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Abstract—RAID-6 is gradually replacing RAID-5 as the domi-
nant form of disk arrays due to its capability of tolerating concur-
rent failures of any two disks, as well as the case of encountering
an uncorrectable read error during recovery. Implementing a
RAID-6 system relies on some erasure coding schemes, and so far
the most representative solutions are EVENODD codes [1], RDP
codes [2] and Liberation codes [3], none of which has emerged
as a clear “all-around” winner. In this paper, we are interested
in revealing the undiscovered potential of the Liberation codes,
since these codes have the following attractive features: (a) they
have the best update performance, (b) they have better scalability,
and (c) they are open-sourced and publicly available, as well as
the following drawbacks: fair encoding performance and, more
importantly, relatively poor decoding performance. Specificly,
we present novel optimal encoding and decoding algorithms for
the Liberation codes by introducing an alternative, geometric
presentation of these codes. The proposed algorithms completely
eliminate redundant computations during the encoding and de-
coding procedures by extracting and reusing common expressions
between the two types of parity constraints, and do not involve
any matrix operations on which the original algorithms are based.
Our experiment results show that compared with the original
solution, the proposed encoding and decoding algorithms reduce
the number of XOR’s by up to 16 percent and 15 ∼ 20 percent
respectively, and the encoding and decoding throughputs are
increased by 22.3 percent and at most 155 percent respectively.
Moreover, the encoding complexity reaches the theoretical lower
bound, while the decoding complexity is also very close to the
theoretical lower bound.

Index Terms—MDS array codes, RAID-6, reliability, erasure
codes

I. INTRODUCTION

The RAID (Redundant Arrays of Inexpensive Disks) tech-

nology [4] has been very widely adopted, almost ubiquitously

in modern computing systems as a storage building block,

due to its ability to exploit I/O parallelism and provide data

protection. While there are several standard RAID organiza-

tions [5], only RAID-6 can tolerate any two concurrent disk

failures and the case of encountering an uncorrectable read

error during recovery, which are common failure patterns in

modern storage systems due to the compounding impact of

a dramatic increase in single disk capacity, a fairly constant

per-bit error rate and a limited transfer rate [6]. Therefore,

RAID-6 has become increasingly popular in modern storage

applications, especially in large scale storage systems (e.g.,

cloud storage systems) that consist of a large number of less

reliable (but more economical) disks such as SATA (vs. SCSI).

Unlike other RAID organizations, RAID-6 is merely a

specification rather than an exact technique. It is a specification

for disk arrays with k data disks plus 2 redundant disks to

tolerate the failure of any two disks. The two redundant disks,

which are called P and Q respectively, are used to store the

coding information calculated from the original data. And the

calculations must be made in such a way that if any two of

the disks in the array fail, the data on the failed disks can be

recovered from the surviving disks. Obviously, implementing

a RAID-6 system relies on some erasure coding schemes, and

the exact scheme to be adopted is up to the implementers. As

a reference, the Linux RAID-6 implementation employes the

well-known Reed-Solomon codes [7].

Although there are many erasure codes that can tolerate

double disk failures, e.g., [8] [9] [10] [11] [1] [2] [3] [12], only

a small part of them comply with the P +Q specification [5].

Complying with the P + Q specification is important, since

it enables upgrading existing RAID-5 systems to RAID-6.

Among the erasure codes that are perfectly suitable for RAID-

6, the EVENODD codes [1], RDP codes [2] and Liberation

codes [3] are the most representative ones. In general, they

are all XOR-based, and hence perfom much better than the

conventional Reed-Solomon codes which require finite field

arithmetic during the encoding and decoding procedures. How-

ever, none of these representative codes has emerged as a clear

“all-around” winner — each of them has its own limitations.

For example, the EVENODD and RDP both have to update 3

(on average) parity blocks whenever a data block is changed,

which is 1.5 times the theoretical lower bound, while the

decoding complexity of the Liberation codes is 12% ∼ 18%
higher than the theoretical lower bound.

In this paper, we are interested in revealing the undiscovered

potential of the Liberation codes, since these codes have the

following attractive features: (a) changing a data block only

results in updating 2 parity blocks, which attains the theoretical

lower bound [13], and (b) they are open-sourced and publicly

available [14], while EVENODD and RDP are both patented.

The Liberation codes have been well recognized and have

significant impact in both academia and industry, therefore,

we believe it would be more desirable if we can encode and

decode these important codes optimally.

Our basic idea is not to encode and decode with the original

bitmatrix presentation, and try to exploit common expressions
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between the two types of parity constraints as much as

possible. First, we give an alternative presentation/definition

of the Liberation codes, which can reveal the geometrical

structure of the encoding rules. Then, common expressions

between the two types of parity constraints are extracted

and reused to reduce the number of XOR’s required in both

encoding and decoding procedures. Finally, we develop a

recursive-based decoding algorithm to recover the missing

blocks with minimized number of XOR’s. In addition, in

order to protect the system from data loss caused by silent

data corruptions, we also provide an efficient algorithm for

correcting a single column error. With our new encoding

and decoding algorithms, the Liberation codes can encode

optimally for any size of the RAID-6, and decode either

optimally or near optimally, depending on the positions of the

failed disks. We implemented our algorithms in the Jerasure

liberary [14], which includes the original implementation of

the Liberation codes. The evaluation results show that com-

pared with the original algorithms, the proposed encoding and

decoding algorithms reduce 16 percent and 15 ∼ 20 percent of

XOR’s respectively. Accordingly, the encoding and decoding

throughputs are enhanced 22.3 percent and 155 percent at most

respectively.

II. RAID-6 AND ARRAY CODES

In a broader sense, the term “RAID-6” represents any

form of RAID that can tolerate any two concurrent disk

failures [15]. Nevertheless, the de facto standard form of

RAID-6 has been the so-called P + Q redundancy [5], due

to its compatibility with existing widely deployed RAID-5.

Therefore, in what follows we will focus on the erasure codes

that conform to the P +Q redundancy form, which we refer

to as “RAID-6 codes”.

The first class of RAID-6 codes are the well known, all-

purposed Reed-Solomon(RS) codes, which require compli-

cated finite field arithmetic during the encoding and decoding

procedures. Other than that, all the existing representative

RAID-6 codes belong to a special class of erasure codes, called

array codes [16], which involve only simple XOR and cyclic

shift operations in both the encoding and decoding procedures,

thus are much more efficient than the RS codes in terms of

computational complexity.

A. Array Codes

In array codes, each codeword is a two-dimensional array

of binary bits, containing both data bits and parity bits. Each

parity bit is calculated to be the even parity of a certain

collection of the data bits, and the calculations must be such

that any two column erasures can be tolerated without data

loss. A column is considered erased/erroneous if at least one

bit in the column is erased/erroneous. Logically, each column

of the codeword corresponds to a disk of a RAID-6 system,

while each bit usually corresponds to a sector of a HDD, or

a page of a SSD.

When implementing a RAID-6 system with array codes,

every disk is first partitioned into a number of equal-size

segments, called strips. Then, a stripe is defined as a maximal

set of strips that are dependently related by an array code.

Each disk contributes exactly one strip to a certain stripe.

Finally, each strip is divided into a certain number of elements,

of which each generally consists of one or more machine

words. Now, a stripe appears as a two-dimensional array

of elements. Figure 1 shows the relations among stripes,

strips, and elements in a typical RAID-6 system. Actually,

a stripe consists of an exact number of codewords that are

interleaved for efficient computing [17]. For instance, if an

element is defined to be a 64-bit machine word, then a stripe

consists of 64 interleaved codewords. In this way, the XORs

are performed on machine words rather than bits, i.e., the

64 codewords are always encoded and decoded in parallel.

Thus, the element size is restricted to be a multiple of the

machine’s word size. In the most common case, an element

is implemented as the smallest unit of disk access, which can

be a sector (HDD) or a page (SSD).

Fig. 1. Stripes, strips, and elements in a RAID-6 system

B. Key Performance Metrics of Coding

According to the operation characteristics of RAID-6 sys-

tems, array codes are usually evaluated in the following

metrics:

• Storage overhead – the redundancy needed to provide a

certain level of fault tolerance. Theoretically, in order to

protect the system against the loss of any r disks, we

need at least r redundant disks. In coding theory, this is

known as the Singleton bound [18], and the codes that

attain this bound are classified as the Maximum Distance
Separable (MDS) codes.

• Encoding complexity – the average number of XOR

operations needed to compute each parity bit. For MDS

array codes with k data columns and 2 parity columns,

optimal encoding needs k−1 XOR operations per parity

bit [2].

• Decoding complexity – the average number of XOR

operations needed to reconstruct each missing bit. As

with encoding, for MDS array codes with k data columns

and 2 parity columns, optimal decoding needs k−1 XOR

operations per missing bit.

• Update complexity – the average number of parity bits

that must be updated whenever a data bit is modified.

For r-erasure-correcting codes, the update complexity is

at least r.

All of the above performance metrics are important in the

practical RAID-6 systems, and hence there are research works
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trying to improve any of these metrics. In particular, storage

overhead directly translates into the cost for fault tolerance,

thus MDS codes are preferred. Encoding and decoding com-

plexities indicate how much computing resource is required

during full-stripe writes and reconstruction (including de-
graded reads) respectively [19] [20]. And update complexity

directly affects the performance of small writes [21] [22]

[23], which are the dominant write operations in database

systems and many big-data and data-intensive storage systems.

Moreover, when applied to SSD arrays, update complexity can

also affect the SSDs’ service lifetime, since it dictates the

actual amount of data being written into the SSDs whenever

a small write occurs.

C. Motivation of this Work

According to the above performance metrics, the most

representative RAID-6 codes should be EVENODD codes [1],

RDP codes [2] and Liberation codes [3], all of which are

MDS array codes. Let p denote a prime number, w denote

the number of bits in a column, and k denote the number of

data columns in a codeword, then the main characteristics of

these codes can be summarized in the following table. Note

that RDP codes achieve optimal performance in both encoding

and decoding only when k = p− 1 or k = p− 2.

From the above, we can find that all of the existing codes

have their own advantages and disadvantages, and none of

them can truly represent the de facto standard of RAID-

6 codes. In this paper, we are interested in revealing the

undiscovered potential of the Liberation codes, since they have

the following attractive features:

• the update complexity attains the theoretical lower bound

of systematic RAID-6 codes [13];

• they are open-sourced and publicly available [14], while

EVENODD and RDP are both patented;

• they have better scalability in that for any given p, their

encoding/decoding performance will not shrink as p− k
increases [3].

On the other hand, the drawbacks of the Liberation codes

are also quite notable: the fair encoding performance, and

more importantly, the relatively poor decoding performance.

Therefore, it is clearly desirable to have Liberation codes

with optimal (or at least near optimal) encoding and decoding

performances. To this end, we present the following improved

encoding and decoding algorithms for the Liberation codes.

III. OPTIMAL ENCODING AND DECODING ALGORITHMS

FOR THE LIBERATION CODES

The Liberation codes are originally presented with the

bitmatrix method, which is a generic method to describe any

kind of array codes, but may generate suboptimal encoding

and decoding algorithms. Therefore, to facilitate the following

discussion, we first give an alternative presentation of the

Liberation codes, which can explicitly reveal the geometric

structure of the encoding rules.

A. An Alternative Presentation of Liberation Codes

In Liberation codes, a codeword is a p × (p + 2) array of

binary bits, with the first p columns containing data bits and

the last two columns containing parity bits, where p is an odd

prime. For a RAID-6 system with n = k+2 disks, we need to

choose a prime p such that p ≥ k, then assume that there are

p − k “phantom” disks that hold nothing but zeros. In other

words, the Liberation codes always work on the p × (p + 2)
arrays. To formally describe the encoding rules, we use bi,j to

denote the ith bit in the jth column, and let 〈x〉 = xmod p.

Then, the Liberation codes can also be defined as follows:

bi,p =

p−1⊕
t=0

bi,t (1)

bi,p+1 =

(
p−1⊕
t=0

b〈i+t〉,t

)
⊕ ai (2)

where i = 0, 1, 2, · · · , p− 1, and

ai =

{
b〈−i−1〉,〈−2i〉, if i �= 0

0, if i = 0
.

Geometrically speaking, there are two types of parity bits:

row parity bits and anti-diagonal (diagonal of slope −1) parity

bits. Clearly, each row parity bit is obtained by xoring all the

data bits in the same row. Define the i-th diagonal of slope s as

the position set {(x, y)|x+ sy ≡ i(mod p), 0 ≤ x, y ≤ p−1},
then the ith anti-diagonal parity bit is calculated to be the even

parity of the data bits along the anti-diagonal {(x, y)|x− y ≡
i(mod p), 0 ≤ x, y ≤ p−1} and the bit lying in the intersection

point of the (i− 1)th anti-diagonal and the (p− 1)th diagonal

of slope p−1
2 . Note that the 0th anti-diagonal parity bit is an

exception in that it does not contain the above mentioned extra

bit. As an example, Figure 2 shows the encoding rules of the

Liberation code with p = 5, where row parity constraints are

labeled with numbers and anti-diagonal parity constraints are

labeled with captical letters.

TABLE I
A SUMMARY OF REPRESENTATIVE RAID-6 CODES

EVENODD RDP Liberation Lower bound

w p− 1 p− 1 p —
Restriction on k ≤ p ≤ p− 1 ≤ p —

Storage Overhead 2 2 2 2

Encoding Complexity ≈ k − 1/2 k − 1 k − 1 + k−1
2p

k − 1

Decoding Complexity ≈ k k − 1 ≈ 1.15(k − 1) k − 1
Update Complexity ≈ 3 ≈ 3 ≈ 2 2
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0 1 2 3 4 5 6
0 1A 1E 1DE 1C 1B 1 A
1 2B 2A 2E 2D 2CD 2 B
2 3C 3BC 3A 3E 3D 3 C
3 4D 4C 4B 4AB 4E 4 D
4 5E 5D 5C 5B 5A 5 E

Fig. 2. Encoding rules of the Liberation code with p = 5.

B. Optimal Encoding Algorithm

Although the parity bits can be computed by using (1) and

(2) directly, we do not encode in this way since it contains

redundant computations. Instead, we will exploit common

expressions between (1) and (2) to minimize the encoding

complexity. Consider the example shown in Figure 3, we can

observe that b2,0 and b2,1 are both involved in the row parity

constraint “3” and the anti-diagonal parity constraint “C”, i.e.,

b2,0⊕ b2,1 is a common expression between parity constraints

“3” and “C”. Similarly, b0,1⊕ b0,2, b3,2⊕ b3,3, and b1,3⊕ b1,4
are common expressions between parity constraints “1” and

“E”, “4” and “B”, “2” and “D”, respectively.

0 1 2 3 4 5 6
0 1A 1E 1DE 1C 1B 1 A
1 2B 2A 2E 2D 2CD 2 B
2 3C 3BC 3A 3E 3D 3 C
3 4D 4C 4B 4AB 4E 4 D
4 5E 5D 5C 5B 5A 5 E

Fig. 3. Common expressions in the Liberation code with p = 5.

Therefore, we can evaluate these common expressions first,

and reuse their values in the subsequent encoding procedure.

For instance, the parity bits in Figure 3 can be optimally

calculated as follows:

1) b0,5 ← b0,1 ⊕ b0,2, b4,6 ← b0,5
2) b1,5 ← b1,3 ⊕ b1,4, b3,6 ← b1,5
3) b2,5 ← b2,0 ⊕ b2,1, b2,6 ← b2,5
4) b3,5 ← b3,2 ⊕ b3,3, b1,6 ← b3,5
5) b0,5 ← b0,5 ⊕ b0,0 ⊕ b0,3 ⊕ b0,4
6) b1,5 ← b1,5 ⊕ b1,0 ⊕ b1,1 ⊕ b1,2
7) b2,5 ← b2,5 ⊕ b2,2 ⊕ b2,3 ⊕ b2,4
8) b3,5 ← b3,5 ⊕ b3,0 ⊕ b3,1 ⊕ b3,2
9) b4,5 ← b4,0 ⊕ b4,1 ⊕ b4,2 ⊕ b4,3 ⊕ b4,4

10) b0,6 ← b0,0 ⊕ b1,1 ⊕ b2,2 ⊕ b3,3 ⊕ b4,4
11) b1,6 ← b1,6 ⊕ b0,4 ⊕ b1,0 ⊕ b2,1 ⊕ b4,3
12) b2,6 ← b2,6 ⊕ b3,1 ⊕ b4,2 ⊕ b0,3 ⊕ b1,4
13) b3,6 ← b3,6 ⊕ b3,0 ⊕ b4,1 ⊕ b0,2 ⊕ b2,4
14) b4,6 ← b4,6 ⊕ b4,0 ⊕ b1,2 ⊕ b2,3 ⊕ b3,4

The above procedure uses 40 XOR’s, i.e., 4 XOR’s per parity

bit, attaining the theoretical lower bound.

When the number of data columns (disks) k is smaller

than p, we can assume that the last p − k columns are

constant zeros. In this way, the encoding complexity is always

k − 1 (XOR’s per parity bit) for 2 ≤ k ≤ p. Adopting the

idea illustrated above, a formal encoding algorithm can be

described as follows:

Algorithm 1: Optimal Encoding

Input: An uncoded stripe, p, k
Output: An encoded stripe

1 for j ∈ {1, 2, · · · , k − 1} do
2 row← 〈

p+1
2 j − 1

〉
;

3 brow,k ← brow,j−1 ⊕ brow,j ;

4 bp−1−row,k+1 ← brow,k;

5 end
6 for j ∈ {0, 1, · · · , k − 1} do
7 for i ∈ {0, 1, · · · , p− 1} do
8 if

〈
i+ p−1

2 j
〉
= p−1

2 and i �= p− 1 then
9 continue;

10 end
11 if b〈i−j〉,k+1 has not been accessed, then
12 b〈i−j〉,k+1 ← bi,j ;

13 else
14 b〈i−j〉,k+1 ← b〈i−j〉,k+1 ⊕ bi,j ;

15 end
16 if

〈
i+ p−1

2 j
〉
= p− 1 and i �= p− 1 then

17 continue;

18 end
19 if bi,k has not been accessed then
20 bi,k ← bi,j ;

21 else
22 bi,k ← bi,k ⊕ bi,j ;

23 end
24 end
25 end

Note that steps 7 and 11 are used to determine whether bi,j
belongs to any common expression.

C. Optimal Decoding Algorithm

Since the Liberation codes are originally presented using

bitmatrix method, the original decoding algorithm is accord-

ingly based on a technique called bitmatrix scheduling, which

cannot perfectly eliminate the redundant computations during

the decoding procedure, resulting in a relatively high decoding

complexity. However, from the alternative presentation we

provided above, it is clear that the Liberation codes essentially

have a similar geometric structure with EVENODD and RDP.

Therefore, it should be possible to find an iterative approach to

decode the Liberation codes. In this subsection we will provide

such an approach.

If only one column is erased, or one of the two erased

columns is a parity column, then it is quite easy to find an

optimal decoding algorithm based on Algorithm 1. Therefore,

in what follows we only focus on the case that two data
columns are erased. Again, let us start with a small example,

i.e., the Liberation code with p = 5. Suppose that columns 1

and 3 are both erased, as depicted in Figure 4.
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0 1 2 3 4 5 6
0 1A 1E 1DE 1C 1B 1 A
1 2B 2A 2E 2D 2CD 2 B
2 3C 3BC 3A 3E 3D 3 C
3 4D 4C 4B 4AB 4E 4 D
4 5E 5D 5C 5B 5A 5 E

Fig. 4. The Liberation code with p = 5, where columns 1 and 3 are both
erased.

Let Ei denote the value of the common expression in the ith
row, i.e., E0 = b0,1⊕ b0,2, E1 = b1,3⊕ b1,4, E2 = b2,0⊕ b2,1,

E3 = b3,2⊕b3,3. We refer to the common expressions contain-

ing at least one missing bit as unknown common expressions.

Let SP
i and SQ

i denote the ith row parity syndrome and anti-

diagonal parity syndrome respectively. Unlike the conventional

definition, a parity syndrome here is the XOR of the surviving

bits in the corresponding parity constraint, excluding the ones

contained in an unknown common expression. With these

notations, from (1) and (2) we can easily deduce the following

equations:

E0 ⊕ b0,3 = SP
0 = b0,0 ⊕ b0,4 ⊕ b0,5

E1 ⊕ b1,1 = SP
1 = b1,0 ⊕ b1,2 ⊕ b1,5

E2 ⊕ b2,3 = SP
2 = b2,2 ⊕ b2,4 ⊕ b2,5

E3 ⊕ b3,1 = SP
3 = b3,0 ⊕ b3,4 ⊕ b3,5

b4,1 ⊕ b4,3 = SP
4 = b4,0 ⊕ b4,2 ⊕ b4,4 ⊕ b4,5

b1,1 ⊕ b3,3 = SQ
0 = b0,0 ⊕ b2,2 ⊕ b4,4 ⊕ b0,6

b2,1 ⊕ b4,3 ⊕ E3 = SQ
1 = b1,0 ⊕ b0,4 ⊕ b1,6

b3,1 ⊕ b0,3 ⊕ E2 = SQ
2 = b4,2 ⊕ b1,4 ⊕ b2,6

b4,1 ⊕ E1 = SQ
3 = b3,0 ⊕ b0,2 ⊕ b3,6

b2,3 ⊕ E0 = SQ
4 = b4,0 ⊕ b3,4 ⊕ b4,6

From these equations we can retrieve the missing bits through

the following 3 steps. First, evaluate all the parity syndromes

directly according to the above equations. Then, find a starting

point by adding a certain subset of the above equations: b3,1 ←
SP
0 ⊕ SQ

4 ⊕ SP
2 ⊕ SQ

2 . Finally, iteratively retrieve the other

missing bits by using row and anti-diagonal parity constraints

alternately, as follows:

1) E3 ← b3,1 ⊕ SP
3

2) SQ
1 ← E3 ⊕ SQ

1 ; b3,3 ← b3,2 ⊕ E3

3) b1,1 ← b3,3 ⊕ SQ
0

4) E1 ← b1,1 ⊕ SP
1

5) b1,3 ← E1 ⊕ b1,4; b4,1 ← E1 ⊕ SQ
3

6) b4,3 ← b4,1 ⊕ SP
4

7) b2,1 ← b4,3 ⊕ SQ
1

8) E2 ← b2,0 ⊕ b2,1
9) b2,3 ← E2 ⊕ SP

2

10) E0 ← b2,3 ⊕ SQ
4

11) b0,1 ← E0 ⊕ b0,2; b0,3 ← E0 ⊕ SP
0

The above procedure uses 39 XOR’s, i.e., 3.9 XOR’s per

missing bit. Indeed, this is even lower than the “lower bound”,

but note that other erasure patterns may have a higher decoding

complexity, and hence the average value is still not less than

the lower bound.

Actually, the 3 steps decoding procedure is quite similar

with that of the EVENODD and RDP codes. However, due to

the existence of common expressions and the absence of the

imaginary 0-row, we need to use some tricks to minimize the

decoding complexity:

1) As with encoding, common expressions (except the

unknown ones) should be reused while computing both

types of parity syndromes;

2) There are two ways to find a starting point, choose the

one with less XOR’s;

3) Each iteration in Step 3 retrieves either a missing bit or

an unknown common expression, if it is the latter, then

use its value twice in the next iteration.

Note that in the above example E2 has been used once while

computing the starting point b3,1, so it only appears once in

Line 9.

From the above, the core of decoding lies in the Step 2,

i.e., finding a starting point to initiate the iteration process.

Therefore, we first give an efficient algorithm to show how to

find the starting point. Suppose the lth and rth columns are

erased, where 0 ≤ l < r ≤ p − 1. The following algorithm

return two sets of indices of parity constraints being involved

in computing the starting point bx,r. If the starting point is

in the lth column, the algorithm will fail and return −1. In

this case we may exchange the values of l and r, and call the

algorithm again.

Algorithm 2: Finding the Starting Point

Input: l, r, p
Output: SP , SQ, x

1 extraL← p− 1− 〈(p− 1)l/2〉;
2 extraR← p− 1− 〈(p− 1)r/2〉;
3 specialQL← 〈extraL+1− l〉;
4 specialQR← 〈extraR+1− r〉;
5 curQ← 〈specialQR−1 + (r − l)〉;
6 SQ ← {specialQR};
7 SP ← {extraR};
8 while (curQ �= specialQL or l = 0) and

curQ �= specialQR do
9 SQ ← SQ ∪ {curQ};

10 SP ← SP ∪ {〈curQ+r〉};
11 curQ← 〈curQ+(r − l)〉;
12 end
13 if curQ = specialQR then
14 x← extraR+1;

15 else
16 x← −1;

17 end

Note: extraL and extraR refer to the row indices of the

two extra bits in the erased columns, while specialQL and

712

Authorized licensed use limited to: Xiamen University. Downloaded on October 27,2020 at 07:42:37 UTC from IEEE Xplore.  Restrictions apply. 



specialQR refer to the indices of the two anti-diagonal parity

constraints containing 3 unknown elements.

Next, we need to compute the two types of parity syn-

dromes. This step is quite similar to the encoding procedure,

and hence we just present the algorithm, without further

detailed explanations. Suppose the lth and rth columns are

erased, then we use bi,l to store the i-th row syndrome, and

b〈i+r〉,r to store the i-th anti-diagonal syndrome.

Algorithm 3: Syndromes Computation

Input: A stripe with the l-th and r-th strips being erased,

p, k
Output: A stripe with the l-th and r-th strips containing

row and anti-diagonal syndromes respectively

1 for j ∈ {1, 2, · · · , k − 1} do
2 row← 〈

p+1
2 j − 1

〉
;

3 if l ∈ {j − 1, j} or r ∈ {j − 1, j} then continue;;

4 brow,l ← brow,j−1 ⊕ brow,j ;

5 b〈p−1−row+r〉,r ← brow,l;

6 end
7 for j ∈ {0, 1, · · · , k − 1} do
8 if j ∈ {l, r} then continue;;

9 for i ∈ {0, 1, · · · , p− 1} do
10 if

〈
i+ p−1

2 j
〉
= p−1

2 and i �= p− 1 then
continue;;

11 row← 〈i− j + r〉;
12 if brow,r has not been accessed before then
13 brow,r ← bi,j ;

14 else
15 brow,r ← brow,r ⊕ bi,j ;

16 end
17 if

〈
i+ p−1

2 j
〉
= p− 1 and i �= p− 1 then

continue;;

18 if bi,l has not been accessed before then
19 bi,l ← bi,j ;

20 else
21 bi,l ← bi,l ⊕ bi,j ;

22 end
23 end
24 end
25 for i ∈ {0, 1, · · · , p− 1} do
26 bi,l ← bi,l ⊕ bi,k;

27 bi,r ← bi,r ⊕ b〈i−r〉,k+1;

28 end

Based on the above two algorithms, a formal decoding

algorithm now can be described as follows.

IV. PERFORMANCE EVALUATION

There are two major ways to evaluate the encoding /de-

coding performance of xor-based erasure codes, namely, the

number of XOR’s being used during the encoding/decoding

procedure, and the observed encoding/decoding throughputs.

We will use both approaches to show the effect of the proposed

algorithms.

Algorithm 4: Optimal Decoding

Input: A stripe with the l-th and r-th strips being erased,

p, k
Output: A recovered stripe

; // Find the starting point
1 (SP , SQ, x)← getStartingPoint(p, l, r);
2 if x = −1 then
3 Exchange the values of l and r;

4 (SP , SQ, x)← getStartingPoint(p, l, r);
5 end
6 Compute syndromes using Algorithms 3;

; // Evaluate the starting element bx,r
7 δ ← 〈r − l〉;
8 for each i ∈ SQ do
9 if x = 〈i+ r〉 then continue;;

10 bx,r ← bx,r ⊕ b〈i+r〉,r;

11 end
12 for each i ∈ SP do
13 bx,r ← bx,r ⊕ bi,l;
14 end

; // Retrieve other missing elements
15 for each t ∈ {0, 1, · · · , p− 1} do
16 bx,l ← bx,l ⊕ bx,r;

17 if
〈
x+ p−1

2 r
〉
= p− 1 and x �= p− 1 and δ �= 1 then

18 bx,l ← bx,l ⊕ bx,r−1;

19 else if
〈
x+ p−1

2 r
〉
= p−1

2 and x �= p− 1 then
20 bx,r ← bx,r ⊕ bx,r+1;

21 end
22 if

〈
x+ p−1

2 l
〉
= p− 1 and x �= p− 1 then

23 b〈x+1+δ〉,r ← b〈x+1+δ〉,r ⊕ bx,l;
24 bx,l ← bx,l ⊕ bx,l−1;

25 end
26 if t < p− 1 then b〈x+δ〉,r ← b〈x+δ〉,r ⊕ bx,l;

27 if
〈
x+ p−1

2 l
〉
= p−1

2 and x �= p− 1 and δ �= 1 then
28 bx,l ← bx,l ⊕ bx,〈l+1〉;
29 end
30 x← 〈x+ δ〉;
31 end

In the following, we distinguish between the two cases of

(a) p varying with k and (b) p being fixed. Case (a) happens

if the RAID-6 system does not intend to alter the number

of disks after initial deployment, then p is usually set to be

the first prime number that is greater than k (or k + 1 for

RDP). In this way, the column size is minimized, which will

result in the minimum memory consumption during encoding

and decoding procedures. On the other hand, Case (b) arises if

scalability and dynamic change of the RAID-6 system size are

necessary, which is the common case. In this case, we usually

set p to be a fixed, sufficiently large prime number. The p
value must be large enough to accommodate all the possible

numbers of data disks in the RAID-6 system anticipated by

the system administrator. In this way, we can add (remove)

disks to (from) the RAID-6 system “on the fly” [24].
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A. Encoding/Decoding Complexity
As mentioned before, the encoding (decoding) complexity

is defined as the average number of XOR operations required

per parity (missing) bit. As the lower bounds of encoding and

decoding complexities are both k−1 for k data disks, we can

normalize the encoding/decoding complexity by dividing it by

k − 1. Then, 1 stands for the theoretical lower bound of the

normalized encoding/decoding complexity.
Figure 5 shows the normalized encoding complexity of

different RAID-6 codes, where p is varying with k. It is

quite clear that the proposed encoding algorithm enables the

Liberation codes to reach the lower bound for any value

of k, outperforming all the other competitors. In contrast,

the original encoding performs only slightly better than the

EVENODD and notably worse than the RDP.
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Fig. 5. Normalized encoding complexities of different RAID-6 codes

For the case of p being fixed, we set p = 31, and study how

the encoding complexity varies as k decreases. Figure 6 shows

the encoding complexities of different RAID-6 codes as k
varies from 2 to 23. We can see that the encoding complexities

of the EVENODD and RDP both increase substantially as

k shrinks, while the the curves of the Liberation codes are

flat. That is why we mentioned in the Introduction that the

Liberation codes have better scalability than the EVENODD

and RDP codes. In this case, the original encoding of the

Liberation codes is already very close to the theoretical lower

bound, thus the difference between the proposed algorithm and

the original one is neglegible.
For decoding complexity, since the number of XOR’s re-

quired for decoding usually depends on the specific erasure

pattern, we test all the possible erasure patterns and use their

average value as the decoding complexity. Figure 7 shows the

normalized decoding complexity of different RAID-6 codes.

Compared to the original decoding algorithm, the proposed

decoding has a complexity that is very close to the theoretical

lower bound, and is about 15 ∼ 20 percent lower than the

original one. Although it is still up to 2 percent higher than the

decoding complexity of RDP, the difference is really marginal.
For the case of p being fixed, as with encoding, we set

p = 31 and study how the decoding complexity varies as
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Fig. 6. Normalized encoding complexities of different RAID-6 codes(p = 31)
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Fig. 7. Normalized decoding complexities of different RAID-6 codes

k decreases. Figure 8 shows the decoding complexities of

different RAID-6 codes as k varies from 2 to 23. We can see

that the decoding complexities of the EVENODD and RDP

both increase dramatically as k shrinks, while the decoding

complexities of the Liberation codes are mostly 10 ∼ 15
percent higher than the theoretical lower bound. In contrast,

the decoding complexity of our proposed algorithm is only

0 ∼ 2.5 percent higher than the theoretical lower bound.
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Fig. 8. Normalized decoding complexities of different RAID-6 codes(p = 31)
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B. Encoding/Decoding Throughputs

In order to test the real performance, and verify the correct-

ness of our proposed algorithms, we implemented the optimal

encoding and decoding algorithms in the Jerasure liberary [14].

We use all the default compile and build options, and use the

test programe provided in the liberary to get the following

results. The expriments are running on a Macbook Pro 2016

with Intel 2.6GHz Core i7, 16GB 2133MHz LPDDR3, and

256GB PCI-E SSD.

Note that there are two main factors that may affect

the real performance of an erasure code, namely, the en-

coding/decoding complexity and the way it is implemented.

Therefore, in this section we only compare the proposed en-

coding and decoding algorithms with the original ones, whose

implementation is open-sourced and publicly available. We do

not compare the proposed algorithms with the EVENODD and

RDP codes due to the following reasons:

• EVENODD and RDP are both patented and their official

implementations are unavailable;

• If we implement these codes by ourselves, then it is

unclear that whether they are implemented in the best

way;

• The target of this work is optimizing the Liberation codes,

rather than beating other RAID-6 codes.

Since the element size may affect the encoding/decoding

performance, we first find the element sizes with the best

performance. Figure 9 shows the encoding throughputs with

different element size for p = 5, 7, 11. It is clear that the

Liberation codes achieve the best encoding performance when

the element size is 8KB. Another important element size is

4KB, which is the default memory page size, as well as most

of SSDs’ page size. Thus, in what follows we will focus our

study on the encoding/decoding performance of the Liberation

codes with the element size being set to be 8KB and 4KB.

Figures 10 and 11 show the encoding throughputs of Lib-

eration codes with varing p and fixed p respectively. From

the figures, both algorithms suffer a performance loss as k
increases, since larger k implies more XOR’s and larger stripe

size, which may increase the number of cache misses. It is

also clear that the performance difference between the two

algorithms is always notable no matter how k varies, though

their encoding complexities tend to be identical as k grows.

This may be caused by the additional overhead of the bitmatrix

scheduling, on which the original encoding algorithm is based.

To obtain decoding throughputs, we test the throughputs of

all the possible erasure patterns, and get the average value of

these results. Figures 12 and 13 show the decoding throughputs

of Liberation codes with varing p and fixed p respectively. As

expected, the performance difference between the two decod-

ing algorithms is much greater than their difference in decod-

ing complexity. In particular, the proposed decoding algorithm

outperforms the original one nearly 100%(element size =

8KB) or even more than 150%(element size = 4KB) when k is

large enough. This is mainly caused by the additional overhead

of the bitmatrix scheduling, which includes time consuming
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Fig. 9. Encoding throughputs with different element size

matrix operations, especially when p is large. In contrast, the

proposed optimal decoding does not depend on any matrix

operations, hence avoids severe performance loss as k grows.

V. CONCLUSION

We have presented novel optimal encoding and decoding

algorithms for the Liberation codes — an important class of

xor-based erasure codes for RAID-6. The Liberation codes are

open-sourced and have been well recognized in both academia

and storage industry due to their optimal update performance

and better scalability comparing with other representative

RAID-6 codes. However, these codes have fair encoding

performance and, more importantly, relatively poor decoding

performance due to the bitmatrix presentation on which they

are based. To address this issue, we used an alternative way to

present the Liberation codes, and proposed iterative encoding

and decoding algorithms based on the alternative presenta-
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Fig. 10. Encoding throughputs of Liberation codes with p varing with k

tion. The proposed algorithms completely eliminate redundant

computations during the encoding and decoding procedures

by extracting and reusing common expressions between the

two types of parity constraints, and do not involve any matrix

operations. The experiment results show that compared with

the original solution, the proposed encoding and decoding

algorithms reduce the number of XOR’s by up to 16 percent

and 15 ∼ 20 percent respectively, and the encoding and

decoding throughputs are increased by up to 22.3 percent

and at most 155 percent respectively. Moreover, the encoding

complexity reaches the theoretical lower bound, while the

decoding complexity is also very close to the theoretical lower

bound. With the proposed optimal encoding and decoding

algorithms, the Liberation codes are very likely to be the best

alternative for RAID-6 implementors.
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