. How to
exploit the inter-channel access parallelism to shorten the GC
operation is unfortunately largely unexplored.

Our observation is that the lengthy GC operation of the
3D flash memory is demonstrated to impose severe impact on
the foreground requests, which stems mainly from the tedious
data relocation (see Section II-B). We hence propose ParaGC,
an approach that seeks to accelerate the data relocation of
the GC operation through exploiting the inherent inter-channel
parallelism. ParaGC first carefully determines the number of
valid pages to be relocated across channels, with the aim of
alleviating the affection between the data relocation and the
foreground requests. ParaGC further selects the valid pages
for each channel based on the access hotness (of pages) and
the busyness (of channels), so as to speculatively balance
future accesses across channels. To the best of our knowledge,
ParaGC is the first work that proposes to speed up the
data relocation via exploiting the inter-channel parallelism of
the 3D flash memory. Furthermore, ParaGC complements
previous studies [4], [7], [8], [11], [13], [18], [19], [21], [30]
on the GC acceleration and thus can work together with them
for more performance gains. To summarize, this paper makes
the following key contributions.

• We conduct a trace-driven analysis to assess the interfer-
ence induced by the GC operation and identify the root
cause (Section II-B).

• We propose ParaGC that exploits the inter-channel par-
allelism to accelerate the data relocation in the GC
operation. ParaGC carefully arranges the data relocation
based on access characteristics and channel busyness,
hence alleviating the interference between the foreground
requests and the data relocation (Section III).

• We conduct extensive experiments, showing that ParaGC
can reduce 20.2-41.3% of the read latency, 24.3-38.8%
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Fig. 1. The bird’s eye view of a 3D flash block.

of the write latency, and 51.5-75.8% of the GC latency
(Section IV).

The rest of this paper proceeds as follows. Section II
provides the fundamental knowledge about the flash memory.
We elaborate on the design of ParaGC in Section III and
evaluate its performance in Section IV. We finally review
existing studies in Section V and conclude this paper in
Section VI.

II. BACKGROUND

In this section, we start with the necessary basics on 3D
flash memory (Section II-A) and then elaborate on the obser-
vations learned from the trace-driven analysis (Section II-B).

A. 3D Flash Memory
Figure 1 first depicts the architecture of the 3D flash

memory. In the 3D flash memory, an SSD controller connects
multiple (e.g., 2-10) channels, each of which is shared by a
number of chips. A chip is composed of multiple flash blocks,
which comprise thousands of flash pages. Figure 1 further
zooms in the architecture of a flash block (at the right side),
which stacks five flash layers (in orange). A flash layer has
four word lines, each of which comprises multiple flash cells
for data storage.

Basically, flash memory represents binary bits through con-
trolling the number of electrons trapped in flash cells (i.e., the
basic storage units) [16], [22]. It operates data through three
basic operations, namely write, read, and erase. Specifically,
the flash memory adopts the out-of-place update: when a write
operation arrives, the controller will select a clean flash page
(often made up of multiple cells) and inject a certain number
of electrons to represent the updated data, while the outdated
data will be invalidated. Hence, the read and write operations
in flash memory are performed in units of pages. When the
clean flash pages are used up, the controller will select a flash
block (called “victim block”) based on the footprints of the
invalid pages. It then performs a GC operation to recycle the
space occupied by the invalid pages in the selected victim
block through the following steps: (i) relocating the valid pages
to another block within the same channel, and (ii) erasing
the entire victim block to replenish clean pages. Hence, the
relocation latency and the erase latency collectively constitute
the GC latency.
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Fig. 2. Observations from trace-driven analysis.

TABLE I
ABBREVIATIONS OF SELECTED VDI TRACES [17]

Trace
names

20160220
08-LUN0

20160218
10-LUN2

20160217
12-LUN3

20160219
09-LUN6

20160219
18-LUN3

Abbreviated
names VDI 1 VDI 2 VDI 3 VDI 4 VDI 5

B. Observations

We conduct an in-depth trace-driven analysis to understand
how severely the lengthy GC process in the 3D flash memory
affects the foreground requests and try to catch the root cause.

Methodology: We select one typical real-world trace proj_4

from MSR Cambridge Traces [24], which includes 6,369,774
access requests. We warm up the 3D flash memory by repeat-
edly writing random data, so as to run short of clean pages and
trigger the GC operation for evaluation. We then monitor one
particular channel, replay 3,000 read requests to this channel,
and measure the resulting read latencies. We also measure
the composition of the actual GC latency by replaying some
traces from MSR Cambridge Traces [24] and the state-of-the-
art production virtual desktop infrastructure (VDI) [17]. For
clear presentation, we change the name of the traces selected
from the VDI repository and give their abbreviations in Table I.
The 3D flash and planar flash have the same capacity, with
the difference that the 3D flash has a larger block size to keep
up with the capacity growth. Figure 2 shows the results and
conveys the following observations.

Observation 1 (More severe interference). The GC operation
in the 3D flash memory imposes more severe interference
to the foreground requests (Figure 2(a)), where the induced
latency spike is 3.3x taller than that in the planar flash memory
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on average. We identify the increased relocation traffic coming
from the victim block is the major cause, as the migration will
incur more drastic competition for storage I/O resources.
Observation 2 (Relocation latency dominates). The reloca-
tion latency takes up 94.4% of the GC latency on average
(Figure 2(b)). The reason is that the GC latency is composed
of the erase latency and the relocation latency (Section II-A),
where the former is nearly constant (e.g., 10 ms [12]) while
the latter increases with the number of valid pages; in the data
relocation, the time of writing a page (e.g., 3 ms [12]) is serval
orders of magnitude higher than that of reading a page(e.g.,
66µs [12]).

Given the severity of the GC operation and the composition
of the GC latency, we hence pose the following question: Can
we exploit the inter-channel parallelism to accelerating GC
operation by reducing the relocation latency?

III. PARAGC DESIGN

We present ParaGC, an approach that seeks to exploit
the inter-channel access parallelism for accelerating the GC
process. The main idea of ParaGC is to relocate valid pages
across channels (as opposed to serializing them within a single
channel), so as to parallelize the data relocation and hence
shorten the GC latency. Figure 3 depicts the workflow of
ParaGC. It first reads the valid pages to be relocated into
the RAM (represented by the red solid arrow, Step ¶), and
then dispatches these pages across channels for load balancing
(represented by the green dotted arrow, Step ·).
Overview: ParaGC is built atop the following design primi-
tives: (i) a relocation arrangement algorithm, which monitors
the service rate (i.e., the size of the read requests served per
time unit) of each channel and accordingly determines the
number of valid pages to be relocated, so as to relieve the in-
terference induced to the foreground requests (Section III-A);
and (ii) a hotness-aware page assignment algorithm, which
carefully determines the exact valid pages to be relocated for
the channels, by taking both the service rates (of channels) and
the access characteristics (of valid pages) into consideration, so
as to speculatively balance future accesses after the relocation
(Section III-B).

A. Relocation Arrangement

Real-world storage loads usually exhibit highly skew access
properties [1], [2], [5], and hence the numbers of read requests
loaded may vary across channels. Randomly dispersing the

valid pages to parallelize the data relocation is not a good
option, as it may bring back the unbalanced requests. In
view of this, ParaGC proposes to monitor the read requests
constantly, where each channel will maintain a ring structure
(with r slots) that records the amount of read data (denoted by
d) during the last r time units 1. By doing this, we can calculate
the service rate of each channel, given by d

r . Hence, a larger
service rate indicates that the corresponding channel is much
busier for serving the foreground read requests, and hence
should be assigned with less relocation traffic. For instance,
if a channel transfers 500 MB of data in total to serve the
foreground reads during the last five seconds, then its service
rate is 100 MB/s.

Assumptions: ParaGC makes the following assumptions.
First, we assume that the service rate of each channel keeps
stable during the data relocation. Second, we assume that the
valid pages to be relocated are given higher priorities to be
executed, so as to shorten the GC operation. Third, we pay
special attention to the interference between the data relocation
and the foreground reads, as the writes can be served by
choosing a channel that is not occupied by the GC operations.

Problem formulation: We first formulate the relocation ar-
rangement problem. Suppose that there are n channels (de-
noted by C = {C1, C2, · · · , Cn}) and their service rates are
{s1, s2, · · · , sn}, respectively (where si ≥ 0 for 1 ≤ i ≤ n).
Without loss of generality, we assume that one block of the last
channel (i.e., Cn) is selected as the victim block for launching
a GC operation, which introduces the relocation of v valid
pages (where v ≥ 0). Let {v1, v2, · · · , vn} be the numbers of
valid pages to be relocated across the n channels. Hence, we
have

v1 + v2 + · · · vn = v, where vi ≥ 0 for 1 ≤ i ≤ n (1)

Suppose that T is the average time for a channel to write a
valid page. Hence, the time for each channel Ci to write the
assigned valid pages can be computed as ti = vi · T (where
1 ≤ i ≤ n). Besides, to guarantee data reliability for accidental
failures (e.g., power outage), we require the last channel to
finally erase the victim block after ensuring that all the valid
pages have been successfully settled down, and hence the stall
time of Cn is max{ti}ni=1.

Based on the above analysis, we can compute the accumu-
lated amount of data (denoted by D) that are requested by
foreground reads but suspended during the data relocation,
given by

D = s1 · t1+s2 · t2+ · · ·+sn−1 · tn−1+sn ·max{ti}ni=1 (2)

Clearly, D is not a constant value but depends on the reloca-
tion arrangement (i.e., the arrangement of {vi}ni=1 across the n
channels). Hence, we can establish the following optimization
problem as follows, which aims to minish the requested data
that are interfered during the data relocation (i.e., objective),

1The number of slots and the time unit can be configured according to
system requirements.
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Algorithm 1 Relocation Arrangement
Input: v (number of valid pages to be relocated)

{s1, s2, · · · , sn} (service rates of n channels)
λ (iteration limit)

Output: {v∗1 , v∗2 , · · · , v∗n} (arrangement of valid pages across n
channels)

1: Generate an arrangement {v1, v2, · · · , vn} and compute D
2: repeat
3: // Try each pair for tentative adjustment

4: for each channel Ci ∈ C do
5: for each channel Cj ∈ C and Cj 6= Ci do
6: Set v′i = vi − 1, v′j = vj + 1
7: Compute D′

8: Computer the reduction ui,j = D −D′
9: end for

10: end for
11: // Perform the adjustment with the most reduction

12: Set (i∗, j∗) = argmax(i,j){ui,j |1 ≤ i 6= j ≤ n}
13: if ui∗,j∗ < 0 then
14: break
15: end if
16: Set vi∗ = vi∗ − 1, vj∗ = vj∗ + 1
17: Set λ = λ− 1
18: until λ = 0
19: return complete

while at the same time exploring opportunities to parallelize
the GC process (i.e., condition).

Minimize D =

n−1∑
i=1

si · ti + sn ·max{ti}ni=1 (3)

subject to

ti = vi · T for 1 ≤ i ≤ n
v1 + v2 + · · ·+ vn = v
vi ≥ 0 for 1 ≤ i ≤ n

(4)

Solution: Finding the optimal solution requires
(
v+n−1
n−1

)
at-

tempts 2, which is extremely time-consuming. ParaGC puts
forward a greedy algorithm to search the solution that can
approach the optimal one with polynomial time complexity.
Algorithm 1 elaborates on the procedure of the relocation
arrangement. It first generates an initial arrangement and
computes D (i.e., the amount of requested data affected by the
data relocation, see Equation (2)). We then seek to adjust the
arrangement to achieve the most reduction by performing the
following steps: (i) we try each pair of channels (i.e., Ci and
Cj , where 1 ≤ i 6= j ≤ n) and calculate the reduction of D,
once we tentatively migrate one page (which is supposed to be
assigned to Ci) from Ci to Cj (Lines 4-10); and (ii) we finally
choose the pair (i.e., Ci∗ and Cj∗ ) that can lead to the most
reduction and perform the adjustment (Lines 12-17). We repeat
the adjustment until either the adjustment is useless (Lines 13-
15) or the iteration reaches the limit (Line 18). We can readily
deduce that the computational complexity of Algorithm 1 is
O(λn2), where λ is a pre-given iteration limit.

2This problem can be converted to putting v balls into n boxes that allows
some boxes to be empty. So there are

(v+n−1
n−1

)
possible combinations.
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Fig. 4. Example of the relocation arrangement with five valid pages
and three channels (i.e., v = 5 and n = 3).

Example: In Figure 4, we suppose that the initial arrangement
is {v1 = 2, v2 = 1, v3 = 2}. We scan each channel and try all
six tentative adjustments (Step ¶). We choose the adjustment
that migrates one more page (which is supposed to be assigned
to C3) to C2 can achieve the largest gain (i.e., u3,2 = 4). We
then update the arrangement to {v1 = 2, v2 = 2, v3 = 1}
(Step ·) and go to the next round of the adjustment.

B. Hotness-Aware Page Assignment

ParaGC further takes the data access characteristics into
account, so as to speculatively mitigate the read hotspots
after relocation. To keep track of the read frequencies of the
flash pages, ParaGC designs a memory-efficient hotness

identifier, which employs a count-min sketch [9] to record
the number of accesses to each page. The count-min sketch
uses multiple independent hash functions to map the read
pages to the counters of a hash table (whose values are set
to zero at the very beginning). It can estimate the access
frequencies that falls within a certain distance with the true
frequencies with a certain probability [10]. To capture the
hotness of a flash page, the hotness identifier first defines
m hotness thresholds (i.e., {k1, k2, · · · , km}, where k1 <
k2 < · · · < km), in order to classify the flash pages into m
groups (denoted by {G1,G2, · · · ,Gm}) based on their access
frequencies. Hence, when a read request arrives, ParaGC
first pinpoints the corresponding counters by feeding the
accessed logical page number to the hash functions, increases
the values of the associated counters by one, and uses the
smallest value of these counters (denoted by e) to serve as
the estimated access frequency; ParaGC then establishes a
hotness threshold ki (1 ≤ i ≤ m), such that either of the
following three conditions establishes: (i) e < k1 (i.e., the
page is not a hotly accessed page); (ii) ki ≤ e < ki+1 where
1 ≤ i ≤ m−1; and (iii) km ≤ e. Hence, we organize the page
to the group Gi (if ki ≤ e < ki+1, where 1 ≤ i ≤ m − 1) or
the group Gm (if km ≤ e). Hence, a page is considered to be
hotter if the identify of the group to which it belongs is larger.
To downgrade the impact of the historical accesses, we decay
all counter values by half after performing a certain number
of read requests. We measured that the hotness identifier
consumes only 238.4 KB of RAM space for a 288 GB SSD
(Section IV-A).
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Algorithm 2 Hotness-Aware Page Assignment
Input: v (number of valid pages to be relocated)

{P1, P2, · · · , Pv} (v pages to be relocated)
{C1, C2, · · · , Cn} (n channels)

Output: {A1,A2, · · · ,An} (sets of pages relocated to n channels)
1: Sort v pages based on their hotness groups in descending order

and get P = {P1, P2, · · · , Pv}
2: Sort n channels based on their service rates in ascending order

and get C = {C1, C2, · · · , Cn}
3: for each channel Ci ∈ C do
4: Establish Ai, which comprises the hottest v∗i pages of P
5: Set P = P −Ai

6: end for
7: return complete

Example: Figure 5 shows an example of the hotness identifier,
where we assume k1 = 2, k2 = 4, and k3 = 6. For a flash
page accessed by a read request, the hotness identifier first
pinpoints the three counters steered by the hash functions and
increases the corresponding values by one (Step ¶). It then
uses the smallest value of the three counters (i.e., 4) to estimate
its access frequency and learns that the flash page is in the
hotness group G2, since k2 ≤ e = 4 < k3 (Step ·).

After determining the hotness groups, we select the channel
for accommodating each relocated page. Algorithm 2 shows
the detailed procedure to pinpoint the valid pages to be
relocated for each channel, whose main idea is to dispatch
hotter pages to the channels with smaller service rates, so as
to speculatively balance the read requests across channels and
relieve the read hotspots.

Details of Algorithm 2: ParaGC first sorts the v valid
pages based on the identities of the groups to which they
are belonged in descending order, which are represented by
P = {P1, P2, · · · , Pv}. We also rank the channels based
on their service rates in ascending order and assume that
the channels after sorting are C = {C1, C2, · · · , Cn}, where
s1 ≤ s2 ≤ · · · ≤ sn. We then scan each channel sequentially.
For a channel Ci (where 1 ≤ i ≤ n), we can get the number
of valid pages assigned (i.e., v∗i , see Section III-A). We then
fetch the v∗i hottest pages from P and expel them from P
(Lines 3-5). After all the valid pages are assigned to the cor-
responding channels, the algorithm terminates. We can readily
deduce that the computational complexity of Algorithm 2 is

��
∗ = 2

��
∗ = 2

��
∗ = 1

Channel �� Channel �� Channel ��

�� = 1 �� = 2 �� = 5 Cold

Hot

Relocated Pages

�� �� ��

Arrangement

Fig. 6. Example of the hotness-aware page assignment with five valid
pages and three channels (i.e., v = 5 and n = 3).

O(n log n+ v log v).

Example: In Figure 6, we sort the channels in ascending order
of the service rates and sort the valid pages in descending
order of the identities of the group to which they are assigned.
For instance, given the channel C1, we check the number of
valid pages arranged is two (i.e., v∗1 = 2) and then assign
the first two pages after sorting (i.e., A1) to C1. We repeat
the assignment for all the channels. We can observe that this
assignment can opportunistically balance the access requests
across channels.

IV. EVALUATION

We conduct extensive experiments to evaluate the perfor-
mance of ParaGC. We summarize our major findings as
below: (i) ParaGC can reduce 25.3-41.3% of the read latency,
24.3-38.8% of the write latency, and 51.1-73.8% of the GC la-
tency for a wide spectrum of real-world traces (Section IV-B);
and (ii) ParaGC can retain its effectiveness under sensitivity
experiments (Section IV-C).

A. Experimental Setup

Preparation: We implement a ParaGC prototype based on
the trace-driven simulator SSDsim [14]. The flash capacity
is 288 GB, which includes eight channels, and each channel
contains two chips with one die per chip. Each die contains
1,536 blocks, each of which consists of 768 pages. The page
size is 16 KB. Besides, the program, read, and erase latencies
are configured as 3 ms, 66µs, and 10 ms, respectively [12].
Besides, we also employ five independent hash functions along
with five hash tables in the count-min sketch to record the
access frequencies of the accessed pages. A page is considered
hot only if the smallest value of the associated counters is not
smaller than two. We run experiments on a server with Ubuntu
18.04.1 LTS, which is equipped with Intel Xeon CPU E3-1225
v6 (3.30 GHz) and 16 GB RAM.

Default configurations: We choose the following configura-
tions throughout the evaluation, unless otherwise specified. We
set the number of channels as eight and set the GC threshold
(i.e., the value that the clean pages occupy to start a GC
operation) as 20%.

Comparison approaches: We compare ParaGC against an-
other two GC approaches: (i) the Baseline, which relocates all
the valid pages of the victim block within a single channel.
(ii) a GC method that relocates valid pages over multiple
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Fig. 8. Exp# 2 (Write latency).

channels, whose distribution follows the Zipf distribution with
an α = 0.95 (called “GC-Z”).

Methodology: We randomly select ten representative traces
from both the empirical MSR Cambridge Traces [24] and the
state-of-the-art production VDI [17]. Before evaluation, we
warm up the flash memory by continuously writing a large
amount of random data, making the ratio that remaining clean
pages occupy drop below the pre-defined GC threshold. After
that, we then dispatch the access requests of the selected
traces and measure the latencies. For clear presentation, we
normalize the results to those of the Baseline.

B. Experiments on Property

We first evaluate the properties of ParaGC, in terms of read
latency, write latency, and GC latency.

Exp# 1 (Read latency): We first measure the read latencies
under different GC approaches. Figure 7 shows that compared
to the Baseline and GC-Z, ParaGC can reduce 41.3% and
25.3% of the read latencies on average, respectively. The
underlying reason is that the Baseline simply performs the
data relocation within the single channel, hence seriously
suspending the incoming read requests. GC-Z though disperses
the relocated data across multiple channels, it still does not
well coordinate the executions of the read requests and the data
relocation, thereby introducing significant interference. As a
comparison, ParaGC carefully arranges the data relocation
based on the service rates of the channels (Section III-A),
such that the interference is greatly alleviated.

We also observe that ParaGC dramatically reduces the read
latencies for some traces (e.g., proj_4 and src1_1). This is
because both of them incur massive relocation traffic, hence
parallelizing the data relocation can achieve more performance
gains.
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Exp# 2 (Write latency): We then measure the write la-
tencies under different GC approaches. Figure 8 indicates
that ParaGC reduces 38.8% and 24.3% of the write laten-
cies on average when compared to the Baseline and GC-Z,
respectively. The fundamental reason is that the relocation
arrangement in ParaGC (Section III-A) helps it relieve the
interference and hence the foreground writes can make full use
of the idle I/O resources. In contrast, the Baseline relocates
all the valid pages of the victim block within a single channel
and the GC-Z does not take into account the load of each
channel, thereby resulting in under-utilization of the available
I/O resources.

Exp# 3 (GC latency): We also evaluate the GC latency,
which comprises the latencies for data relocation and block
erase. Figure 9 shows that ParaGC can dramatically reduce
the GC latencies by 73.8% and 51.1% when compared to
the Baseline and GC-Z, respectively. The major reason is that
ParaGC parallelizes the data relocation to utilize the available
I/O resources across channels. Besides, the Baseline always
introduces the longest GC process since it sequentializes the
data relocation and migrates all the relocated pages within the
same channel.

C. Experiments on Sensitivity

We assess the sensitivity of ParaGC by varying the default
configurations. Due to page limits, we select four represen-
tative traces (i.e., stg_1, mds_1, VDI_1, and VDI_5) for
comparison.

Exp# 4 (Impact of GC threshold): We first measure the
impact of the GC threshold by varying it from 10% to
30%. Figure 10 shows the read latency, the write latency,
and the GC latency under different GC thresholds. We find
that the latencies all increase with the GC threshold, since
the number of valid pages to be relocated probabilistically
grows with the GC threshold, exacerbating the interference
between the foreground access and the background relocation.
Nevertheless, ParaGC still averagely reduces 29.4% of the
read latency, 31.6% of the write latency, and 63.5% of the GC
latency under different GC thresholds.

Besides, we also find that ParaGC can gain higher per-
formance improvement when there are more pages to be
relocated. Take the trace stg_1 as an instance, when the GC
threshold is 10%, ParaGC can reduce the write latency by
16.0% compared to the Baseline (Figure 10(b)); when the GC
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Fig. 10. Exp# 4 (Impact of GC threshold).

threshold increases to 30%, the reduction of the write latency
reaches 64.8%. The underlying reason is that a larger GC
threshold will result in a significant increase in the number
of the pages to be relocated. Generally, more pages to be
relocated will inevitably lead to a longer relocation process,
and parallelizing the data relocation across different channels
can effectively shorten the relocation time.

Exp# 5 (Impact of number of channels): We further assess
the impact of the number of channels, which is varied from
4 to 16. Figure 11 shows the results and we can draw two
findings.

First, the read and write latencies all reduce when the num-
ber of channels increases (Figure 11(a)(b)). This is because
when there are more channels, the controller can dispatch
more access requests and parallelize their executions, hence
shortening the suspending time. ParaGC still achieves the
lowest read and write latencies, and cuts down 20.2% of the
read latencies and 29.4% of the write latencies on average
compared to the Baseline and GC-Z, respectively.

Second, the GC latency of the Baseline remains unchanged,
while those of ParaGC and GC-Z both decline when the
number of channels increases (Figure 11(c)). The rationale is
that the Baseline serializes the GC operation within a single
channel, and hence the GC latency is not affected by the num-
ber of channels. Conversely, when there are more channels,
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Fig. 11. Exp# 5 (Impact of number of channels).

ParaGC and GC-Z can leverage the available I/O resources
to increase the relocation parallelism, thereby shortening the
GC latencies. Overall, ParaGC reduces the GC latencies by
75.8% and 52.5% compared to the Baseline and GC-Z under
different numbers of channels, respectively. Besides, as the
number of channels increases, the relative benefit of ParaGC
decreases. While the read requests load of each channel under
the baseline and GC-Z is also relatively reduced, thereby
alleviating the blocking problem to some extend. However,
considering the actual needs and hardware overhead, the
number of channel is generally 4 or 8, so ParaGC can still
perform well.

V. RELATED WORK

We classify the closest related work into two categories:
(i) suppressing relocation traffic [4], [7], [8], [11], [13], [18],
[21], [25], [30], and (ii) accelerating data relocation (without
changing the relocation traffic) [6], [15], [19], [26], [28], [29].
Suppressing relocation traffic: Some studies [4], [8], [13],
[21], [25] propose to break a block into a number of smaller
sub-blocks and perform the GC operation at the sub-block
granularity, such that only the valid pages resided in the sub-
blocks selected to be erased need to be migrated. However, the
sub-block erase needs to amend the circuit, and results in either
storage loss [8] or erase interference among sub-blocks [4].
Some studies [7], [13], [30] suggest separating the data with
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different access hotness and centralizing the storage of hotly-
updated data, so as to opportunistically increase the number
of invalid pages and reduce the relocation traffic. ShadowGC
[11] and CDM [18] find that reading the cached data directly
from the write buffer and NVM can alleviate relocation traffic
caused to the flash memory, respectively.

In contrast, ParaGC does not change the relocation traffic
but boosts the GC operation through exploiting the inter-
channel parallelism. It is orthogonal to these studies.

Accelerating data relocation: Both TTFlash [29] and FastGC
[28] depend on intra-plane copyback operation to bypass the
SSD controller and migrate data within the same plane, hence
requiring no encoding/decoding operations. PaGC [26] further
exploits the parallelism at the plane level: it triggers GC in
all planes at the same time, ensuring that pages with the
same offset can be relocated in parallel. By doing this, PaGC
shortens the overall page relocation time of the GC operations.
DCD [19] stores data in dual-mode (i.e., SLC-mode and MLC-
mode). It prefers reclaiming the SLC block in GC operations
and exploits the shorter operation delays of the SLC-mode
to accelerate the data relocation. DGCB [15] extends the
copyback operation by relocating pages from the source flash
chip to another chip within the same channel. Also, it utilizes
the shared I/O path and the cache register in the flash controller
to hide the data transfer latency during the relocation. By
adding a hardware structure to the flash controller, ECB [6]
performs the error detection and the data correction in the
flash controller, which avoids transferring data to the SSD
controller, thereby reducing the data relocation latency.

As a comparison, ParaGC exploits the inter-channel paral-
lelism to accelerate the data relocation.

VI. CONCLUSION

This paper presents ParaGC, an approach that seeks to
accelerate the GC process for 3D flash memory via exploiting
the inter-channel parallelism. The main idea behind ParaGC
is to relax the constraint of the conventional GC process
and carefully disperse the relocation traffic across channels.
We implement ParaGC and conduct extensive experiments,
showing that ParaGC can greatly cut down the GC latency
while improving the read and write performance for a wide
range of real-world traces.
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