
HV Code: An All-around MDS Code to Improve Efficiency and Reliability of
RAID-6 Systems

Zhirong Shen, Jiwu Shu†
Department of Computer Science and Technology, Tsinghua University

†Corresponding author: shujw@tsinghua.edu.cn
zhirong.shen2601@gmail.com

Abstract—The increasing expansion of data scale leads to
the widespread deployment of storage systems with larger
capacity and further induces the climbing probability of data
loss or damage. The Maximum Distance Separable (MDS) code
in RAID-6, which tolerates the concurrent failures of any two
disks with minimal storage requirement, is one of the best
candidates to enhance the data reliability. However, most of
the existing works in this literature are more inclined to be
specialized and cannot provide a satisfied performance under
an all-round evaluation.

Aiming at this problem, we propose an all-round MDS code
named Horizontal-Vertical Code (HV Code) by taking advan-
tage of horizontal parity and vertical parity. HV Code achieves
the perfect I/O balancing and optimizes the operation of partial
stripe writes to continuous data elements, while preserving the
optimal encode/decode/update efficiency. Moreover, it owns a
shorter parity chain which grants it a more efficient recovery
for one disk failure. HV Code also behaves well for the degrad-
ed read operation and accelerates the process to reconstruct
two disabled disks by executing four recovery chains in parallel.
The performance evaluation demonstrates that HV Code well
balances the I/O distribution and eliminates up to 27.6%
and 32.4% I/O requests for partial stripe writes operation
when compared with RDP Code and HDP Code. Moreover,
compared to RDP Code, HDP Code, X-Code and H-Code, HV
Code reduces up to 5.4%∼39.8% I/O requests per element
for the single disk reconstruction, decreases 6.6%∼28.3% I/O
requests for degraded read operations, and achieves the same
efficiency of X-Code for double disk recovery by shortening
47.4%∼59.7% recovery time compared with other three codes.

Keywords-RAID-6; Storage System; Load Balancing; Partial
Stripe Writes; Disk Recovery; Degraded Read

I. INTRODUCTION

With the rapid development of cloud storage, the size of

created data to be kept is amazingly expanding, resulting

in the strong demand of the storage systems with larger

capacity (e.g., GFS [6] and Windows Azure [26]). Increasing

the storage volume is usually achieved by equipping with

more disks, but it also comes with the rising probability

of multiple disk failures [1] [2] with the system scales up.

To provide a reliable and economical storage service with

high performance, Redundant Arrays of Inexpensive (or In-
dependent) Disks (RAID) receives tremendous attention and

is widely adopted nowadays. Among the various branches

of RAID, the Maximum Distance Separable (MDS) code of

RAID-6 offering the tolerance for concurrent failures of any

two disks with optimal storage efficiency, becomes one of

the most popular solutions.

In RAID-6 system, the original data will be partitioned

into many pieces with constant size (denoted as ”data

elements”) and the redundant information with the same

size (denoted as ”parity elements”) is calculated over a

subgroup of data elements. Once a disk failure happens (e.g.,

hardware malfunction or software error), the surviving data

elements and parity elements will be selectively retrieved

to reconstruct the elements on the dispirited disk. In the

meantime of disk failure, the storage system may always

receive the read operation to the data elements resided on

the corrupted disk (this operation is referred as degraded

read operation). Therefore, to timely response of user’s I/O

requests and improve data reliability, it is extremely critical

to efficiently process data recovery and degraded read.

Meanwhile, in general, ”healthy” RAID-6 storage systems

also have to cope with the frequent write accesses to the

hosted data (especially for partial stripe writes to continuous

data elements). A write operation to a data element will trig-

ger the update to the associated parity elements. Therefore,

in the circumstance with intensive write requests, storage

systems may easily suffer from the unbalanced load and are

likely to be exhausted with the absorption of a considerable

amount of extra I/O requests. Thus, to accelerate the write

operation and improve the system reliability, a RAID-6

storage system that can well balance the load and be efficient

to cope with the partial stripe writes is an imperative need.

Based on the above concerns, we extract the following

five metrics to roughly evaluate the performance of RAID-

6 storage systems. 1) The capability to balance the I/O

distribution; 2) The performance of partial stripe writes;

3) The efficiency to reconstruct the failed disk (disks);

4) The overhead of degraded read operation; 5) The en-

code/decode/update complexity. Deep investigations (e.g.,

[7] [3] [10] [4] [8] [5]) have been endeavored to pursue

the optimization on one of these metrics, yet all of them are
attending to one goal and losing another. On the aspect of

balancing the I/O requests, both X-Code [7] and HDP Code

[3] can evenly disperse the load to the whole disk array, but

the former has a poor performance on partial stripe writes

2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

978-1-4799-2233-8/14 $31.00 © 2014 IEEE

DOI 10.1109/DSN.2014.57

550

while the latter suffers high update computation complexity.

On the metric of partial stripe writes and degraded read, H-

Code [10] achieves excellent performance for the writes to

two continuous data, but it has little effect on both balancing

the load and still undergoes unsatisfied repair efficiency to

recover the corrupted disks. In the case of disk reconstruc-

tion, though P-Code [8] requires less elements, its complex

data manipulation and unsatisfied performance on partial

stripe writes and degraded read make it less competitive.

More details about the weaknesses among existing MDS

codes are discussed in the next section.

In this paper, we propose a novel XOR-based MDS

RAID-6 code called Horizontal-Vertical Code (HV Code) by

taking advantage of horizontal parity and vertical parity. By

evenly dispersing parity elements across the disk arrays, HV

Code can well balance the I/O load. It accelerates the repair

process for disk (or disks) reconstruction as well by reducing

the number of data elements involved in the generation of

parity elements, so that less elements should be retrieved

for every lost element. To optimize the efficiency of the

writes to two continuous data elements, HV Code utilizes

the advantage of horizontal parity which only renews the

horizontal parity element once for the updated data elements

in the same row, and designs a dedicate construction for

the vertical parity to ensure the last data element in the i-
th row will share a same vertical parity element with the

first data element in the (i + 1)-th row. In addition, HV

Code also provides competitive performance on degraded

read by utilizing the horizontal parity and still retains the

optimal encode/decode/update computation complexity. Our

contributions can be concluded as follows:

1) We propose an all-around MDS code named HV Code,

which well balances the load to the disks, offers an

optimized partial stripe write experience, reduces the

average recovery I/O to repair every failed element,

provides fast degraded read performance, and retains

the best encode/decode/update efficiency.

2) To demonstrate the efficiency of HV Code, we conduct

a series of intensive experiments on the metrics of

load balancing, partial stripe writes, degraded read

operation, and reconstruction for the single/double

disk failures. The results show HV Code achieves

the same load balancing rate as X-code and HD-

P Code, significantly decreases about 27.6%∼32.4%

write requests caused by the partial stripe writes, and

eliminates 6.6%∼28.3% read requests for degraded

read operation. With the aspect of recovery I/O, HV

Code reduces up to 5.4%∼39.8% I/O requests to repair

a lost element during the single disk reconstruction

compared with its competitors (i.e., RDP Code, HDP

Code, X-Code and H-Code). It achieves nearly the

same time efficiency of X-Code in double disk re-

covery by decreasing 47.4%∼59.7% recovery time

compared with other three typical codes.

The rest of this paper is organized as follows. We first

introduce the background knowledge of MDS codes and the

motivation of this paper in Section II and then present the

detailed design of HV Code in Section III. The property

analysis of HV Code will be given in Section IV and a

series of intensive evaluations are conducted to evaluate the

performance of HV Code and other representative codes in

Section V. Finally, we conclude our work in Section VI.

II. BACKGROUND AND MOTIVATION

A. Terms and Notations

To give a better understanding of the research background

of RAID-6 codes, we first summarize the terms and notations

that will be frequently referred throughout this paper.

• Data Element and Parity Element. Element is the ba-

sic operated unit in RAID-6 systems and can be treated

as an unit of a disk, such as a byte or a sector. The data
element contains the original data information, while

the parity element keeps the redundant information. In

Figure 1(a), E1,1 is data element and E1,5 is parity

element.

• Stripe. A maximal set of data elements and parity

elements that have dependent relationship connected by

an erasure code. Figure 1 shows the layout of a stripe

in RDP Code.

• Disk Array. The storage system constructed over mul-

tiple disk drives, which supports file striping to improve

the I/O throughput.

• Data Disk and Parity Disk. As the name implies, the

data disk is used to place the data elements only and the

parity disk is served as the storage of parity elements.

For example, in Figure 1, the disk D1 ∼ D4 are data

disks while D5 and D6 are parity disks.

• Horizontal Parity. It is a method to compute the

parity element and is also referred as ”row parity”. The

horizontal parity element is calculated by performing

the XOR operations among the data elements in the

same row. For instance, in Figure 1(a), the horizontal

parity element E1,5 :=
∑4

i=1 E1,i := E1,1⊕· · ·⊕E1,4.

• Diagonal Parity and Anti-Diagonal Parity. The di-

agonal (resp. anti-diagonal) parity connects the ele-

ments following the diagonal (resp. anti-diagonal) line.

In RDP and EVENODD codes, the horizontal parity

element will participate in the calculation of diagonal

parity element. For example, the diagonal parity ele-

ment E1,6 := E1,1 ⊕ E4,3 ⊕ E3,4 ⊕ E2,5 as shown in

Figure1(b).

• Vertical Parity. It is usually adopted by vertical codes,

such as P-Code [8] and B-Code [12]. In the vertical

parity calculation, the candidate data elements should

be picked out first and then performed the XOR oper-

ations.

551

(a) The Horizontal Parity (b) The Diagonal Parity

Figure 1. The Layout of RDP Code with p + 1 Disks
(p = 5). {E1,1, · · · , E1,5} is a horizontal parity chain and
{E1,1, E4,3, E3,4, E2,5, E1,6} is a diagonal parity chain. Their length
is 5.

• Parity Chain and its length. A parity chain is com-

posed of a group of data elements and the generated

parity element. For example, E1,1 involves in two

parity chains in Figure 1, i.e., {E1,1, E1,2, · · · , E1,5}
for horizontal parity and {E1,1, E4,3, E3,4, E2,5, E1,6}
for diagonal parity. The length of a parity chain is

denoted by the number of the included elements.

• Recovery Chain. It is constituted by a subgroup of

failed elements that have dependence in double disk

reconstruction. The elements in a recovery chain will

be repaired in an order. For example, there are four

recovery chains in Figure 5, where E2,3, E1,1, E1,3,

and E2,1 belong to the same recovery chain.

B. The MDS Codes of RAID-6 Storage Systems

The research of RAID-6 implementation has been a focus

in recent years. According to the storage efficiency, current

erasure codes to realize RAID-6 function can be divided into

two categories: Maximum Distance Separable (MDS) codes

and non-MDS codes. MDS codes reach optimal storage

efficiency while non-MDS codes sacrifice storage efficiency

to run after the improvement on other recovery metrics, for

example, the reduction of recovery I/O. The representative

MDS codes for RAID-6 realization include Reed-Solomon

Code [19], Cauchy Reed-Solomon Code [20], EVENODD

Code [5], RDP Code [4], B-Code [12], X-Code [7], Lib-

eration Code [9], Liber8tion Code [13], P-Code [8], HDP

Code [3], and H-Code [10]. The typical non-MDS codes

are Pyramid Code [14], WEAVER Code [18], Code-M [16],

HoVer Code [17], Local Reconstruction Codes [23] and its

application [24], and Flat XOR-Code [15]. In this paper,

we mainly consider MDS codes in RAID-6, which can be

classified into horizontal codes and vertical codes according

to the placement of parity elements.

The Horizontal Codes of RAID-6 Systems: Horizontal

codes are well known as the first studies of RAID-6 systems.

They are usually constructed over m+2 disks and demanded

to reserve 2 dedicated disks to place parity elements.

As the ancestor of horizontal codes, Reed-Solomon Code

is constructed over Galois field GF (2w) by employing

Vandermonde matrix. Its operations (i.e., multiplication and

division) are usually implemented in Galois field and this

(a) The Diagonal Parity (b) The Anti-diagonal Parity

Figure 2. The Layout of X-Code with p Disks (p = 5)

Figure 3. The Layout of P-Code with p Disks (p = 7). For example, data
element E2,1 joins the generation of parity P2 (i.e., E1,2) and parity P6

(i.e., E1,6), since (2 + 6) mod 7 = 1.

high computation complexity seriously limits its realiza-

tion in practice. To mitigate this overhead, Cauchy Reed-

Solomon Code introduces the binary bit matrix to convert

the complex Galois field arithmetic operations into single

XOR operations.

EVENODD Code and RDP Code are the typical parity

array codes. By performing the XOR operations instead of

finite field arithmetic, they outperform Reed-Solomon Code

on the metrics of realization and efficiency. Both of them

utilize the horizontal parity and diagonal parity to realize

their constructions and RDP makes some differences when

building the diagonal parity to achieve a better performance.

Horizontal codes own an advantage that it can be built

on any number of disks, but they usually cannot approach

optimal update complexity.

The Vertical Codes of RAID-6 Systems: Rather than

separating the storage of data elements and parity elements,

vertical codes store them together in the disk.

X-Code [7] (as shown in Fig. 2) is construed over p disks

(p is a prime number) by using both diagonal parity and

anti-diagonal parity. HDP-Code [3] is proposed to balance

the load in a stripe by employing horizontal-diagonal parity,

in which the diagonal parity element joins the calculation of

horizontal parity element. H-Code [10] optimizes the partial

stripe writes to continuous data elements. It gathers the

horizontal parity elements on a dedicated disk and spreads

the (p− 1) anti-diagonal parity elements over other p disks.

P-Code [8] (as shown in Fig. 3) is organized by using

vertical parity. Its parity calculation follows the simple rule

of i+ j = k, where Pi and Pj are two involved parities of

a data element and k is the id of the disk where the data

element resides on. Nevertheless, determining the involved

parities of a specified data element is a bit complex in P-

Code. For example, for a data elements in disk #1, it may

join either the generations of P2 and P6, or the computations

of P3 and P8. To determine the parity tuples of E3,1, one has

552

to know the parity tuples of E2,1, to ensure these two data

elements are assigned with the generation of different parity

elements. This manipulation is so troublesome that one has

to sacrifice additional storage capacity to keep a mapping

table for a fast parity location, otherwise a considerable

computation overhead (the complexity is O(p2)) will be

wasted for every lookup operation. This tedious lookup

operation will also lead to the complexity of O(p5) when

addressing single disk reconstruction.

C. The Remained Problems of Existing MDS Codes

Though the continuous efforts are made to greatly pro-

mote the diversity and maturity of RAID-6 storage systems,

most of the existing works cannot simultaneously address the

following problems. These problems will potentially threaten

the system reliability and degrade the system performance.

Load Balancing: Given the unbalanced I/O to a disk array

will extend the operation time and even hurt the system

reliability by causing uneven burden to disks, the study of

balancing I/O to disks has been considered for a period of

time [11] [3].

The traditional method adopts ”stripe rotation” (i.e., rota-

tionally choose the disk to serve as the parity disks among

different stripes) to uniformly distribute I/O request across

all the stripes. This method only takes effect when the

workload is uniform among the stripes, which actually does

not accord with all the I/O distributions in the real appli-

cation. In the scenario that different stripes have different

access frequencies, even the ”stripe rotation” is applied, the

stripe hosting hotter (resp. colder) data will receive more

(resp. less) access requests, still causing unbalanced I/O

distribution. Therefore, to well balance the load, a better

method is to evenly disseminate the parity elements among

the stripe.

For RDP Code [4], EVENODD Code [5], Liberation

Code [9], and H-Code [10], which require dedicated disk

to place the parity elements, will easily cause non-uniform

I/O distribution.

Partial Stripe Writes: The partial stripe writes to contin-

uous data elements is a frequent operation, such as backup

and virtual machine migration. As a data element is usually

associated with the generation of 2 parity elements in RAID-

6 codes, an update to a data element will also renew at least 2

related parity elements. This property also awards horizontal

parity an advantage that the update to the data elements in a

row only needs to update the shared horizontal parity once.

For X-Code [7], in which any two continuous data ele-

ments do not share a common parity element, therefore the

partial stripe writes will induce more extra write requests

to the parity elements compared to the codes utilizing

horizontal parity.

For RDP Code [4] and EVENODD Code [5], the partial

stripe writes to continuous data elements will put a heavy

update burden to the disk hosting diagonal parities. For

example, when E1,2, E1,3 and E1,4 are updated in Figure 1,

then disk #5 will only need to update E1,5 while disk #6 has

to update E2,6, E3,6 and E4,6, respectively. This unbalanced

I/O distribution will easily delay the write operation and

even threaten the system reliability by making some disks

tired out.

For HDP Code [3], its high update complexity will induce

considerable I/O requests. Moreover, it does not make any

optimization in the case of continuous writes across rows.

Recovery Cost for Disk Failure: The recovery of RAID-6

systems can be classified into the single disk failure recovery

and the reconstruction of double disk failure.

For the single disk recovery, a general way firstly pro-

posed by Xiang et al [22] is repair the invalid elements

by mixing two kinds of parity chains subjecting to the

maximum overlapped elements to be retrieved, so as to

achieve the minimum recovery I/O. For example, suppose

the disk #1 is disabled in Figure1, then recover E1,1 and E2,1

by using horizontal and diagonal parity chain respectively

can make E1,2 overlapped and save one element’s retrieval.

The rebuild cost by adopting this method is greatly reduced

but still relates to the length of parity chain. Due to the long

parity chain in the existing codes, there is still room for

reconstruction efficiency improvement.

Different from the selective retrieval in single disk recov-

ery, double disk recovery demands to fetch all the elements

in the survived disks. Though different codes have various

layouts, the time to read all the remained elements into the

main memory is the same if the parallel read is applied.

Moreover, by utilizing the parallel technology, the failed

elements locating at different recovery chains can be simul-

taneously reconstructed. For example, in Fig. 5, the element

E6,3 and E5,3 that are not in the same recovery chain can

be rebuilt at the same time. Therefore, the parallelism of

recovery chains is critical in double disk reconstructions.

Among the existing MDS array codes, RDP Code [4] can

only serially execute this process and all of HDP Code [3],

H-Code [10] and P-Code [8] achieve low parallelism of this

repair by building only two recovery chains.

Degraded Read Efficiency: Degraded read operation is

seriously considered when the system devotes to providing

timely responses for user’s read requests, even there happens

to be a corrupted disk. In this case, additional elements are

usually taken to recover the corrupted element to ensure the

smooth proceeding of this read operation. Suppose the disk

#1 fails in Figure 1, and the elements E1,1, E1,2, and E1,3

are requested at that time, then extra elements E1,4 and E1,5

will be also attached to re-calculate the failed element E1,1

by the horizontal parity chain. This example also reveals the

horizontal parity owns an advantage to the degraded read

efficiency, because some of the requested elements (e.g.,

E1,2 and E1,3) may involve in the re-calculation of the

corrupted element (e.g., E1,1) with great probability.

For X-Code [7] and P-Code [8], based on diagonal/anti-

553

Table I
THE FREQUENTLY USED SYMBOLS

Symbols Description

p the prime number

〈〉, 〈i〉p modular arithmetic, i mod p

Ei,j the element at the i-th row and j-th column
∑ {Ei,j} the sum of XOR operation among the elements {Ei,j}

L the length of continuous data elements to write

〈 i
j
〉p if k := 〈 i

j
〉p, then 〈k · j〉p = 〈i〉p

diagonal parity and vertical parity respectively, behave a bit

frustratingly on degraded read when compared to the codes

constructed on horizontal parity.

Another influence factor to the degraded read performance

is the length of parity chain. Longer parity chain probably

incurs more unplanned read elements. Derived from this

excuse, EVENODD Code [5], RDP Code [4], H-Code [10],

and HDP Code [3] still easily introduce a considerable

amount of additional I/O requests.

III. HV CODE FOR AN ARRAY OF p-1 DISKS

To simultaneously address the above remaining limitation-

s, an all-around RAID-6 MDS array code should satisfy the

following conditions: 1) be expert in balancing the load; 2)

optimize the performance of partial stripe writes to contin-

uous data; 3) be efficient to deal with single (resp. double)

disk failure (resp. failures); 4) have a good performance on

degraded read operation; 5) retain the optimal properties,

such as encode/decode/update efficiency.

To this end, we propose an MDS code named HV Code,

which makes use of horizontal parity and vertical parity and

can be constructed over (p−1) disks (p is a prime number).

Before presenting the construction of HV Code, we first list

the frequently used symbols in Table I.

A. Data/Parity Layout and Encoding of HV Code

A stripe of HV Code can be represented by a (p − 1)-
row-(p − 1)-column matrix with a total number of (p −
1)× (p− 1) elements. There are three kinds of elements in

the matrix: data elements, horizontal parity elements, and

vertical parity elements. Suppose Ei,j(1 ≤ i, j ≤ p − 1)
denotes the element at the i-th row and j-th column. In HV

Code, the horizontal parity elements and the vertical parity

elements are calculated by the following equations.

Horizontal parity element encoding:

Ei,〈2i〉p :=

p−1∑
j=1

Ei,j (j �= 〈2i〉p, j �= 〈4i〉p) (1)

Vertical parity element encoding:

Ei,〈4i〉p :=

p−1∑
j=1

Ek,j (j �= 〈8i〉p, j �= 〈4i〉p) (2)

k, j, i should satisfy the condition: 〈2k+ 〈4i〉p〉p = j. This

expression can also be simplified as 〈2k + 4i〉p = j. Then

we can obtain k according to the following equations.

k := 〈j − 4i

2
〉p :=

{
1
2 〈j − 4i〉p (〈j − 4i〉p = 2t)
1
2 (〈j − 4i〉p + p) (〈j − 4i〉p = 2t+ 1)

Notice that if u satisfies the condition 〈u · j〉p = 〈i〉p,

then we express u as u := 〈 ij 〉p. Fig. 4 shows the layout

of HV Code for a 6-disk array (p = 7). A horizontal parity

element (represented in horizontal shadow) and a vertical

parity element (represented in vertical shadow) are labeled

in every row and every column.

Figure 4(a) illustrates the process of encoding the horizon-

tal parity elements. By following Equation (1), the horizontal

parity elements can be calculated by simply performing

modular arithmetic and XOR operations on the data ele-

ments with the same shape. For example, the horizontal

parity element E1,2 (the row id i = 1) can be calculated

by E1,1 ⊕ E1,3 ⊕ E1,5 ⊕ E1,6. The vertical parity element

E1,4 (i = 1) should not be involved in the encoding of E1,2,

because E1,4 is at the 〈4i〉p-th column.

Figure 4(b) shows the process of encoding a vertical parity

element. Every vertical parity element is calculated by the

data elements with the same shape according to Equation (2).

For example, to calculate the vertical parity element E1,4

(the row id i = 1), we should first pick out the involved data

elements {Ek,j} based on Equation (2). When j = 1, then

j = 〈8i〉p, which violates the requirements in Equation (2).

When j = 2, then k := 〈 j−4i
2 〉p := 〈−1〉p := 6 and

E6,2 is positioned. By tracking this path, the following

data elements (i.e., E3,3, E4,5, and E1,6) are then fetched.

Second, by performing XOR operations among these data

elements, the vertical parity element E1,4 will be computed

as E1,4 := E6,2 ⊕ E3,3 ⊕ E4,5 ⊕ E1,6.

B. Construction Process

Based on the layout and encoding principle, we take the

following steps to construct HV Code.

1) partition the disk according to the layout of HV Code

and label the data elements in each disk;

2) encode the horizontal parity elements and the vertical

parity elements respectively according to Equation (1)

and Equation (2).

C. Proof of Correctness

We mainly prove HV Code is correct when applied in

one stripe and the correctness over multiple stripes can be

similarly deduced. We first propose the following lemma and

theorem. This proof method is also adopted by [3] and [10].

554

(a) Horizontal Parity Encoding: a horizontal par-
ity element can be calculated by XOR operations
among the data elements in the same row. For
example, E1,2 := E1,1⊕E1,3⊕E1,5⊕E1,6.

(b) Vertical Parity Encoding: a vertical pari-
ty element Ei,j can be calculated by XOR
operations on selected data elements {Ei′,j′}
satisfying the condition: 〈2i′ + j〉p = j′. For
example, E1,4 := E6,2⊕E3,3⊕E4,5⊕E1,6.

Figure 4. The Layout of HV Code with (p− 1) Disks (p = 7)

Lemma 1: We can find a sequence of a two-integer tuple

(Tk, T
′
k) (k := 0, · · · , 2p− 1), where

Tk :=

⎧⎨
⎩〈

k−1− (−1)k+1
2

2
f1−f2

2 〉p, f1 − f2 = 2t

〈k−1− (−1)k+1
2

2
f1−f2+p

2 〉p, f1 − f2 = 2t+ 1
(3)

T ′k :=
1 + (−1)k+1

2
f1 +

1 + (−1)k
2

f2 (4)

with 1 ≤ f1 < f2 ≤ p− 1. In this sequence, all two-integer

tuples (0, f1), (0, f2), · · · , (p−1, f1), (p−1, f2) will appear

only once.

Proof: To prove Lemma 1, we should only show that the

two-integer tuples {(Tk, T
′
k)}2p−1

k=0 in the column f1 and f2
are different from each other. Due to the page limits, we only

consider the case when f1−f2 is even and this methodology

can be applied to the other case.

Because the tuples at different columns will be easily

differentiated by T ′k, we only need to prove the tuples at

the same column are different. For the tuples (Tk1
, T ′k1

)
and (Tk2

, T ′k2
) (assume k1 < k2) at column f1, since

T ′k1
= T ′k2

= f1, both k1 and k2 are chosen from the range

(1, 3, · · · , 2p− 1) whose size is p. Then

〈T (k1)− T (k2)〉p = 〈k1 − k2 +
(−1)k1−(−1)k2

2

2
· f1 − f2

2
〉p

= 〈k1 − k2
2

· f1 − f2
2

〉p

Where −p < k1−k2

2 , f1−f2
2 < 0. Because p is a prime

number and is not a factor of both k1−k2

2 and f1−f2
2 ,

〈T (k1)−T (k2)〉p �= 0, meaning that the p tuples resides on

the column f1 will appear only once (i.e., (0, f1), · · · , (p−
1, f1)). Based on the same principle, the p tuples (Tk, T

′
k) on

the column f2 will be (0, f2), · · · , (p−1, f2). Therefore, the

tuples (0, f1), (0, f2), · · · , (p − 1, f1), (p − 1, f2) will only

appear once when 0 ≤ k ≤ 2p− 1. �
Theorem 1: A stripe constructed by (p − 1)-row-(p − 1)-
column of HV Code can tolerate the concurrent failures of

any two columns.

Proof: Before giving the detailed proof, let’s first review

the layout of HV Code. In a stripe of HV Code, each row

and column consists of (p − 3) data elements, a horizontal

parity element and a vertical parity element. There are totally

2(p − 1) parity chains in a stripe of HV Code, including

(p − 1) horizontal parity chains and (p − 1) vertical parity

chains. If a horizontal parity element and a vertical parity

element are placed in the same column, the two parity chains

generated by them will not intersect and both of them will

go through the same (p− 2) columns. In addition, a parity

chain, no matter horizontal parity chain or vertical parity

chain, will pass through (p− 2) columns and intersect with

any column of them only once.

Suppose the two failed columns are f1 and f2, where f1
and f2 are even and satisfy the condition 1 ≤ f1 < f2 ≤
p − 1 (the proof of other cases is similar). Actually, the

failed elements on the two corrupted disks f1 and f2 can be

mapped to the sequence in Lemma 1. For the non-vertical

parity elements, the mapping Ei,fj −→ (i, fj) establishes

where (1 ≤ i ≤ p − 1, i �= 〈 fj4 〉p, j = 1, 2). The vertical

parity elements E〈 fj4 〉p,fj
will be mapped to the tuples

(0, fj) where j = 1, 2. 1 Thus, we can also use the tuples

to represent the elements. For example, in Fig. 5, the data

element E1,1 and the vertical parity element E2,1 can be

represented by the tuples (1,1) and (0,1).

According to the layout of HV Code, we can first find

out two parity chains (including a horizontal parity chain

and a vertical parity chain) that intersect at the column f1
but miss the column f2 and another two parity chains that

bypass the column f1 but intersect at the column f2. Then

four start elements of the recovery chains can be obtained,

where (〈 f14 〉p, f2) and (〈 f24 〉p, f1) are the start elements

recovered by horizontal parity chains, while (〈 f2−
f1
2

2 〉p, f2)
and (〈 f1−

f2
2

2 〉p, f1) are the ones reconstructed by vertical

parity chains. Besides the four parity chains, other parity

1There are also another two ”virtual tuples”, i.e., (〈 f1
4
〉p, f1) and

(〈 f2
4
〉p, f2), which do not have any usage in the double disk repair.

555

Figure 5. An Example to Recover Disk #1 and Disk #3. The elements
labeling ”SH” and ”SV” indicate Start elements recovered by Horizontal
parity chains, and the Start elements reconstructed by Vertical parity chains,
respectively. The element labeling ”H” (resp, ”V”) indicates it is recovered
through Horizontal (resp. Vertical) parity chain. The arrow line assigned
with number denotes the recovery direction and its recovery order. There are
four recovery chains, such as {E5,1, E5,3} and {E3,3, E3,1, E4,3, E4,1}.

chains will intersect with both f1 and f2.

We can summarize the recovery rule as follows: For the

failed columns f1 and f2, on one hand, if data elements Ei,f1

and Ej,f2 are recovered from the involved vertical parities,

then elements Ei,f2 and Ej,f1 (may be data elements or

parity elements) could be reconstructed by following the

horizontal parity chains. On the other hand, if data elements

Ei,f1 and Ej,f2 are recovered from the involved horizontal

parities, then in the next step we can reconstruct the elements

Ei′,f2 and Ej′,f1 by utilizing the corresponding vertical

parity chains. When Ei′,f2 and Ej′,f1 are data elements,

they should satisfy the conditions 〈f1 − 2i〉p = 〈f2 − 2i′〉p
and 〈f2−2j〉p = 〈f1−2j′〉p, respectively. When Ei′,f2 and

Ej′,f1 are vertical parity elements, the conditions change to

〈4i′〉p = f2 and 〈4j′〉p = f1.

By following this recovery rule, every recovery chain

will terminate at a parity element. The horizontal parity

elements are the tuples of (〈 f12 〉p,f1) and (〈 f22 〉p,f2), while

the vertical parity elements are (0,f1) and (0,f2). During

the reconstruction process, the recovered elements track the

sequence of the two-integer tuple in Lemma 1. �

D. Reconstruction

In this section, we will discuss how to perform the recon-

struction when a failure happens. We mainly consider three

basic kinds of failures: the failure of an element, the failure
of a single disk, and concurrent failures of double disk. Other

possible failure cases tolerated by RAID-6 systems (e.g.,

multiple element failures in a disk) can be covered by the

combination of these three basic failures.

There are two possibilities when an element fails, result-

ing in different construction methods. If the failed element is

a parity element, the recovery can follow either Equation (1)

or Equation (2) by using the related (p− 3) data elements.

In the case when a data element (suppose Ei,j) is broken,

it can be recovered by using either horizontal parity chain

or vertical parity chain. When repairing Ei,j by horizontal

parity chain, the horizontal parity element Ei,〈2i〉p and other

related (p− 4) data elements should be first retrieved, then

Ei,j can be repaired as:

Ei,j :=

p−1∑
k=1

Ei,k k �= j, k �= 〈4i〉p (5)

Similarly, when reconstructing Ei,j by the vertical parity

chain, the vertical parity element Es,〈4s〉p can be obtained

first, where 〈4s〉p := 〈j − 2i〉p. Then

Ei,j :=

p−1∑
l=1

Ek,l ⊕ Es,〈4s〉p (6)

where l �= j, l �= 〈4s〉p, l �= 〈8s〉p, and 〈2k + 4s〉p = l.
Based on Equations (1), (2), (5), (6), if a single disk fails,

the missing elements, including data elements and parity

elements can be successfully reconstructed. If double disk

failures occur (suppose the corrupted disks are f1 and f2,

where 1 ≤ f1 < f2 ≤ p − 1), the recovery process can

follow the procedures in Theorem 1 and the detailed steps

are shown in Algorithm 1.

Algorithm 1: The Procedures to Recover The Concur-

rent Failures of Two Disk in HV Code.
1. locate the failed disks f1 and f2 (1 ≤ f1 < f2 ≤ p− 1);

2. recover the four start elements first: (〈 f2−
f1
2

2
〉p, f2),

(〈 f1−
f2
2

2
〉p, f1), (〈 f14 〉p, f2), and (〈 f2

4
〉p, f1).

3. reconstruct other missing elements by alternately shifting between
f1 and f2.

Case 1: start with the tuple (〈 f2
4
〉p, f1) in disk f1, do

re-build the elements in disk f2 utilizing vertical parity chain
and repair the elements in disk f1 using horizontal parity chain;
until reach a parity element.

Case 2: start with the tuple (〈 f1
4
〉p, f2) in disk f2, do

re-build the elements in disk f1 utilizing vertical parity chain
and repair the elements in disk f2 by horizontal parity chain;
until reach a parity element.

Case 3: start with the tuple (〈 f1−
f2
2

2
〉p, f1) in disk f1, do

re-build the elements in disk f2 utilizing horizontal parity chain
and repair the elements in disk f1 using vertical parity chain;
until reach a parity element.

Case 4: start with the tuple (〈 f2−
f1
2

2
〉p, f2) in disk f2, do

re-build the elements in disk f1 utilizing horizontal parity chain
and repair the elements in disk f2 using vertical parity chain;
until reach a parity element.

IV. PROPERTY ANALYSIS

1) Optimal Storage Efficiency: As proved above, HV

Code is an MDS code and has optimal storage efficiency

[19] [4].

2) Optimal Construction/Reconstruction/Update Com-
putational Complexity: For a code with m-row-by-n-

column and x data elements, P-Code [8] has deduced the

optimal XOR operations to each data element in construction

is 3x−m·n
x and the minimal XOR operations to each lost

element in reconstruction is 3x−m·n
m·n−x [8].

556

Therefore, for a stripe of a code with (p − 1)-row-by-

(p − 1)-column and (p − 3)(p − 1) data elements, the

optimal complexity of construction should be
2(p−4)
(p−3) XOR

operations per data element and the optimal complexity of

reconstruction should be (p − 4) XOR operations per lost

element in theorem.
For HV Code, there are 2(p− 1) parity elements needed

to build in the construction. Each of them is calculated by

performing (p− 4) XOR operations among the participated

(p− 3) data elements. Therefore, the total XOR operations

to generate the parity elements in a stripe is 2(p−4)(p−1),

and the averaged XOR operations per data element is
2(p−4)
(p−3) ,

being consistent with the above deduced result. Moreover,

to reconstruct the two corrupted disks, every invalid element

is recovered by a chain consisting of (p − 3) elements,

among which (p − 4) XOR operations are performed. The

complexity equals the optimal reconstruction complexity

deduced above.
For update efficiency, every data element joins the com-

putation of only two parity elements, indicating the update

of any data element will only renew related two parity

elements.
3) Achievement of Perfect Load Balancing: Rather than

concentrating the parity elements on dedicated disks [10] [4],

HV Code distributes the parity elements evenly among all

the disks, which is effective to disperse the load to disks.
4) Fast Recovery for Disk Failure: The length of each

parity chain in HV Code is p−2, which is shorter than those

of many typical MDS codes [3] [10] [4] [5] [7] in RAID-6.

The shortened parity chain decreases the number of needed

elements when repairing a lost element. In addition, every

disk holds two parity elements in HV Code, enabling the

execution of four recovery chains in parallel in double disk

repairs.
5) Optimized Partial Stripe Write Performance: We first

dissect the performance for the writes to two continuous

data elements in HV Code. The first case is when the two

data elements reside in the same row, then update them will

incur only one write I/O to the horizontal parity element

and two separate renewals to their vertical parity elements.

The second is when the renewed two data elements are in

different rows, i.e., the last data element in the i-th row and

the first in the (i+1)-th row. As described above, Ei,j will

participate in the generation of the vertical parity element

residing on the 〈j − 2i〉p-th disk. This rule makes Ei,p−1

and Ei+1,1, if both of them are data elements, belong to

the same vertical parity chain. Therefore, the second case

only needs to update a shared vertical parity element and

the two corresponding horizontal parity elements. Since the

HV Code’s layout defines that a column will include two

parity elements, there will be at least (p− 6) pairs 2 of two

2There are altogether (p−2) pairs of continuous two data elements that

are in the different rows. So the rate is p−6
p−2

, which approaches to 1 when
p grows.

continuous data elements which locate in different rows but

share the same vertical parity elements.

The proof in [10] has shown any two data element updates

should renew at least three parity elements in a stripe

of a lowest density MDS code. Thus, HV Code achieves

near optimal performance of partial stripe writes to two

continuous data elements.

V. PERFORMANCE EVALUATION

In this section, we will evaluate the performance of HV

Code in terms of recovery, partial stripe writes, degraded

read, and load balancing. We also select RDP Code (over

p+1 disks), HDP Code (over p−1 disks), H-Code (over p+1
disks) and X-Code (over p disks) to serve as the references.

Evaluation Environment: The performance evaluation is

run on a Linux server with a X5472 processor and 12GB

memory. The operating system is SUSE Linux Enterprise

Server and the filesystem is EXT3. The deployed disk

array consists of 16 Seagate/Savvio 10K.3 SAS disks, each

of which owns 300GB capability and 100,000rmp. The

machine and disk array are connected with a Fiber cable

with the bandwidth of 800MB. The five MDS RAID-6 codes

are realized based on Jerasure 1.2 [29] that is an open source

library and widely used in this literature.

Evaluation Preparation: We first create a file, partition it

into many data elements, and encode them by using every

evaluated code. Like previous works [27] [28], the element

size is set as 16MB. The data elements and the encoded

parity elements will then be dispersed over the disk arrays

by following the layout of each code (like Fig. 1 for RDP

Code and Fig. 2 for X-Code). The encoded files will be used

in the next tests, such as partial stripe writes efficiency and

degraded read efficiency.

A. Partial Stripe Writes Efficiency

In this test, we mainly evaluate the efficiency when

performing partial stripe writes. For a write operation with

the length L, both the L continuous data elements whose

size is (16×L) MB and the associated parity elements will

be totally written.

To evaluate the patterns of partial stripe writes, the fol-

lowing two traces are mainly considered.

• Uniform write trace: Every access pattern simulates the

operation to write a pre-defined number of data ele-

ments starting from a uniformly chosen data element.

• Random write trace: Every access pattern (S,L, F)
contains three random values, i.e., the start element S
for the writes, the random length L, and the random

write frequency F . For the pattern (S,L, F), it means

the write operation that starts from the S-th data ele-

ment and terminates at the (S+L−1)-th data element

will be executed for F times.

In this test, we select two uniform write traces named

”uniform w 10” and ”uniform w 30”. For uniform write

557

(a) Total Induced Writes to A Stripe. (b) The Load Balancing Rate. (c) The Time to Complete A Write Pattern

Figure 6. The Partial Stripe Write Efficiency.(p = 13)

trace named ”uniform w L” (L:=10,30), we specify 1,000

write requests with the constant length L and the uniformly

selected beginning. These two traces ensure the same num-

ber of data elements in a stripe is written for each code and

the write frequency of each data element will be almost the

same with large probability. With respect to the random write

trace, we generate the patterns of (S,L, F) by employing

the random integer generator [25] and the generated trace is

shown in Table II. For example, (28,34,66) means the write

operation will start from the 28th data element and the 34

continuous data elements will be written for 66 times.

Evaluation Method: For the file encoded by each code,

we replay the three write traces named ”uniform w 10”,

”uniform w 30”, and the generated random trace respec-

tively, just by performing every write pattern in them to the

file. During the evaluation, the following three metrics are

measured (as shown in Fig. 6).

1) The total induced writes of every trace. As referred

above, a write operation to a data element will trigger

the associated updates to its related parity elements.

For the file encoded by each code, we perform the

three traces and record all the I/O requests induced by

every trace (as shown in Fig. 6(a)).

2) The I/O balancing capability of each code. For the file

encoded by each code, we run every trace and collect

the incurred I/O requests loaded on each disk. To

reflect the balancing degree of the load to a stripe, we

then define the load balancing rate, which is the same

with the ”metric of load balancing” in [3]. Suppose

the number of write requests arriving at the i-th disk

is Ri and the number of disks in a stripe is N , we can

calculate the load balancing rate λ as:

λ :=
Max{Ri|1 ≤ i ≤ N}
Min{Ri|1 ≤ i ≤ N} (7)

The smaller of λ usually indicates the better behavior

of balancing the load to a stripe. We finally calculate

the load balancing rate of every trace for each code(as

shown in Fig. 6(b)).

3) The averaged time of a write pattern. For the file

encoded by each code, we measure the averaged time

to execute a write pattern in every trace, i.e., from

Table II
THE RANDOM WRITE PATTERN OF (S,L, F).

(28,34,66) (34,22,69) (4,45,3) (30,18,64) (24,32,70)
(29,26,48) (6,3,51) (34,42,50) (37,9,1) (34,38,93)
(6,44,75) (10,44,2) (34,15,43) (2,6,49) (28,17,57)

(20,33,39) (48,28,27) (48,13,30) (40,2,32) (16,24,7)
(19,4,77) (22,14,31) (49,31,82) (35,26,1) (31,1,48)

the time to start the write pattern to the time when

the data elements in the pattern and corresponding

parity elements are completely written (as shown in

Fig. 6(c)).

Figure 6(a) indicates the total write operations of each

code scale up with the increase of L for the uniform

write traces ”uniform w 10” and ”uniform w 30”. Though

X-Code retains the optimal update complexity, its con-

struction based on diagonal parity and anti-diagonal pari-

ty engenders more write requests to the associated parity

elements. Because of the high update complexity, HDP

Code triggers more write operations when compared to both

of HV Code and H-Code. Since both HV Code and H-

Code optimize the write operation to two continuous data

elements, both of them outperform other contrastive codes

when conducting the continuous writes. For uniform write

trace ”uniform w 10”, HV Code reduces up to 27.6% and

32.4% write I/O requests when compared to X-Code and

HDP Code, respectively. When conducting random write

trace, HV Code also eliminates about 18.4% and 16.2%

write I/O requests when compared with X-Code and HDP

Code, respectively. Even compared with H-Code, which has

optimized partial stripe writes, HV Code only increases

marginal extra overhead, about 0.9% under random write

trace.

Figure 6(b) illustrates the load balancing rate of various

codes under different access traces. Being evaluated by the

three kinds of traces, RDP Code easily concentrates the

writes to the parity disks and thus holds the largest load

balancing rate. The load balance rates of RDP under the

valuations of ”uniform w 10” and ”random write trace” are

13.2 and 5.75, respectively. Though H-Code disperses the

diagonal parity to the data disks, its uneven distribution

of diagonal parity elements and the dedicated disk for

horizontal parity storage still make it hard to achieve perfect

558

(a) The Averaged Time to Complete A Read Pattern (b) I/O Efficiency of A Read Pattern

Figure 7. The Degraded Read Efficiency.(p = 13)

load balance. Its load balancing rates are 2.22 and 1.54

under the evaluations of ”uniform w 10” and ”random write

trace”, respectively. Owing to the even distribution of parity

elements, HV Code, HDP Code and X-Code approach the

perfect load balancing rate (i.e., 1) under the three write

traces.

The averaged time to complete a write pattern in these

three traces is also recoded in Figure 6(c). In the figure, RDP

Code needs the most time to complete the absorption of the

write requests to the diagonal parity elements. The incompat-

ible layout of X-Code and the expensive update complexity

of HDP Code also easily extend the completion time. When

performing the uniform trace ”uniform w 10”, the operation

time in HV Code decreases about 28.8%∼64.7% when

compared to those of RDP Code, HDP Code, and X-Code.

Being evaluated by the random write trace, the averaged

time to complete a write pattern in HV Code is about

17.6%∼47.2% less than those of RDP Code, X-Code, and

HDP Code. However, H-Code outperforms HV Code by

reducing 4.1% write time on this metric. This is because the

number of participating disks in H-Code is larger than that

of HV Code, making H-Code better at shunting the write I/O

requests. This comparison also reveals the ”tradeoff” brought

by the shorter parity chain, which keeps down the recovery

I/O for a single disk repair but is weaker at reducing the

amount of the average requests on each disk.

B. Degraded Read Comparison

Evaluation Method: Given a encoded file (encoded by

RDP Code, X-Code, HDP Code, H-Code, and HV Code

respectively) and the degraded read pattern with the length

of L (L := 1, 5, 10, 15, respectively), we let the elements

hosted on a disk corrupted (by either injecting faults or

erasing the data on that disk) and issue 100 degraded read

patterns with the length of L that start at uniformly selected

points. Two metrics are concerned in this failure case, i.e.,

the averaged time and the I/O efficiency for a degraded read

pattern.

Specifically, suppose L′ denotes the number of elements

returned for a degraded read pattern. When the L requested

data elements happen on the surviving disks, then L′ = L.

Otherwise, if the L requested elements include the lost

Figure 8. The Reconstruction of Disk #1 in HV Code when p = 7. The
filled pattern elements participate in horizontal parity chain while the stripy
elements involve in the vertical parity chain.

elements, then the recovery of the lost elements will be

triggered by fetching the associated elements and finally

L′ >= L. The needed time for a degraded read pattern is

recorded from the time of issuing the degraded read pattern

to the time when the L′ elements are taken from the disk

array to the main memory. The I/O efficiency per degraded

read pattern is evaluated by the rate L′
L . We then evaluate

these two metrics under the data corruption on every disk,

and calculate the expectation results in Fig. 7.

For the averaged time of a degraded read pattern (as

shown in Figure 7(a)), X-Code requires the maximum time.

This observation also proves the advantage of horizontal

parity when handling degraded read operations. Meanwhile,

this figure also reals that it usually needs more time when the

number of elements to read increases. HV Code significantly

outperforms X-Code and retains similar performance when

compared with RDP Code, HDP Code, and H-Code.

With respect to the I/O efficiency, HV Code offers com-

petitive performance by significantly reducing the number

of read elements. When L = 10, HV Code eliminates about

10.0%, 28.3%, 6.6%, and 7.3% degraded read I/O requests

compared with RDP Code, X-Code, HDP Code, and H-

Code, respectively.

C. The Recovery I/O for Single Disk Failure

In this test, we mainly compare the required I/O to

reconstruct a failed element. An example of single disk

repair in HV Code is shown in Figure 8 when p = 7, in

which at least 18 elements have to retrieve for the recovery

of lost elements and thus it needs 3 elements on average to

559

(a) Recovery for Single Disk Failure (b) Recovery for Double Disk Failure

Figure 9. Comparison on Disk Failure Recovery.

repair each lost element on the failed disk.

Evaluation Method: Given an encoded file, for each case of

data corruption, we let the elements on that disk corrupted,

evaluate the minimal averaged elements that are retrieved

from the surviving disks to recover a lost element, and

calculate the expectation result. Following this evaluation

method, we consider the file encoded by RDP Code, X-

Code, HDP Code, H-Code, and HV Code respectively when

p varies, and show the results in Fig 9(a).

According to this comparison, HV Code requires the

minimal number of the needed elements to repair an invalid

element among the five candidates. The I/O reduction ranges

from 2.7% (compare with HDP Code) to 13.8% (compare

with H-Code) when p = 23. The saving will expand to

the range from 5.4% (compare with HDP Code) to 39.8%

(compare with H-Code) when p = 7. This superiority should

own to the shorter parity chain in HV Code compared to

those in other codes. We list the length of the parity chains

of some representative codes in Table III, which indicates

that the length of parity chain in both H-Code and RDP

Code is (p−1) while HV Code only keeps (p−2) elements

in a parity chain. Notice that the length of diagonal parity

chain and the length of horizontal-diagonal parity in HDP

Code are (p− 2) and (p− 1) respectively.

D. The Recovery for Double Disk Failures

As referred above, double disk failures require to fetch all

the elements in the survived disks, and the time to recover

the two failed disks can be simulated by the latency to

accomplish the recovery in the longest recovery chain.

Evaluation Method: Suppose the average time to recover

an element, either data element or parity element, is Re and

the longest length among all the recovery chains is Lc, then

the time needed to finish the recovery can be evaluated by

Lc ·Re. A subsequent problem is the recovery time will be

not consistent because Lc may be changeable once the failed

disks vary. In this case, we consider the occurrence of any

double disk failure, test every possible recovery time, and

calculate the expectation.

The comparison results are shown in Figure 9 (b), which

shows a big difference among the compared codes. When

p = 7, both of X-Code and HV Code respectively reduce

nearly 47.4%, 47.4%, and 43.2% of the reconstruction time

when compared with RDP Code, HDP Code, and H-Code.

This saving will increase to 59.7%, 50.0%, and 47.4%

when p = 23. This huge retrenchment should owe to the

placement of parity elements in X-Code and HV Code, both

of which distribute two parity elements over every single

disk. Every parity element will lead a recovery chain, which

begins at a start point (the start point can be obtained by the

chain intersecting either one of the two failed disks only)

and ends at a parity element. Therefore, four recovery chains

can be parallel executed without disturbing each other. RDP

Code gathers the parity elements on the specified disks and

the repair process should be serially processed, making it

the most time-consuming code to reconstruct two corrupted

disks. Both of H-Code and HDP Code though place two

parity elements over every disk, the dependent relationship

between the two kinds of parities in HDP Code results in

the worse performance.

E. A Comparison Between HV Code and Other Codes.

Based on the above comparisons, Table III summarizes

a detailed comparison between HV Code and other popular

MDS array codes in RAID-6, i.e., RDP Code (over p + 1
disks), HDP Code (over p−1 disks), X-Code (over p disks),

and H-Code (over p+1 disks). The comparison indicates that

HV Code achieves low cost for partial stripe writes, retains

the optimal update complexity, keeps high parallelism for

double disk recovery, and shortens the length of recovery

chain.

VI. CONCLUSION

In this paper, we propose HV Code, which can be

deployed over p − 1 disks (p is a prime number). HV

Code evenly places parities over the disks to achieve the

optimization of I/O balancing. By utilizing the horizontal

parity and designing a delicate construction of vertical parity,

HV Code significantly decreases the I/O requests induced

by the partial stripe writes to continuous data elements.

Meanwhile, the shortened length of parity chain also grants

HV Code a more efficient recovery for single disk failure

and good performance on degraded read operation compared

to other typical MDS codes in RAID-6. HV Code also

560

Table III
A BRIEF COMPARISON BETWEEN HV CODE AND OTHER TYPICAL MDS ARRAY CODES.

Codes Load Balancing Update Complexity Partial Stripe Writes Double Disk Reconstruction Parity Chain Length

RDP Code [4] unbalanced more than 2 extra updates low cost 2 recovery chains p
HDP Code [3] balanced 3 extra updates high cost 2 recovery chains p− 2,p− 1

X-Code [7] balanced 2 extra updates high cost 4 recovery chains p− 1
H-Code [10] unbalanced 2 extra updates low cost 2 recovery chains p

HV Code balanced 2 extra updates low cost 4 recovery chains p− 2

accelerates the repair of two disabled disks by deriving four

independent recovery chains. The performance evaluation

demonstrates the efficiency brought by HV Code.

VII. ACKNOWLEDGMENT

We would like to thank our shepherd, Arun Somani, and

the anonymous reviewers for their constructive comments

and suggestions. This work is supported by the National

Natural Science Foundation of China (Grant No. 61232003,

60925006), the National High Technology Research and De-

velopment Program of China (Grant No. 2013AA013201),

Tsinghua-Tencent Joint Laboratory for Internet Innovation

Technology, and Tsinghua University Initiative Scientific

Research Program.

REFERENCES

[1] E. Pinheiro, W. Weber, and L. Barroso. Failure trends in a large
disk drive population. In Proc. of the USENIX FAST’07, 2007.

[2] B. Schroeder and G. Gibson. Disk failures in the real world:
What does an MTTF of 1,000,000 hours mean to you? In Proc.
of the USENIX FAST’07, 2007.

[3] C. Wu, X. He, G. Wu, S. Wan, X. Liu, Q. Cao, and C. Xie.
HDP Code: A Horizontal-Diagonal Parity Code to Optimize
I/O Load Balancing in RAID-6. In Proc. of DSN’11, 2011.

[4] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J.
Leong, and S. Sankar. Row-Diagonal Parity for double disk
failure correction. In Proc. of the USENIX FAST’04, 2004.

[5] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: An
efficient scheme for tolerating double disk failures in RAID
architectures. IEEE Transactions on Computers, 1995.

[6] S. Ghemawat, H. Gobioff, and S. Leung. The Google File
System. In Proc. of ACM SOSP, 2003.

[7] L. Xu and J. Bruck. X-Code: MDS array codes with optimal
encoding. IEEE Transactions on Information Theory, 1999.

[8] C. Jin, H. Jiang, D. Feng, and L. Tian. P-Code: A new RAID-6
code with optimal properties. In Proc. of the ICS’09, 2009.

[9] J. Plank. The RAID-6 liberation codes. In Proc. of the USENIX
FAST’08, 2008.

[10] C. Wu, S. Wan, X. He, Q. Cao, and C. Xie. H-Code: A Hybrid
MDS Array Code to Optimize Partial Stripe Writes in RAID-6.
In Proc. of IPDPS’11, 2011.

[11] M. Holland and G. Gibson. Parity declustering for continuous
operation in redundant disk arrays. In Proc. of the ASPLOS’92,
1992.

[12] L. Xu, V. Bohossian, J. Bruck, and D. Wagner. Low-density
MDS codes and factors of complete graphs. IEEE Transactions
on Information Theory, 1999.

[13] J. Plank. A new minimum density RAID-6 code with a word
size of eight. In Proc. of the IEEE NCA’08, 2008.

[14] C. Huang, M. Chen, and J. Li. Pyramid Codes: Flexible
schemes to trade space for access efficiency in reliable data
storage systems. In Proc. of the IEEE NCA’07, 2007.

[15] K. Greenan, X. Li, and J. Wylie. Flat XOR-based erasure
codes in storage systems: Constructions, efficient recovery, and
tradeoffs. In Proc. of the IEEE MSST’10, 2010.

[16] S. Wan, Q. Cao, C. Xie, B. Eckart, and X. He. Code-M:
A Non-MDS erasure code scheme to support fast recovery
from up to two-disk failures in storage systems. In Proc. of
the IEEE/IFIP DSN’10, 2010.

[17] J. Hafner. HoVer erasure codes for disk arrays. In Proc. of
the IEEE/IFIP DSN’06, 2006.

[18] J. Hafner. WEAVER codes: Highly fault tolerant erasure
codes for storage systems. In Proc. of the USENIX FAST’05,
2005.

[19] I. Reed and G.Solomon. Polynomial codes over certain fi-
nite fields. Journal of the Society for Industrial and Applied
Mathematics, 1960.

[20] J. Blomer, M. Kalfane, R. Karp, M. Karpinski, M. Luby,
and D. Zucker-man. An XOR-based Erasure-Resilient coding
scheme. Technical Report TR-95-048, International Computer
Science Institute, 1995.

[21] S. Xu, R. Li, P. Lee, Y. Zhu, L. Xiang, Y. Xu. J. Lui. Sin-
gle Disk Failure Recovery for X-code-based Parallel Storage
Systems. IEEE Tranasaction on Computer, 2013.

[22] L. Xiang, Y. Xu, J. C. S. Lui, and Q. Chang. Optimal re-
covery of single disk failure in RDP code storage systems. In
Proc. of ACM SIGMETRICS’10, 2010.

[23] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan,
J. Li, and S. Yekhanin. Erasure Coding in Windows Azure
Storage. In Proc. of USENIX ATC’12, 2012.

[24] M. Sathiamoorthy, M. Asteris, D.S. Papailiopoulos, A.G.
Dimakis, R. Vadali, S. Chen, and D. Borthakur. XORing
Elephants: Novel Erasure Codes for Big Data. In Proc. of the
VLDB Endowment, 2013.

[25] RANDOM.ORG. Random Integer Generator.
http://www.random.org/integers/, 2010.

[26] Windows Azure: Microsoft’s Cloud Platform.
www.windowsazure.com/

[27] O. Khan, R. Burns, J. Plank, and W. Pierce. Rethinking
erasure codes for cloud file systems: minimizing I/O for
recovery and degraded reads. In Proc. of USENIX FAST’12,
2012.

[28] J. Schindler, S. Schlosser, M. Shao, A. Ailamaki, and G.
Ganger. Atropos: A Disk Array Volume Manager for Orches-
trated Use of Disks. In Proc. of USENIX FAST’04, 2004.

[29] J. Plank, S. Simmerman, and C. Schuman. Jerasure: A library
in C/C++ facilitating erasure coding for storage applications-
Version 1.2. Technical Report CS-08-627, University of Ten-
nessee, 2008.

561

