
Keyword Search with Access Control over
Encrypted Data in Cloud Computing

Zhirong Shen, Jiwu Shu†, Wei Xue
Department of Computer Science and Technology, Tsinghua University,Beijing 100084, China
Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China

†Corresponding author:shujw@tsinghua.edu.cn
zhirong.shen2601@gmail.com,xuewei@tsinghua.edu.cn

Abstract—Cloud computing has become an increasingly pop-
ular service for data storage and processing. To keep users’
data on the cloud from leaking to unauthorized users, probably
including the cloud service providers, the data must be stored
in an encrypted form. In the meantime, for data intended for
sharing, an efficient access control must be provided. A common
operation on the data is keyword search. Currently, search
operation over encrypted search is performed at the cloud servers
and access control for the in-cloud data is usually enforced by
users. Separation of the two types of operations can lead to
reduced efficiency and compromised privacy for users with a
given set of access privileges to search over encrypted cloud data.

In this paper, we study the problem of keyword search with
access control over encrypted data in cloud computing. We first
propose a scalable framework where user can use his attribute
values and a search query to locally derive a search capability,
and a file can be retrieved only when its keywords match the
query and the user’s attribute values can pass the policy check.
Using this framework, we propose a novel scheme called KSAC.
KSAC utilizes a recent cryptographic primitive called HPE to
enforce fine-grained access control, perform multi-field query
search, and support the derivation of the search capability.
Intensive evaluations on real-world dataset are conducted to
validate the applicability of the proposed scheme.

I. INTRODUCTION

The cloud has become an important platform for data
storage and processing. It centralizes essentially unlimited
resources and delivers elastic services to end users without per-
forming their own system management and upfront equipment
acquisitions. However, data confidentiality protection (to hide
the plaintext against the cloud server and other unauthorized
users) and data access control (to grant user’s access privilege)
are usually required so that data owners can confidently store
their data onto the cloud.

Encryption is a commonly used method to preserve data
confidentiality by storing ciphertext in the cloud. However,
it may make traditional approaches designed for plaintext
keyword search inapplicable. Aiming at enabling secure and
efficient search over encrypted data, Searchable Encryption
(SE) [1]–[8] receives increasingly more attentions in recent
years, in which a query is encrypted as a search capability and
a cloud server will return files matching the capability without
having to know the keywords both in the capability or in
file’s encrypted index. However, most of existing SE schemes
assume that user can access all the shared files. Such assump-

tion does not hold in the cloud environment where users are
actually granted different access permissions according to the
access-control policy determined by data owners. Therefore,
it is important to study how to efficiently enforce the access-
control policy when searching over encrypted data.

There have been a number of works on access control
over encrypted data. These works can be categorized into two
groups, key-based access control (KBAC) and attribute-based
access control (ABAC). KBAC [13], [14] usually assigns each
file’s decryption key directly to authorized users. When a user
receives increasing number of such keys accumulated, its load
on the management of the keys can be too high. To reduce
the load, ABAC [9], [10] attaches a set of attribute values to a
user (or a file) and designs access policy for a file (or a user,
respectively). A file can be accessed if and only if the attribute
values satisfy the access policy. The access keys (e.g., the
decryption keys in KBAC and the keys to represent attribute
values in ABAC) are usually required to be kept secretly to
prevent data security from being compromised. Therefore, the
conventional way to perform encrypted search with access
control is to conduct the search operations at the cloud server
to take advantage of its large computation power and leave
the enforcement of access control at users’ machines to keep
their access keys from disclosed. This separation of search
and access control enforcement could lead to performance
degradation, especially when users are assigned with different
access permissions to search different encrypted cloud data.
An example, in this practice a cloud server may perform search
and transfers all the matching files to the users for them to
decrypt the files. However, a user may not be allowed to access
all the files and some of the transferred files have to discarded,
which leads to wasted network bandwidth and reduced service
efficiency. Actually, there are still a number of critical issues
to be addressed for the technique of encrypted search with
access control to be widely adopted.

First, for the sake of efficiency and convenience, multi-
field search query and fine-grained access control must be
supported. Moreover, to harness cloud servers’ computation
power, we should place the duty of enforcement of access
control on servers in the data centers while they are responsible
for searching over encrypted data, so that a file sent to a user
not only matches the user’s search query but also conform to
the user’s access rights.

Second, most of proposed SE schemes require data owner978-1-4799-4852-9/14/$31.00 c© 2014 IEEE

2014 IEEE 22nd International Symposium of Quality of Service (IWQoS)

978-1-4799-4852-9/14/$31.00 ©2014 IEEE 87

2

Fig. 1: The Fundamental Framework of KSAC

to handle the search capability derivation for user’s interested
keywords every time before search. This requirement places
heavy burden on data owners and can significantly compro-
mise the system scalability. This weakness should be mitigated
by allowing user to locally derive the search capability.

In this paper, we systematically study the issue of keyword
search with access control (KSAC) over encrypted cloud data.
The contributions are summarized as follows.

First, we propose a scalable framework as shown in Fig. 1
that integrates multi-field keyword search with fine-grained
access control. In the framework, every user authenticated by
an authority obtains a set of keys called credential to represent
his attribute values. Each file stored in the cloud is attached
with an encrypted index to label the keywords and specify the
access policy. Each user can use his credential and a search
query to locally generate a search capability, and submit it to
the cloud server who then performs search and access control
in an interleaving manner. In this way, a user receives the exact
data files that match his search query and he has the rights to
access.

Second, to enable such a framework, we make a novel
use of Hierarchical Predicate Encryption (HPE) [19] (a short
description is shown in section III and Appendix), to realize
the derivation of search capability from credential and a search
query. Based on HPE, we propose our scheme named as
KSAC, which enables the service of both the query search
and access control over multiple fields.

Finally, extensive evaluations have been conducted showing
the applicability of KSAC in real scenario.

II. PROBLEM FORMULATION

A. System Model and Threat Model

In this paper, we consider a cloud-data-sharing system (as
shown in Fig. 1) consisting of four entities, i.e., data owners,
the authority, data users and the cloud server. Data owners
create data files, design the encrypted indices containing both
keywords and access policy for each file, and upload the
encrypted files along with the indices to the cloud server. The
cloud server stores the encrypted data and performs search
when receiving search capabilities from users. The authority
is responsible to authenticate user’s identity. It issues a set of
keys as a credential to represent user’s attribute values. Data
users refers to those who wish to fetch the files according to
their interests and access privileges.

Like many previous SE schemes [2]–[4], the cloud server
is assumed to be ”honest but curious”, meaning the server

will honestly execute the pre-defined protocol, but it is also
”curious” to learn the information about file keywords, user’s
query and attribute values. The authority is honest to generate
the credential according to user’s attribute values.

B. Design Goals

The scheme to realize keyword search with access control
over encrypted cloud data should promise the following per-
formance and security goals.

Data Confidentiality and Index Privacy: The data confi-
dentiality should be protected against the cloud server and
unauthorized users, so that the file content would be seen
by authorized users only. Index privacy indicates the cloud
server should be unaware of the values in access policy and
the keywords embedded in the index.

Fine-grained Access Control and Multi-Field Keyword
Search: The system should support fine-grained access policy
and multi-field keyword search, for example, the access policy
and the search query can be represented in Conjunctive Normal
Form (CNF) over multiple fields, including a class of subset,
range and equality relationship on every field.

Efficiency: The system should promise the efficiency for
general operations, such as search and credential generation,
in practical environment.

C. Notation and Definition

Attribute and Attribute Value. The ”attribute” is used to
characterize the identity of a user. A user’s attribute values is
denoted as A := (A1 = a1, ..., AnA = anA) ∈ A1×· · ·×AnA ,
where ai and Ai are an attribute value and the attribute
value universe over the i-th attribute field Ai respectively,
and nA denotes the number of attribute fields. For example,
a user’s attribute values are ”Age=37, Profession=Professor”,
then ”37” (ai) is an attribute value of attribute ”Age” (Ai) and
the space (Ai) of the attribute ”Age” is [0, 150].

Predicate. In our system, we take the predicates class to
be F = {f~v|~v ∈ ZnN}, where ~v is the predicate vector, for a
value vector1 ~x, if 〈~x,~v〉 = 0, then we say ”~x is accepted by
~v ” and denote it as f~v(~x) = 1.

Transformation from Logical Form to Vector Form.
According to [11], one can represent the logical formula in the
vector form. A general case of a CNF formula over multiple
fields can be represented as Q := (Q1 ∈ (a1,1, ..., a1,m1

)) ∧
(Q2 ∈ (a2,1, ..., a2,m2)) ∧ ... ∧ (Qe ∈ (ae,1, ..., ae,me)). It can
be converted into the polynomial form with e univariate poly-
nomials as: f(Q1, ..., Qe) := r1((Q1−a1,1)...(Q1−a1,m1

))+
...+re((Qe−ae,1)...(Qe−ae,me

)). The predicate vector can be
derived as ~p := (p1,m1

, ..., p1,1, ..., pe,me
, ..., pe,1, p0), where

p0 :=
∑e
i=1((−1)mi · ri ·

∏mi

j=1 ai,j) and pi,j denotes the
coefficient of Qji in f(Q1, ..., Qe). For a value set V := (Q1 =
v1, ..., Qe = ve), it can be converted into the value vector
~v := (vm1

1 , ..., v1, ..., v
me
e , ..., ve, 1). So that if V satisfies Q,

1In some previous works [11], it is called attribute vector. To distinguish
it with the term ”attribute” used in our work, we denote it as the value vector
in this paper.

2014 IEEE 22nd International Symposium of Quality of Service (IWQoS)

88

3

TABLE I: Some Frequently Used Notations.

Notations Descriptions

S, ~S access policy, access policy vector (APV)
Wi, wi i-th keyword field, the keyword value of Wi

Ai,ai i-th attribute field, the attribute value of Ai

Wi,Ai keyword universe of Wi, attribute universe of Ai

W, ~W keywords of the file, keyword vector (KV)
n1/n2 length of 1-st/2-nd level of hierarchy ~µ
A, ~A the user’s attribute values, the user’s attribute vector (AV)
D ~A

the credential originated from ~A

Q, ~Q the user’s query, the query vector (QV)
T ~A, ~Q

the search capability generated from D ~A
and ~Q

〈~x, ~y〉 the inner-product of vectors ~x and ~y

then the equation 〈~v, ~p〉 = f(v1, ..., ve) = 0 establishes with
overwhelming probability.

Access Policy Vectors and Attribute Vectors. An access
policy is a unique logical expression over attribute values to
specify the authorized users, where we mainly consider the
access policy in CNF formula in this paper. For example, an
access policy ”Profession= student ∧ Department=chemistry”
only grants the student of chemistry department the access
right. The access policy can be transformed into the predicate
vector called access policy vector (APV) by following the
transformation referred above. The attribute vector (AV) is
the value vector transformed from the user’s attribute values.

Keyword and Search Query. The keyword refers to the
specific terms that characterize file content. For a file F , its
keyword set can be expressed asW := (W1 = w1, ...,WnW =
wnW) ∈W1 × · · · ×WnW , where wi and Wi are the keyword
value and keyword value universe over the i-th field Wi respec-
tively and nW is the number of the keyword fields. A ”search
query” represents the user’s interest, and is expressed in the
logical form of keywords. The search query and keywords
can be converted into the predicate vector called query vector
(QV) and the value vector called keyword vector (KV) after
the transformation.

Search Capability. A search capability includes the in-
formation of the search query and user’s attribute val-
ues. For instance, a user’s attribute values are ”Age=37,
Profession=professor” and the query is ”Date=2012/1/1 ∧
Topic=meeting”, then the search capability would include
the logical information of ”Age=27, Profession=professor,
Date=2013/1/1 ∧ Topic=meeting”.

III. SYSTEM DESCRIPTION OF KSAC

In this section, we will describe the main algorithms of
KSAC and show how to make use of hierarchical predicate
encryption (HPE) to simultaneously support fine-grained ac-
cess control and multi-keyword query over encrypted data. We
will start with the introduction of HPE first.
1. An Introduction to HPE. Hierarchical predicate encryp-
tion (HPE) [19] is an cryptographic primitive that supports
delegation of predicate encryption (PE) [11]. In HPE, a secret
key sk~pl for a predicate vector ~pl can decrypt the ciphertext
that associates with a value vector ~v if their inner-product
〈~pl, ~v〉 = 0. In the delegation of HPE, for a vector ~pl+1 /∈

Fig. 2: The Format of An Encrypted Index. The ”ASV ” and ”KV ”
represent the vectors transformed from access policy and keywords,
respectively. ”RV ” is a selected random vector.

span < ~pl >, a more restrictive secret key sk~pl,~pl+1
can be

generated with the sk~pl and ~pl+1 taken as input, so that the
decryption will succeed if 〈~pl, ~v〉 = 〈~pl+1, ~v〉 = 0. Appendix
gives a more detailed description of HPE.
2. The Design of Index Format. Before giving the system
description of KSAC, we first design the format of the encrypt-
ed index as shown in Fig. 2. The index information includes
the specified access policy, the representative keywords, and
the symmetric keys used to encrypt the file content. To build
an encrypted index, the data owner first produces the ”body”
component to lock the symmetric key EK by utilizing the
access policy, ensuring only the users whose attribute values
satisfy the access policy can recover EK. He further produces
the ”head” component using both the representative keywords
and the access policy, to guarantee the file can be retrieved
only when the keywords match with the query and the user’s
attribute values satisfy the access policy.
3. System Description. Our proposed keyword search with
access control scheme is shown in Algorithm 1, which contains
6 main algorithms.
• KSAC.Setup. The authority chooses a security parameter

λ and a format of hierarchy ~u, invokes HPE.Setup, and
outputs a public key PK and a master secret key MSK. PK
will be published while MSK will be kept as a secret. The
format of hierarchy ~u has two vector spaces, where ni is the
length of i-th vector space (i := 1, 2). The first vector space
is the attribute space, while the second space is the keyword
space.
• KSAC.BuildIndex. The owner converts the access policy

and keywords into the access policy vector (ASV) and keyword
vector (KV), chooses a random vector (RV), and builds the
encrypted index by calling HPE.Enc.
• KSAC.GenCre. According to user’s attribute val-

ues A, the authority converts A into the attribute vec-
tor (AV) first and then issues the corresponding credential
D ~A := (k∗

1,0,k
∗
1,1,k

∗
1,2,k

∗
1,n1+1, ...,k

∗
1,n1+n2

) by calling H-
PE.GenKey.
• KSAC.DeriCap. For an interested query Q, the user

transforms it into the query vector (QV) and produces the
search capability T ~A, ~Q. Notice that the user does not need to
complete the realization of the algorithm HPE.Delegate1, but
just compute k∗

2,0 to make it serve as the capability.
• KSAC.Search After receiving the capability T ~A, ~Q, the

cloud server calls HPE.Dec. If the result is in the form of IGT
,

where IGT
is the identity of the group GT used in HPE, then

it indicates the condition 〈 ~Q, ~W 〉 = 〈 ~A, ~S〉 = 0 establishes,
meaning the file’s keywords match with the search query (i.e.,

2014 IEEE 22nd International Symposium of Quality of Service (IWQoS)

89

4

Algorithm 1: The Primary Design of KSAC.

• KSAC.Setup(1λ, ~u): Invoke HPE.Setup(1λ, ~u) and output PK := (1λ, param,B) and MSK := (X,B∗)

• KSAC.BuildIndex.(PK,S,W, IGT
, EK): Convert the designed access policy S and the keywords W into the access

policy vector ~S and the keyword vector ~W respectively, choose a random vector ~R, and compute
Chead := (Chead

1 , Chead2) :=HPE.Enc(PK, (~S, ~W), IGT
) and Cbody := (Cbody

1 , Cbody2) :=HPE.Enc(PK, (~S, ~R), EK)

• KSAC.GenCre(PK,MSK,A): Validate a user’s identity, convert A into the attribute vector ~A := (a1, ..., an1), and
generate the credential D ~A := (k∗

1,0,k
∗
1,1,k

∗
1,2,k

∗
1,n1+1, ...,k

∗
1,n1+n2

) :=HPE.GenKey(PK,MSK, ~A)

• KSAC.DeriCap(D ~A,Q, PK): Transform the query Q into the query vector ~Q := (q1, ..., qn2), obtain k∗
2,0 by calling

HPE.Delegate1(PK,D ~A,
~Q), and return T ~A, ~Q := k∗

2,0.

• KSAC.Search(T ~A, ~Q, C
head, PK): Compute HPE.Dec(Chead, T ~A, ~Q, PK) and output True if the result is IGT

.

• KSAC.RelEK(Cbody,D ~A, PK): Release the symmetric key EK by invoking HPE.Dec(Cbody,D ~A, PK).

〈 ~Q, ~W 〉 = 0) and the user is allowed to access the file (i.e.,
〈 ~A, ~S〉 = 0). If a mismatch happens, the cloud server cannot
determine whether the keywords match with the search query
or the files refuse the user’s access. Finally, the cloud server
returns the ciphertext along with the body component Cbody

to the user.
• KSAC.RelEK. After obtaining matching files, the au-

thorized user can successfully release EK to decrypt the
encrypted file content, since 〈 ~A, ~S〉 = 〈~0, ~R〉 = 0 holds.
This indicates that EK can only be unlocked by the authorized
user’s credential. An unauthorized user’s attempt to recovery
EK will be rejected by ~S and the cloud server’s attempt to
unlock EK by using an authorized user’s search capability
will be refused by ~R.
4. Analysis of KSAC.

1) Data Confidentiality and Index Privacy: In KSAC, the
plaintext is first encrypted by the symmetric algorithm and
the symmetric key EK is then defended by HPE. Thus, the
data confidentiality is ensured by the symmetric algorithm and
HPE together.

Meanwhile, HPE is selective attribute-hiding against
chosen-plaintext attacks, meaning the advantage is negligible
for a computationally bounded adversary (e.g., the cloud
server) to distinguish the two cipehrtexts of two encrypted
vectors without a capability to differentiate the two ciphertexts.

The Chead and Cbody in KSAC can be treated as the
ciphertext of two encrypted vectors (i.e., (~S, ~W) and (~S, ~R))
in HPE, while the search capability T ~A, ~Q in KSAC can be
regarded as the capability in HPE. Therefore, being treated as
the adversary, the cloud server can only obtain the ciphertext
and the capability, where the distribution of ciphertext in
KSAC are consistent with that in HPE. This indicates that,
in the security game defined in HPE [19], the cloud server not
only cannot obtain any useful information about EK (i.e., the
message in HPE), but also cannot learn the access policy S
and keywords W unless it obtains T ~A, ~Q where (~A, ~S) = 0,
(~Q, ~W) = 0, thus KSAC can achieve the selective attribute-
hiding security as HPE to guarantee index privacy.

2) Fine-grained Access Control and Multi-Field Search
Query: In KSAC, the owner is able to define and enforce the
access control depending on ASV, which is converted from
the logical combination of the authorized attribute values over
each attribute field. Meanwhile, KSAC allows users to employ
a query vector to express the search query represented in
CNF among multiple dimensions, including subset, range and
equality query on every dimension.

IV. PERFORMANCE EVALUATION

We fully realize KSAC by using java Pairing-Based Cryp-
tography (jPBC) Library [12]. The server which is intended
to carry out the experiment is equipped with 2.10GHZ Intelr
Core 2 Duo CPU and 4GB RAM. The operating system run on
the server is Ubuntu (version: 11.04) and the kernel is Linux
Ubuntu 2.6.38-8-generic.

We compare KSAC with Predicate Encryption (PE) [11] on
the metric of access control under the same length of APV,
since PE can support CNF formula in vector form and provide
selective attribute-hiding security, which are the same with
KSAC. The three balance primes in PE are selected with 342
bits each to equivalently achieve the same security strength
provided by the group whose order is 160-bits. Moreover, we
also compare KSAC with MRQED [2] (we assume d = 1)
on the efficiency of keyword search under the same length of
KV.

We define a format of hierarchy ~u with 2 levels; the first
level is access control vector space (i.e., APV/AV), and the
second level is query vector space (i.e., QV/KV). We use n1
to denote the length of the first space and use n2 to represent
the length of the second level. Meanwhile, we also define n0 =
n1 + n2 + 3, where n0 is the dimensions of the vector space
defined in KSAC over Elliptic Curve Cryptography (ECC).

We select attributes ”Sex” and ”Occupation” with 2 values
and 14 values respectively from the ”Adult Data Set” [17]
in UCI Machine Learning Repository [15] to characterize
user’s attribute values. According to the transformation in
Section II, n1 :=

∑2
i=1 nAi + 1 := 17. We then use the

”Car Evaluation Data Set” [16] to denote the data files, where

2014 IEEE 22nd International Symposium of Quality of Service (IWQoS)

90

5

(a) BuildIndex (b) GenCre (c) DeriCap (d) Search

Fig. 3: The Performance of KSAC

attributes and corresponding values are treated as keyword
fields and keywords respectively. There are six attributes in the
dataset, where each of the first three attributes has four values
while each of the other three attributes have three values.
Thus the length of QV/KV n2 :=

∑6
i=1 nWi

+ 1 = 22, and
n0 := n1 + n2 + 3 := 42.
1. Experiment Setup. We adopt type A elliptic parameter
[12], which is constructed on the curve y2 = x3 + x over
the field Fq , and select the group order as 160 bits to provide
1024 bits discrete log security strength. From the aspect of
storage overhead, an element takes up 65B in compressed
form in KSAC and MRQED if the size of the base field
for the group is 512 bits when q is 20B, thus the size of
PK and MSK in KSAC are 65[n0(n0 − 1) + 3]B and
(65+20)n20=85n20B respectively. If n1=17,n2=22, then it needs
109.5KB and 146.4KB to keep PK and MSK respectively.

For PE, an element in G can be represented by 130B and
it needs 43B to represent the order of the subgroups, thus
the size of PK is 130(2n1+4)B, and the size of MSK is
[43×3+130(2+2n1)]B. If n1=17, then it needs 4.8KB and
4.7KB to keep PK and MSK in PE, respectively. Though it
requires a little more storage space to maintain the PK and
MSK of KSAC, it is less an issue today because of the lower
price of the storage space. Thus it needs 65[8(n2 − 1) + 1]B
to keep PK and MSK in MRQED and the size of each of
them is 10.7KB when n2=22.
2. Build Index. For index construction, we mainly consider
the time to create Chead and Cbody and show the averaged
result in Fig 3(a). One can observe that the time scales as
O(n22) when n1 is fixed. The size of Chead is the same to
that of Cbody , i.e., (65n0 + 1)B. So when n1=17, n2=22, the
creation time and the size of head/body part are 1.34s and
2.7KB respectively.

In addition, the size of the ciphertext in PE is 130(2n1 +
2)B, thus when n1=17, the encryption time and the size of
head/body component are 0.42s and 4.6KB respectively. For
MRQED, it takes O(n2) exponentiations and 65[4(n2 − 1) +
2]B to calculate and keep the ciphertext. When n2=22, the
encryption time and the size of Chead/Cbody are 1.0s and
5.5KB, respectively.

According to the above comparison, to build an encrypted
index, KSAC needs a bit more time than both of PE and
MRQED. However, building an index is still a one-time
operation and is not very significant to evaluate the total
performance of a scheme. In the environment with keyword
search and access control, the most frequently performed

operations are the search capability derivations and the search
operations, which should receive special attention.
3. Credential Generation. For credential generation, we test
many cases when n1 and n2 change and show the averaged
results in Fig. 3(b). To generate a valid credential, O(n22)
power operations and O(n22) multiplication operations should
be carried out when n1 is fixed. Most of the credential
generations are one-time cost, such as when the user applies
to be registered, thus we argue that the cost is still reason-
able. Some special hardware aiming at improving the power
efficiency can also be adopted. For example, Elliptic Semi-
conductor CLP-17 [2] can decrease the time of exponential
operation from 6.4ms to 30us. Furthermore, the credential
size is 65(n0 + 2n0 + n2 · n0), so when n1=17, n2=22, the
credential size and the generation time are 66.7KB and 16.5s,
respectively.
4. Search Capability Derivation. During the generation of
T ~A, ~Q, we need not implement the HPE.Delegation algorithm
completely, but only produce k∗

2,0 (i.e., T ~A, ~Q) to make it serve
as T ~A, ~Q. The evaluated results are shown in Fig 3(c). We can
observe that when n1=17, n2=22, deriving a search capability
calls for about 0.75s, which is quite applicable in the real
scenario. For the storage overhead, a search capability takes
up 65n0B, which also can be regarded as the communication
overhead. So when n1=17, n2=22, it needs about 2.7KB to
reposit a valid search capability, which will not bring much
storage burden to the user. The user can keep the frequently
used search capabilities to reduce the time cost in multiple
search capability generations.

When applying PE, if n1=17, the generation of a secret
key requires about 3.84s, which is 5.12 times of that of
KSAC. In addition, PE system requires the owner to be
responsible for the secret key generation. This setting will
easily make the owner become the bottleneck of the system,
once the access requests increase sharply. Against that, the
capability generation in KSAC is removed to users to migrate
the computation burden, which will benefit the scalability of
the whole system. For MQRED, when n2 = 22, the time and
the capability size are 0.99s and 6.7KB, which are about 1.32
times and 2.48 times of those of KSAC.

From the evaluations above, we can draw the conclusion that
data user in KSAC has to afford most of the burden during the
whole procedure of capability derivation, which makes KSAC
more scalable when compared with both PE and MRQED.
5. Search. We present the average search time per file under
different cases in Fig. 4(d). The computation complexity is

2014 IEEE 22nd International Symposium of Quality of Service (IWQoS)

91

6

linear with n0 since HPE.Dec calls for n0 pairing operations
and (n0 − 1) multiplication operations. When n1=17, n2=22,
it takes about 0.11s to judge whether a file satisfies the search
capability.

For PE, if n1=17, the time to check user’s access privilege
after preprocessing is about 1.3s, near 11.8 times of ours. For
MQRED, it takes O(n2) pairing operations. When n2=22, the
search time is 0.32s, about 2.9 times of ours. Since the search
operation is one of the operations that are most frequently
performed, the advantage of KSAC on search operation also
make it outperform than its competitors in real scenario.

V. RELATED WORK

Searchable Encryption. Song et al. [3] proposed the first
symmetric-key based searchable encryption scheme. Goh et
al. [6] presented secure indexed over encrypted data by em-
ploying Bloom Filter. Wang et al. [4] introduced secure ranked
keyword search based on ”order-preserving encryption”. In
the public key setting, Boneh et al. [1] first introduced the
searchable encryption scheme by using bilinear mapping.
Water et al. [5] fulfilled searchable audit log using symmetric
encryption and IBE respectively. Golle et al. [8] developed two
schemes to realize conjunctive keyword search over encrypted
data. Shi et al. [2] realized multi-dimensional range query over
encrypted data. Shen et al. [24] investigated the encrypted
search with preference by utilizing Lagrange polynomial and
secure inner-product computation. Li et al. [18] solved the
problem of authorized private keyword search, which only
achieved LTA-level authorization which was far coarser than
user-level access control. [21] partially refers to the similar
problem in KSAC, but it would easily cause considerable
complexity of keys management.
Access Control over Encrypted Data. Bethencourt et al. [9]
proposed CP-ABE to regulate the user’s privilege to the shared
data. As the dual problem of CP-ABE [9], KP-ABE [10]
embeded the access policy in the user’s keys while the data
were labeled with attributes. HVE [7] and PE [11] were the
new tools which could be used to perform access control over
encrypted data, and they all employed composite-order groups.
Sabrina et al. [20] utilized over encryption to realize access
control. Benaloh et al. [21] considered the security problem
of EHR, but it only supported single keyword search, and did
not achieve flexible access control. Narayan et al. [22] just
combined bABE and PEKS [23] together to realize a patient-
centric EHR management system, indicating even the users
with different attribute values would receive the same files for
the same query. Meanwhile, it still forced owners to process
user’s every search request.

VI. ACKNOWLEDGMENTS

We would like to thank Elaine Shi for her helpful discussion.
This work is supported by the National Natural Science Foun-
dation of China (Grant No. 61232003, 61327902), the National
High Technology Research and Development Program of
China (Grant No. 2012AA011003), Shanghai Key Laboratory
of Scalable Computing and Systems, Tsinghua-Tencent Joint

Laboratory for Internet Innovation Technology, and Tsinghua
University Initiative Scientific Research Program.

VII. CONCLUSIONS

In this paper, we address keyword search with access control
in encrypted cloud data, where the data are tied with access
policies and keywords, and allow the searches by multiple
users whose access privileges are specified. We propose a
scalable framework that allows user to locally derive the search
capability by utilizing both his credentials and a search query.
We then utilize HPE to realize this framework and present our
design named KSAC. KSAC realizes the fine-grained access
control and multi-field keyword search. Finally, the intensive
evaluations demonstrate the applicability of KSAC.

REFERENCES

[1] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. Public Key
Encryption with keyword search. In Proc. of EUROCRYPT, 2004.

[2] E. Shi, J. Bethencourt, T. Chan, D. Song, and A. Perrig. Multi-
Dimensional Range Query over Encrypted Data. In Proc. of IEEE S&P,
2007.

[3] D.Song, D.Wagner, and A.Perrig. Practival Techniques for Searches on
Encrypted Data. In Proc. of IEEE S&P, 2000.

[4] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou. Secure Ranked Keyword
Search over Encrypted Cloud Data. In Proc. of ICDCS’10, 2010.

[5] B. Waters,D. Balfanz, G. Durfee, D.K. Smetters. Building an Encrypted
and Searchable Audit Log. In Proc. of NDSS 2004.

[6] E.Goh. Secure Indexes. Cryptology ePrint Archive, 2003,
http://eprint.iacr.org/2003/216.

[7] D. Boneh and B. Waters. Conjunctive, Subset, and Range Queries on
Encrypted Data. in Proc. of TCC, 2007, pp. 535-554.

[8] P. Golle, J. Staddon, and B. Waters. Secure Conjunctive Keyword Search
Over Encrypted Data. in Proc. of ACNS, 2004.

[9] J. Bethencourt,A. Sahai, B. Waters. Ciphertext-Policy Attribute-Based
Encryption, In Proc. of IEEE S&P, 2007.

[10] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-Based
Encryption for Fine-Grained Access Control of Encrypted Data. In Proc.
of ACM CCS, 2006.

[11] J. Katz, A. Sahai, and B. Waters. Predicate Encryption Supporting
Disjunctions, Polynomial Equations, and Inner Products. in Proc. of
EUROCRYPT, 2008.

[12] Angelo De Caro. The Java Pairing Based Cryptography Library(jPBC)
http://gas.dia.unisa.it/projects/jpbc/index.html

[13] E. Goh, H.Shacham, N. Modadugu, and D. Boneh. Sirius: Securing
Remote Untrusted Storage. In Proc. of NDSS,2003

[14] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, K. Fu. Scalable
Secure File Sharing on Untrusted Storage. In Proc. of FAST, 2003.

[15] A. Frank and A. Asunicion. UCI machine learing repository, 2010.
[16] M. Bohanec. Machine Learning Repository, Car Evaluation Data Set.

http://archive.ics.uci.edu/ml/datasets/Car+Evaluation.
[17] R. Kohavi and B. Becker, http://archive.ics.uci.edu/ml/datasets/Adult.
[18] M. Li, S. Yu, N. Cao and W. Lou. Authorized Private Keyword Search

over Encrypted Personal Health Records in Cloud Computing. In Proc.
of ICDCS,2011.

[19] T. Okamoto and W.Takashima. Hierarchical Predicate Encryption for
Inner-Products In Proc. of ASIACRYPT, 2009.

[20] S. Vimercati, S. Foresti, S. Jajodia, S. Paraboschi and P. Samarati.
A Data Outsourcing Architecture Combining Cryptography and Access
control. In Proc. of CSAW, 2007

[21] J. Benaloh, M.Chase, E. Horvitz, and K. Lauter. Patient Controlled
Encryption: Ensuring Privacy of Electronic Medical Records. In ACM
CCSW, 2009

[22] S. Narayan, M. Gagne, and R. Safavi-Naini. Privacy preserving EHR
system using attribute-based infrastructure. In ACM CCSW, 2010.

[23] L. Fang, W. Susilo, C. Ge, and J. Wang. A Secure Channel Free Public
Key Encryption with Keyword Search Scheme without Random Oracle.
In Proc.of CANS, 2009.

[24] Z. Shen, J. Shu, and W. Xue. Preferred Keyword Search over Encrypted
Data in Cloud Computing. In Proc.of IWQoS, 2013.

2014 IEEE 22nd International Symposium of Quality of Service (IWQoS)

92

