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Abstract— In this paper, we study the problem of keyword
search with access control (KSAC) over encrypted data in cloud
computing. We first propose a scalable framework where user
can use his attribute values and a search query to locally derive
a search capability, and a file can be retrieved only when
its keywords match the query and the user’s attribute values
can pass the policy check. Using this framework, we propose
a novel scheme called KSAC, which enables keyword search
with access control over encrypted data. KSAC utilizes a recent
cryptographic primitive called hierarchical predicate encryption
to enforce fine-grained access control and perform multi-field
query search. Meanwhile, it also supports the search capability
deviation, and achieves efficient access policy update as well as
keyword update without compromising data privacy. To enhance
the privacy, KSAC also plants noises in the query to hide users’
access privileges. Intensive evaluations on real-world dataset are
conducted to validate the applicability of the proposed scheme
and demonstrate its protection for user’s access privilege.

Index Terms— Keyword search, access control, encrypted data,
hierarchical predicate encryption.

I. INTRODUCTION

THE CLOUD has become an important platform for
data storage and processing. It centralizes essentially

unlimited resources (e.g., storage capacity) and delivers elastic
services to end users. However, a number of challenges,
including concerns about data security and users’ privacy, still
exist [2]–[5]. For example, a user’s electronic health records
are sensitive data and, if uploaded into the cloud, should
not be disclosed to the cloud administrators and any other
unauthorized users without data owners’ permission. Thus
data confidentiality protection (to hide the plaintext against
unauthorized parties) and data access control (to grant user’s
access privilege) are usually required when storing data onto
the cloud.

Encryption is a commonly used method to preserve data
confidentiality. However, traditional plaintext keyword search
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demands to retrieve all the encrypted data files from the cloud,
and perform search after data decryption. This methodology is
extremely unpractical for traditional networks, especially for
the wireless network (e.g., wireless sensor network and mobile
network) seriously constrained by resources like energy, band-
width, and computation capability [6], [7].

A. Related Works on Searchable Encryption

Aiming at enabling secure and efficient search over
encrypted data, Searchable Encryption (SE) (e.g., [6]–[15])
receives increasing attentions in recent years, in which a query
is encrypted as a search capability and a cloud server will
return files matching the query embedded in the capability,
without having to know the keywords both in the capability
and in file’s encrypted index. The first symmetric-key-based
searchable encryption scheme is proposed by Song et al. [10].
After that, Goh et al. [13] presented secure indexed over
encrypted data by employing Bloom Filter. To securely process
the retrieved files and make them more conform to users
request, Wang et al. [11] introduced secure ranked keyword
search based on “order-preserving encryption [16]. In the
public key setting, Golle et al. [6] first introduced the
searchable encryption scheme by using bilinear mapping [46].
Waters et al. [12] fulfilled searchable audit log using sym-
metric encryption and IBE [17] respectively. Li et al. [18]
studied the fuzzy keyword search over encrypted cloud data
by utilizing edit distance.

To support multiple keywords search, Golle et al. [6]
considered conjunctive keyword search over encrypted data.
Shi et al. [9] realized multi-dimensional range query over
encrypted data. Shen et al. [19] investigated the encrypted
search with preference by utilizing Lagrange polynomial and
secure inner-product computation. Li et al. [20] considered
authorized private keyword search. It only achieved LTA-level
authorization which was far coarser than user level access
control, and missed the protection of the users access pri-
vacy. Based on the uni-gram, Fu et al. [21] proposed an
efficient multi-keyword fuzzy ranked search scheme with
improved accuracy. To efficiently support dynamic updates,
Xia et al. [22] constructed a special tree-based index structure
by using vector space and TF×IDF model. Fu et al. [23]
found that previous keyword-based search schemes ignored
the semantic information. They then developed an semantic
search scheme based on the concept hierarchy and the seman-
tic relationship between concepts in the encrypted datasets.
Zhangjie et al. [24] designed a searchable encryption scheme
that used vector space model for multi-keyword ranked search
and constructed a tree-based index to enable parallel search.
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However, most of existing SE schemes assume that every
user can access all the shared files. Such assumption does not
hold in the cloud environment where users are actually granted
different access permissions according to the access-control
policy determined by data owners. Therefore, it is important
to study how to efficiently enforce the access policy when
searching over encrypted data.

B. Related Works on Access Control Over Encrypted Data

There have also been a number of works on access control
over encrypted data. To offer fine-grained access control
over encrypted shared data with lightweight key management,
Bethencourt et al. [25] proposed CP-ABE that tied specified
access policy with the encrypted data, so that only the user
possessing the satisfied attributes could decrypt the data.
As the dual problem of CP-ABE, KP-ABE [26] embedded
the access policy in the users keys while the data were
labeled with attributes. HVE [14] and PE [27] were two new
tools which could be used to perform access control over
encrypted data, and they all employed composite-order groups
that were computationally expensive. Vimercati et al. [28]
utilized over encryption to realize access control. Yu et al. [29]
realized fine-grained access control in cloud computing by
combining techniques of ABE, lazyrevocation and proxy re-
encryption. Benaloh et al. [30] considered the security problem
of Electronic Health Records (EHR). Narayan et al. [31] just
combined bABE and PEKS [6] together to realize a patient-
centric EHR management system. Li et al. [32] also tried to
realize access control and keyword search over encrypted data
by employing both ABE [18] and hybrid clouds.

Most of these works can be categorized into two groups,
key-based access control (KBAC) and attribute-based access
control (ABAC). KBAC [33], [34] usually assigns each file’s
decryption key directly to authorized users. When a user
receives increasing number of such keys, its load on the keys
management can be too high. To reduce the load, ABAC [25],
[26], [29] attaches a set of attribute values to a user (resp.
a file) and designs access policy for a file (resp. a user).
A file can be accessed if and only if the attribute values satisfy
the access policy. The access keys (e.g., the decryption keys
in KBAC and the keys representing attribute values in ABAC)
are usually required to be kept secretly to prevent data security
from being compromised.

Therefore, the conventional way to perform encrypted
search with access control is to conduct the search operations
at the cloud server to take advantage of its large computation
power, and leave the enforcement of access control at users’
machines to keep their access keys from being disclosed. This
separation of search and access control enforcement could
lead to performance degradation, especially when users are
assigned with different access permissions to search differ-
ent encrypted cloud data. For example, in the conventional
practice, a cloud server may perform search and transfer
all the matching files to the users for them to decrypt the
files. However, a user may not be allowed to access all the
files and many of the transferred files have to be discarded,
which leads to wasted network bandwidth and reduced service
efficiency.

Fig. 1. The framework of KSAC. P K is the public keys, and MSK is the
master secret key that should be securely kept. Credential is the set of keys
standing for user’s attribute values. Search capability is generated by using
user’s credential and his interested query.

C. Challenges to Be Addressed

Some attempts [30]–[32] have been made to integrate access
control with keyword search over encrypted data, several
challenges are still remained.

Challenge 1: For the sake of efficiency and convenience,
multi-field search query and fine-grained access control must
be supported. Moreover, to utilize cloud servers’ computation
power, we should place the enforcement of access control on
servers while they are responsible for searching over encrypted
data, so that a retrieved file not only matches the user’s search
query but also conforms to the user’s access rights. In the
process, we must ensure a user’s access rights are not disclosed
to any unauthorized parties.

Challenge 2: Many of proposed SE schemes [9], [19], [27],
[31] require a role, such as data owner, to handle the search
capability derivation for user’s interested keywords every time
before search. This requirement places heavy burden on data
owners and significantly compromises the system scalability.
The weakness should be mitigated by allowing user to locally
derive the search capability.

D. Our Contributions

In this paper, we systematically study the issue of Keyword
Search with Access Control (KSAC) over encrypted cloud
data. Our main contributions are summarized as follows.

First, we propose a scalable framework as shown in Figure 1
that integrates multi-field keyword search with fine-grained
access control. In the framework, every user authenticated by
an authority obtains a set of keys called credential to represent
his attribute values. Each file stored in the cloud is attached
with an encrypted index to label the keywords and specify the
access policy. Every user can use his credential and a search
query to locally generate a search capability, and submit it to
the cloud server who then performs search and access control.
Finally, a user receives the data files that match his search
query and allow his access. This design addresses the first
challenge by fully leveraging the computation power of cloud
server. It also solves the second challenge by dispersing the
computation burden of capability generation to the users in
the system.

Second, to enable such a framework, we make a novel use of
Hierarchical Predicate Encryption (HPE) [35], to realize the
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derivation of search capability. Based on HPE, we propose
our scheme named KSAC. It enables the service of both
the keyword search and access control over multiple fields,
and supports efficient update of access policy and keywords.
KSAC also introduces some random values to enhance the
protection of user’s access privacy. To the best of our knowl-
edge, KSAC is the first solution to simultaneously achieve the
above goals.

Finally, we fully implement KSAC and conduct extensive
evaluations to demonstrate its applicability.

II. PROBLEM FORMULATION

A. System Model

In this paper, we consider a cloud-data-sharing system
consisting of four entities, i.e., data owners, authority, data
users and cloud server (shown in Figure 1). Data owners
create data files, design the encrypted indices containing both
keywords and access policy for each file, and upload the
encrypted files along with the indices to the cloud server
(step 2 in Figure 1). Authority is responsible to authenticate
user’s identity. It issues a set of keys as a credential to represent
user’s attribute values (step 3). Data user generates a search
capability according to his credential and a search query, and
submits it to the cloud server for file retrieval (step 4). The
cloud server stores the encrypted data and performs search
when receiving search capabilities from users (step 5).

B. Threat Model
Like many previous SE schemes [1], [9]–[11], [19], [36],

[37], the cloud server is assumed to be “honest but curious”.
It means that the server will honestly execute the pre-defined
protocol, but it is also “curious” to learn the information in
terms of index, user’s query and attribute values. Besides, the
authority is assumed to be honest to generate user’s credential
according to his possessed attribute values.

C. Design Goals
• Data Confidentiality and Index Privacy: The data con-

fidentiality should be protected against the cloud server
and unauthorized users, so that the file content can be
seen by authorized users only. Index privacy indicates the
cloud server should be unaware of the attribute values in
access policy and the keywords embedded in the index.

• Fine-grained Access Control and Multi-Field Keyword
Search: The system should support fine-grained access
policy and multi-field keyword search. In this paper, we
mainly consider the access policy and the search query
in Conjunctive Normal Form (CNF) over multiple fields.

• Efficiency: The system should promise the efficiency
for general operations in practical environment, such as
search and search capability derivation.

• Adaption to Frequent Updates: To cope with the sce-
nario with frequent updates, either to access policy or to
keywords, the system should provide an efficient update
strategy.

D. Notations and Definitions

We first list their definitions and explanations
in Table I.

TABLE I

SOME FREQUENTLY USED SYMBOLS AND DESCRIPTIONS

1) Attribute: The “attribute” is used to characterize the
identity of a user. A user’s attribute values are denoted as
A := (A1 = a1, · · · , Ae = ae), where Ai is the i -th attribute
field and ai is the attribute value of Ai . e denotes the number
of attribute fields. For example, a user’s attribute values are
“Age=37, Profession=Professor”, then “37” (i.e., ai ) is an
attribute value of attribute “Age” (i.e., Ai ).

2) Predicate: In this paper, we use the predicate vector �v
to express the search query and access policy, and use value
vector 1 �x to express the keywords and user’s attribute values.
In KSAC, the decryption can succeed if and only if the inner
product 〈�x, �v〉 = 0. The transformation from the query and
values into the vector form can be referred below.

3) Transformation to Vector Form: According to [27], one
can represent a logical formula in the vector form. Suppose
Fi denotes the i -th field (e.g., the keyword field or the
attribute field), then a general CNF formula over s fields can
be represented as F := (F1 ∈ ( f1,1, · · · , f1,m1)) ∧ (F2 ∈
( f2,1, · · · , f2,m2)) ∧ · · · ∧ (Fs ∈ ( fs,1, · · · , fs,ms )), where
fi, j is the j -th requested value over Fi . It can be converted
into the polynomial form with s univariate polynomials as:
f (F1, F2, · · · , Fs ) := r1(F1 − f1,1) · · · (F1 − f1,m1)+r2(F2 −
f2,1) · · · (F2 − f2,m2) + · · · + rs(Fs − fs,1) · · · (Fs − fs,ms ),
where ri (1 ≤ i ≤ s) is a randomly selected value.
The predicate vector of the formula F can be derived
as �p := (p1,m1, · · · , p1,1, · · · , ps,ms , · · · , ps,1, p0), where
p0 := ∑s

i=1((−1)mi · ri · ∏mi
j=1 fi, j ) and pi, j denotes the

coefficient of F j
i in f (F1, · · · , Fs). For a value set V :=

(F1 = v1, · · · , Fs = vs), it can be converted into a value
vector �v := (vm1

1 , · · · , v1, · · · , v
ms
s , · · · , vs , 1).

So that if V satisfies F , then the equation 〈�v, �p〉 =
f (v1, · · · , vs ) = 0 establishes with overwhelming probability.

1In some previous works [27], it is called attribute vector. To distinguish
it with the term “attribute”, we denote it as the value vector in this paper.
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Moreover, the length of �v and �p is
∑s

i=1 mi +1, which is linear
with the total number of searched keywords (i.e.,

∑s
i=1 mi ).

4) Access Policy Vectors and Attribute Vectors: An access
policy is a unique logical expression over attribute values
to specify the authorized users. For example, an access pol-
icy “Profession= student ∧ Department=chemistry” only
grants the student of chemistry department the access right.
The access policy can be transformed into the predicate
vector called access policy vector (APV) by following the
transformation referred above. The attribute vector (AV) is
the value vector transformed from the user’s attribute values.

5) Keyword and Search Query: The keywords refer to the
specific terms that characterize file content. For a file, its
keyword set can be expressed as W := (W1 = w1, · · · , Wd =
wd), where Wi is the i -th keyword field and wi is the
keyword of Wi . For example, the keywords of an Elec-
tronic Health Records (EHR) may be “Name=Alice, Age=30,
illness=headache”. Then “illness” is a keyword filed
(i.e, Wi ) and “headache” is a keyword (i.e., wi ) over this field.

A “search query” represents the user’s interest, and is
expressed in CNF [1], [38]–[40]. The search query and key-
words can be transformed into the predicate vector called
query vector (QV) and the value vector called keyword
vector (KV) respectively.

6) Search Capability: A search capability includes the
information of the search query and user’s attribute val-
ues. For instance, a user’s attribute values are “Age=37,
Profession=professor” and the query is “Date=2013/1/1∧
Topic=meeting”, then the search capability includes the
logical information of “Age=27, Profession=professor,
Date=2013/1/1 ∧ Topic=meeting”.

III. SYSTEM DESCRIPTION

In this section, we will describe KSAC. Its main ideas are
as follows. First, we can use vectors to represent the values
(e.g., keywords and attribute values) and the CNF expression
(e.g., access policy and search query). Second, we can utilize
the delegation process in HPE to realize the derivation of
search capability. Third, the encrypted index includes two
components to respectively serve the decryption requests from
the search capability and the credential.

A. An Introduction to HPE

Hierarchical predicate encryption (HPE) [35] is an crypto-
graphic primitive that supports delegation of predicate encryp-
tion (PE) [27]. In HPE, a secret key sk �pl for a predicate
vector �pl can decrypt the ciphertext that associates with a value
vector �v if their inner-product 〈 �pl , �v〉 = 0. In the delegation
of HPE, for a vector �pl+1 /∈ span < �pl >, a more restrictive
secret key sk �pl , �pl+1 can be generated with the sk �pl and �pl+1
taken as input. sk �pl , �pl+1 can decrypt a ciphertext tied with the
value vector �v if 〈 �pl, �v〉 = 〈 �pl+1, �v〉 = 0.

B. The Design of Index Format

According to the property of HPE, we give a novel design
of the encrypted index as shown in Figure 2. The index infor-
mation includes the specified access policy, the representative

Fig. 2. The format of an encrypted index. For example, for
KSAC.BuildIndex in Algorithm 1, M is set as IGT

(i.e., the identity element
of the group GT used in HPE and is public.)

keywords, and the symmetric keys used to encrypt the file
content. To build an encrypted index, the data owner first
produces the “body” component to lock the symmetric key
EK by utilizing the access policy vector (APV) and a random
vector (RV). EK is used as the symmetric key to encrypt
and decrypt the file content. This body component ensures
that only the users whose attribute values satisfy the access
policy can recover EK for file decryption. The recovery of
E K performed by the unauthorized user will be rejected by
APV and the cloud server’s attempt to obtain E K by stealthily
using the authorized user’s search capability will be refused
by RV.

The data owner further encrypts M , the representative
keywords and the access policy, and produces the “head”
component. This design ensures that the file can be retrieved
only when the keywords match the query and the user’s
attribute values satisfy the access policy.

We now give a detailed procedure about how to con-
struct the head component when given the keywords and
the access policy. The construction of body component is
similar. For the keywords W = (W1 = w1, · · · , Wd = wd)
where d is the number of keyword fields, we can convert it
into the keyword vector �W according to the transformation
referred in Section II-D. Suppose the access policy is S =
(A1 = a1,1 ∨ · · · ∨ a1,p1) ∧ · · · ∧ (Ae = ae,1 ∨ · · · ∨ ae,pe),
where ai, j (1 ≤ i ≤ e, 1 ≤ j ≤ pi ) denotes the j -th required
attribute value in the field Ai , e is the number of attribute
fields, and p j represents the total number of required attribute
values over the j -th attribute field. We can transform S into the
access policy vector (APV) �S according to the transformation
referred in Section II-D. Then we concatenate these two
vectors and output �S|| �W . Finally, we call HPE.Enc to encrypt
�S|| �W and M , and produce the head component.

Figure 2 shows that the encrypted index in KSAC contains
the keywords as well as the access policies. When performing
search operation, the cloud server first decrypts the head
component to see if the decrypted result is M . If it is, then
the file matches the capability. After obtaining the matching
files, the user can decrypt the body component to free EK,
which will then be used to decrypt the text information of the
matching files.

C. System Description

Our proposed KSAC scheme is shown in Algorithm 1,
which contains the following main algorithms.

• KSAC.Setup. This algorithm is operated by the authority
to generate the public key and the master secret key. The
authority chooses a security parameter λ and a format of
hierarchy �u, invokes HPE.Setup, and outputs a public
key P K and a master secret key M SK . P K will be
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Algorithm 1: The Design of KSAC

• KSAC.Setup(1λ, �u): Invoke HPE.Setup(1λ, �u) and output P K := (1λ, param, B) and M SK := (X,B
∗).

• KSAC.BuildIndex.(P K ,S,W, IGT
, E K ): Convert the access policy S and the keywords W into the access policy vector �S and the

keyword vector �W respectively, choose a random vector �R, and compute Chead := (Chead
1 , Chead

2 ) :=HPE.Enc(P K , �S|| �W , IGT
) and

Cbody := (Cbody
1 , Cbody

2 ) :=HPE.Enc(P K , �S|| �R, E K ).

• KSAC.GenCre(P K , M SK ,A): Convert A into the attribute vector �A := (a1, · · · , an1 ), and generate the credential D �A :=
(k∗

1,0, k∗
1,1, k∗

1,2, k∗
1,n1+1, · · · , k∗

1,n1+n2
) :=HPE.GenKey(P K , M SK , �A).

• KSAC.DeriCap(D �A,Q, P K ): Transform the query Q into the query vector �Q := (q1, · · · , qn2 ), obtain k∗
2,0 by partially calling

HPE.Delegate1(P K , D �A, �Q), and return T �A, �Q := k∗
2,0.

• KSAC.Search(T �A, �Q , Chead , P K ): Run HPE.Dec(Chead , T �A, �Q , P K ) and output True if the result is IGT
.

• KSAC.RelEK(Cbody,D �A, P K ):Release the symmetric key E K by invoking HPE.Dec(Cbody,D �A, P K ).

published while M SK will be kept as a secret. The format
of hierarchy �u has two vector spaces, where ni is the
length of i -th vector space (i := 1, 2). In KSAC, the first
vector space is defined as the attribute space, while the
second space is the keyword space.

• KSAC.BuildIndex. This algorithm is performed by data
owner to produce the encrypted searchable index. The
owner first converts the access policy and keywords into
the access policy vector (APV) and keyword vector (KV),
and chooses a random vector (RV). To generate the
head component Chead , the owner calls HPE.Enc to
encrypt IGT (i.e., the identity element of group GT

that used in HPE) with the concatenation of APV and
KV. To generate the body component, the owner calls
HPE.Enc and encrypts the symmetric key E K with the
concatenation of APV and RV, where E K is used for file
encyption/decryption.

• KSAC.GenCre. This algorithm is run by the author-
ity to generate the credential based on user’s attribute
values. According to user’s attribute values A, the
authority first converts A into the attribute vec-
tor (AV) and then issues the corresponding credential
D �A := (k∗

1,0, k∗
1,1, k∗

1,2, k∗
1,n1+1, · · · , k∗

1,n1+n2
) by calling

HPE.GenKey. In D �A, k∗
1,0 is used as the decryption

key to release E K from the body component of the
encrypted index for file decryption, (k∗

1,1, k∗
1,2) are used

for re-randomization in the search capability derivation,
and (k∗

1,n1+1, · · · , k∗
1,n1+n2

) are used for the derivation of

search capability [35].
• KSAC.DeriCap. This algorithm is executed by data user

to derive the search capability according to his query and
credential. For a query Q, the user transforms it into the
query vector (QV) and produces the search capability
T �A, �Q . Notice that the user does not need to complete
the algorithm HPE.Delegate1, but just computes k∗

2,0 to
make it serve as the capability. k∗

2,0 can be treated as
the decryption key to decrypt the head component of the
encrypted index (The description of HPE.Delegate can
be referred to [35].).

• KSAC.Search. This algorithm is performed by the cloud
server. After receiving the capability T �A, �Q , the cloud

server calls HPE.Dec. If the result is IGT that is public,
then it indicates the condition 〈 �Q, �W 〉 = 〈 �A, �S〉 = 0
establishes, meaning that the file’s keywords match the
search query (i.e., 〈 �Q, �W 〉 = 0) and the user is allowed to
access the file (i.e., 〈 �A, �S〉 = 0). If a mismatch happens,
the cloud server cannot determine whether the keywords
mismatch the search query or the files refuse the user’s
access. Finally, the cloud server returns the ciphertext
along with the body component Cbody to the user.

• KSAC.RelEK. This algorithm is executed by the user
to decrypt the file. After obtaining matching files, the
authorized user can successfully release E K to decrypt
the encrypted file content, since 〈 �A, �S〉 = 〈�0, �R〉 = 0
holds.

An Example: Alice (i.e., data owner) wishes to share her
health records with her personal doctor Bob (i.e., data user)
in hospital A, then she can combine the access policy S
“Hospital=A ∧ Name=Bob” with keywords of her records
before uploading them to the cloud. Bob, who keeps the
credential standing for the attribute values “Hospital=A,
Name=Bob” distributed by the hospital A (i.e., authority), can
generate his query like “Name=Alice ∧ Date=4/20/2014” to
timely learn Alice’s body status. If Carl is a new doctor for
Alice in hospital A, to grant him the access permission, Alice
can change the access policy to “Hospital=A ∧ (Name=Carl
∨ Name=Bob)”. This procedure relates to the access policy
update referred in Section III-D.

D. Access Policy Update and Keyword Update

To adapt to the scenario with frequent updates, such as the
update to the access policy, KSAC should efficiently support
the access policy update as well as keyword update. Suppose
the owner plans to update the access policy vector (APV)
from �S = (s1, · · · , sn1) to �S′ = (s′

1, · · · , s′
n1

) where n1
is the length of APV , then the head and the body of
the index should be correspondingly renewed. A straightfor-
ward way of updating Chead and Cbody by directly running
HPE.Enc(P K , �S′|| �W , IGT ) and HPE.Enc(P K , �S′|| �R, E K )
will pay for the re-encryption cost for the unchanged �W and �R
for every update, causing considerable waste of computation
capacity.
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Algorithm 2: Access Policy Update

1) keep lists KVCL (i.e., {C �W }) and RVCL (i.e., {E K , C �R}), where C �W := (C �W
1 , C �W

2 ) :=HPC.Enc(P K , �W , IGT
),

C �R := (C �R
1 , C �R

2 ) :=HPC.Enc(P K , �R, IGT
).

2) convert the updated access policy S ′ into �S′, and produce C �S ′ := (C�S ′
1 , C

�S ′
2 ) :=HPE.Enc(P K , �S′, IGT

).

3) uniformly pick δ1 from Fq , and update the head component, where Chead ′
1 := C�S ′

1 + δ1 · C �W
1 , Chead ′

2 := C �S ′
2 · (C �W

2 )δ1

4) uniformly pick δ2 from Fq , and update the body component, where Cbody′
1 := C�S ′

1 + δ2 · C �R
1 , Cbody′

2 := C �S ′
2 · (C �R

2 )δ2 · E K

5) upload Chead ′ := (Chead ′
1 , Chead ′

2 ) and Cbody′ := (Cbody′
1 , Cbody′

2 ) to the cloud.

Here, we make the following changes to efficiently
update the access policy without loss of security (shown in
Algorithm 2): when creating Chead , the owner should locally
keep a list named keyword vector component list (KVCL)
(step 1). Every item in KVCL is formed by C �W produced
by calling HPE.Enc(P K , �W , IGT ). When the owner renews
the access policy from S to S ′, he can convert S ′ into �S′
first and then calculate C �S ′

(step 2). To efficiently update the
encrypted index, the owner uniformly choose a value δ1 from
Fq (Fq is a finite field) to randomize the distribution of C �W
and compute the updated head component Chead ′

(step 3).
Similarly, when the owner plans to update Cbody , he should

keep a random vector component list (RVCL), in which every
item is formed by the symmetric key E K and C �R produced by
calling HPE.Enc(P K , �R, IGT ) (see step 1). When the APV
changes from �S to �S′, the owner produces the updated body
component Cbody′

by reusing the item in RVCL (step 4).
Lastly, the owner requires the cloud server to replace the

expired index with the updated index (step 5). It is intuitive that
keeping KVCL and RVCL improves the efficiency of access
policy update by sacrificing a small amount of storage space.
The workflow of keyword update is similar, and one difference
is that only the head component is required to be updated in
keyword update.

E. The Protection of Access Privilege Privacy

In the above protocols, the cloud server can still get a rough
understanding about a user’s access privilege with the number
of searches increases, just by listing the files ever returned to
that user. To enhance access privacy, we inject the noise which
is actually a random number into the search capability and the
index, so that some files exceeding the user’s privilege might
be returned and user’s actual access privilege will be concealed
against the cloud server.

When building an index, the owner firstly chooses a random
number o j and designs the new access policy as S ′ := S∨o j .
A user can produce the search capability based on the search
query and another noise oi , so that even his access is refused
by S, he can still receive the file if oi = o j and the keywords
match the query. Thus, the cloud server will be misled under
the effect of the noise. Even the files that are not covered by
the user’s access privilege may be returned (i.e., in the case

when o j embedded in the encrypted index equals oi in the
capability, but the index does not match the capability), the
user cannot obtain the symmetric keys to decrypt them due
to the restriction of S in Cbody (described in the algorithm
KSAC.RelEK in Section III-C). This method not only respects
the access policy, but also defends the user’s privilege privacy.

F. Analysis of KSAC

1) Data Confidentiality and Index Privacy: In the design
of KSAC, we employ HPE [35] as the black box and the
protocols of KSAC can be mapped to the security game of
HPE. Therefore, KSAC has the same formal security definition
and security proofs as HPE, i.e., KSAC reaches the selectively
attribute-hiding security against chosen plaintext attack under
the RDSP and IDSP assumptions [35]. It means that the advan-
tage is negligible for a computationally bounded adversary
(e.g., the cloud server) to distinguish the two cipehrtexts of
two encrypted vectors without a capability to differentiate the
two ciphertexts.

The Chead and Cbody in KSAC can be treated as the
ciphertext of encrypted vectors (i.e., �S|| �W and �S|| �R) in HPE,
while the search capability T �A, �Q in KSAC can be regarded
as the capability in HPE. Therefore, being treated as the
adversary in the threat model of HPE, 2 the cloud server
can only obtain the ciphertext and the capability, where the
distribution of ciphertext in KSAC are consistent with that
in HPE. This indicates that, in the security game defined
in HPE [35], the cloud server not only cannot obtain any
useful information about EK (i.e., the message in HPE), but
also cannot learn the access policy vector �S and keyword
vector �W . Thus KSAC can achieve the selectively attribute-
hiding security as HPE to guarantee index privacy.

In KSAC, the file content is first encrypted by the symmetric
key E K and E K is then encrypted by HPE. Thus, the data
confidentiality is ensured by the symmetric algorithm and HPE
together.

2) Fine-Grained Access Control and Multi-Field Search
Query: KSAC uses the access policy vector (APV) to repre-
sent the access policy specified in CNF formula over multiple

2The adversary defined in the threat model of HPE will try to learn the
encrypted information, which comforts to the “curious” setting of the cloud
server in KSAC.
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attribute fields. Meanwhile, KSAC also allows users to employ
a query vector to express the search query represented in CNF
among multiple keyword fields.

3) Access Privilege Privacy Analysis: Suppose the actual
access permission of a user without the noise disturbance is P,
we use |P| to denote the number of files in P. The returned
files purely caused by the effect of noise (i.e., the returned
files that the user is not permitted to access) after t searches
can be expressed as Nt = ⋃t

i=1 Di , where Di is composed
of the newly returned files that purely caused by the noise in
the i -th search and have not appeared in the previous (i − 1)
searches before. This definition means that the disturbed file
will just be recorded the first time it is retrieved.

Then the number of files that are returned by the effect of
noise is |Nt | = ∑t

i=1 |Di |, where |Di | denotes the number of
files in Di , thus the concept of disturbance rate after t searches
can be given by

Rt = |Nt |
|P| (1)

The disturbance rate Rt represents the protection degree
of the user’s access permission against the cloud server after
t searches. The larger disturbance rate usually achieves the
stronger protection for user’s access privilege. Moreover, it is
easy to observe that the disturbance rate will increase as the
number of disturbed files becomes larger.

4) Communication Cost Introduced by Noise: Without loss
of generality, in the i -th search, we assume that for a noise
value oi in the capability, the probability of a file that is tied
with this noise is Poi . For a search, suppose the probability
for a file to satisfy the search condition (i.e., the keywords
of a file match the query and user’s attribute values satisfy
the access policy) is Pqi . We assume that these two kinds of
probability are independent, then a file is returned purely due
to the noise is Poi (1 − Pqi ). If we let the total number of files
be |D|, then the number of extra returned files caused by the
noise oi can be formulated as Equation (2), while the number
of real retrieved files Nqi caused by the effect of the search
condition can be expressed as Equation (3).

Noi = |D| · Poi · (1 − Pqi ) (2)

Nqi = |D| · Pqi (3)

Suppose a user launches t searches, without loss of general-
ity, we assume that the first r searches (r ≤ t) include the noise
values {oi }r

i=1, then the ratio λ between extra communication
cost and the real communication cost after t searches can be
formulated as follows:

λ =
∑r

i=1 Noi∑t
i=1 Nqi

=
∑r

i=1 Poi (1 − Pqi )∑t
i=1 Pqi

(4)

Equation (4) shows that the value r and the probability of
Poi can be adjusted to ensure that the introduction of the noise
value only incurs acceptable extra cost to users.

5) Security Analysis of Access Policy Update: When updat-
ing the access policy of a file from �S to �S′, on one hand,
the data owner first chooses the coefficients uniformly to

encrypt �S′, thus the coefficients of bi and dn1+n2+1 in C �S ′
are

uniformly distributed among Fq , for i = 1, · · · , n1, n1+n2+3.

bi (i = 1, · · · , n1, n1 + n2 + 3) and dn1+n2+1 are the bases in
P K and employed to encrypt a targeted vector in HPE. More
detail about the bases of HPE can be referred to [35].

On the other hand, the owner then fetches the pre-stored
items C �W and C �R , and uses the uniformly selected values δ1

and δ2 to ensure that the coefficients of bi and dn1+n2+1 in
δ1 · C �W and δ2 · C �R are uniformly distributed among Fq (for
i = n1 + 1, · · · , n1 + n2, n1 + n2 + 3) and the coefficient of
dn1+n2+1 equals the exponent of gT , where gT is the generator
of the group GT in HPE.

Therefore, the generation of Chead ′
will promise that the

distributions of Chead ′
is consistent with that of directly calling

HPE.Enc(P K , �S′|| �W , IGT ) in the cloud server’s view. This
guarantee also establishes when generating Cbody′

. Therefore
our proposed access policy update can achieve the same
security strength with that of direct calling HPE algorithms.

Based on the same principle, the keyword update is secure
as directly invoking HPE.Enc(P K , �S|| �W ′, IGT ).

G. Complexity Analysis of KSAC

Suppose n1 (resp. n2) denotes the length of the vector
space for access control (resp. keyword search). From the
construction of HPE [35], the length of vector b and b∗ is
O(n1 + n2). Therefore, the computation complexity for index
encryption is O((n1 + n2)

2). The per-credential generation
complexity is O((n1 + n2)

2). As KSAC does not require to
fully execute HPE.Delegate1, but just produces k∗

2,0, the per-
capability derivation complexity is O(n2(n1 + n2)). Finally,
the search operation needs to perform the pairing operation
to each pair of elements of the vectors embedded in the
index and capability, thus the computation complexity will
be O(n1 + n2).

IV. PERFORMANCE EVALUATION

We fully realize KSAC based on Java Pairing-Based Cryp-
tography (JPBC) Library [41]. We first choose two real data
sets “Nursery Data Set” [42] and “Adult Data Set” [43] to
serve as the shared files and characterize data users. Second,
we try to make the number of shared data files approach or
even more than the average number of files shared by per
user in real cloud storage systems. Specifically, the number
of instances in “Nursery Data Set” is 12,960, which is
much more than the average number of shared files per user
reported in two typical cloud storage systems (i.e., 55 per
Box user [44]). Our server is equipped with 2.10GHZ Intel�
Core 2 Duo CPU and 4GB RAM. The operating system
running on the server is Ubuntu (version: 11.04) and the kernel
is Linux Ubuntu 2.6.38-8-generic.

We compare KSAC with another system that is composed of
Predicate Encryption (PE) [27] and MRQED [9], and we call
it “P+M”. P+M utilizes PE for access control and employs
MRQED for keyword search. The three balance primes in
PE are selected with 342 bits each to equivalently achieve
the same security strength provided by the group in KSAC
whose order is 160-bits. Moreover, we also assume d = 1
in MRQED.

We define a format of hierarchy �u with 2 levels. The first
level is a vector space for access control (e.g., APV/AV) whose
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TABLE II

STORAGE OVERHEAD UNDER REAL DATA SETS

length is n1, and the second level is a query vector space (e.g.,
QV/KV) with the length n2. We select attributes “Sex” and
“Occupation” with 2 values and 14 values respectively from
the “Adult Data Set” [43] to serve as user’s attribute values.
According to the transformation in Section II, the length of
the first vector space is n1 := 2 + 14 + 1 := 17. We then
choose the “Nursery Data Set” [42] to denote data files,
where attributes and corresponding values in this data set are
treated as keyword fields and keywords respectively in our
evaluation. There are 8 fields in the data set, among which
there are 4 fields that have 3 possible keywords, 2 fields
that have 4 possible keywords, 1 field that has 2 possible
keywords, and 1 field that has 5 possible keywords. Therefore,
n2 = 4 × 3 + 2 × 4 + 1 × 2 + 1 × 5 + 1 = 28.

A. Experiment Setup

We adopt type A elliptic parameter [41] and select the group
order as 160 bits to provide 1024 bits discrete log security
strength. From the aspect of storage overhead, an element takes
up 65 Bytes in compressed form in both KSAC and MRQED
if the size of the base field for the group is 512 bits when
q is 20 B. When n1 = 17, n2 = 28, then it needs 143.4 KB
and 191.3 KB for KSAC to keep P K and M SK .

We also evaluate the storage cost of the comparison system
P+M. For PE, an element in the composite group G can be
represented by 130 Bytes and it needs 43 Bytes to represent
the order of the subgroups. If n1 = 17, then it needs 4.8 KB
and 4.7 KB to keep P K and M SK in PE, respectively. For
MRQED, the size of P K and M SK is the same, i.e., 13.8 KB
when n2 = 28. Thus the P K and M SK in the system P+M
are 18.6 KB and 18.5 KB. The comparison on the storage
overhead is shown in Table II. Though it requires a little more
storage space to maintain the P K and M SK in KSAC when
compared with P+M, it is less of an issue today because of
the lower price of the storage space.

B. Experiment Results

Experiment 1 (Index Building): For index construction, we
mainly consider the time to create Chead and Cbody and show
the averaged result in Figure 3(a). One can observe that the
time scales as O(n2

2) when n1 is fixed. The size of Chead is
the same to that of Cbody , and when n1 = 17, n2 = 28, the
creation time and the size of head/body part are 1.74 sec and
3.1 KB respectively. 1

For P+M, to encrypt the access policy, it takes 0.42 sec
and 4.6 KB for PE to generate the encrypted index and keep

1This value is obtained in our evaluation. Figures in this experiment are to
show the used time when the values of n1 and n2 change respectively. Due
to page limit, it is difficult to illustrate the time for all the pairs of (n1, n2).

Fig. 3. Comparison on encryption time and credential generation time.
(a) Encryption time. (b) Credential generation time.

TABLE III

OPERATION TIME UNDER REAL DATA SETS

it when n1 = 17. To encrypt the keywords, the per-index
encryption time in MRQED is 1.28 sec when n2 = 28 and the
storage cost is 6.9 KB. Therefore, the total size of an encrypted
index in P+M is 11.5 KB and the per-index encryption time
is 5.11 sec. The results are listed in Table II and Table III.

According to Table III, to build an encrypted index, KSAC
needs a bit more time than P+M. However, building an index
is still a one-time operation and is not very significant. In the
environment with keyword search and access control, the most
dominated operations are the search capability derivations and
the search operations, which should be placed with special
attention.

Experiment 2 (Credential Generation): For credential gen-
eration, we test 100 cases when n1 and n2 change and
show the averaged results in Figure 3(b). To generate a valid
credential, O(n2

2) power operations and O(n2
2) multiplication

operations should be carried out when n1 is fixed. Most of
the credential generations are one-time cost, thus we argue
that the cost is still reasonable. Some special hardware aiming
at improving the power efficiency can also be adopted. For
example, Elliptic Semiconductor CLP-17 [9] can decrease the
time of exponential operation from 6.4 ms to 30 us. When
n1 = 17, n2 = 28, the credential size and the generation time
in KSAC are 94.5 KB and 22.15 sec, respectively.

Both PE and MRQED in P+M do not require users to keep
any “credential-like” materials and demand them to request
for the capability from the MSK keeper (either the data owner
or the authority), therefore the needed storage space and the
credential generation time is zero as shown in Table II and
Table III respectively. This comparison also indicates that



866 IEEE SENSORS JOURNAL, VOL. 17, NO. 3, FEBRUARY 1, 2017

Fig. 4. Comparison on capability derivation time and search time.
(a) Capability derivation time. (b) Search time.

KSAC though increases a small number of storage capacities
at the client machines, it grants data users the ability of
capability derivation..

Experiment 3 (Search Capability Derivation): The evaluated
results of search capability derivation are shown in Figure 4(a).
We can observe that when n1 = 17, n2 = 28, deriving
a search capability calls for about 1.08 sec, which is quite
applicable in the real scenario. For the storage overhead,
when n1 = 17, n2 = 28, it needs about 3.0 KB to store
a valid search capability, which will not bring much storage
burden to the user. The user can also keep the frequently used
search capabilities to reduce the time cost in multiple search
capability generations.

For the comparison system P+M, to enforce access control,
the time of generating a secret key in PE is about 3.84 sec
when n1 = 17. Meanwhile, the keyword search functionality
offered by MRQED will also require 1.27 sec when n2 = 28.
Therefore, the total needed time to derive a search capability
in P+M is 5.11 sec as shown in Table III. In addition,
PE system requires the MSK keeper (e.g., the data owner)
to be responsible for the secret key generation. This setting
will easily make the MSK keeper become the bottleneck of
the system, once the access requests increase sharply. Table II
also list the storage cost of a search capability in the system
P+M when being evaluated by the selected two data sets.

From the evaluations above, data user in KSAC has to afford
most of the burden during the whole procedure of capability
derivation, which makes KSAC more scalable than the compar-
ison system P+M. Moreover, the capability derivation is more
frequently executed compared with index building operations,
and the efficiency of KSAC on this aspect also indicates its
advantage when deployed in the real scenario.

Experiment 4 (Search): Among all the operations in KSAC,
search operation is generally the most frequently executed
operation. It will be invoked whenever a user plans to retrieve

Fig. 5. Comparison on access policy update time and number of returned
files. (a) Access policy update time. (b) Number of returned files.

his interested files and thus has a significant impact on
user experience. Therefore, the search efficiency of KSAC is
usually the greatest concern when being deployed in the real
cloud scenario.

We present the average per-index search time when the
length of n1 and n2 vary. The final results are shown in
Figure 4(b). When n1 = 17, n2 = 28, it takes about 0.12 sec
for KSAC to judge if a file satisfies the search capability.
The search time of KSAC will be further decreased once
the parallel technologies are introduced. Thus we believe that
KSAC is acceptable for practical use in real cloud application.

We also evaluate P+M on the search efficiency. For PE,
if n1 = 17, the time to check user’s access privilege after
preprocessing is about 1.3 sec. For MQRED, it takes O(n2)
pairing operations. When n2 = 28, the search time is 0.39 sec.
Therefore, for the system P+M that is based on PE [27] and
MRQED [9], the search time in P+M should be 1.69 sec,
which is 14.1 times than that in KSAC.

Experiment 5 (Access Policy Update): Moreover, we record
the average time to generate a new access policy in Figure 5(a)
and measure the storage overhead to maintain KVCL and
RVCL. One can observe that the time to update the access
policy is linear to n1 when n2 is fixed. If the owner updates
the access policy of a file when n1 = 17 and n2 = 28, then
he should pay 0.91 sec to renew the head/body component,
and allocate merely 2.2 KB storage space for each item of
KVCL/RVCL. Furthermore, the needed time to update the
Chead (or Cbody) in KSAC is almost half of that to directly
re-produce Chead (or Cbody), proving the efficiency of access
policy update mechanism in KSAC.

Experiment 6 (Privacy Protection When Noise Is
Introduced): In this test, we assume a data owner possesses
100 files, where each user is given two attribute values.
For each file, we choose a set of keywords from Car
Evaluation Database, design the access policy by choosing
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Fig. 6. The cloud server’s vision about user’s access pattern.

the appropriate attribute values, and assign it with a noise
ranging from 0 to 400. A user that is allowed to access
17 files can generate a search capability derived from the
random keywords every time. We accumulate the returned
files when he issues 100, 300, 500 and 4,000 search requests
respectively, and compare his real access privilege with the
access pattern (files that are ever received by the user) in
Figure 6. The access pattern will be far away from the user’s
real access privilege with the search requests increase, which
does conceal user’s access permission against the cloud
server.

We also measure the cost brought by introducing the noise.
We use countori to denote the total number of the returned
files which are originally allowed to be accessed by the user,
and employ countnoi to represent the number of the returned
files that are beyond the user’s access right. When the user
issues 100, 300, 500 and 4,000 search requests respectively,
the comparison in Figure 5(b) shows that the unneeded files
will not take up much overhead (around 7%). Moreover, the
user can further reduce the cost by adjusting the frequency of
noise injection.

V. CONCLUSIONS

In this paper, we propose a scalable framework that allows
users to locally derive the search capability by utilizing both
their credentials and a search query. We then utilize HPE to
realize this framework and present KSAC. KSAC realizes the
fine-grained access control and multi-field keyword search,
enables efficient update of both access policy and keywords,
and protects user’s access privacy. The results show that KSAC
just needs 1.08 sec for per-capability generation, and takes
0.12 sec for match judgement between a search capability and
an encrypted index.
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