
On the Optimal Repair-Scaling Trade-off in
Locally Repairable Codes

Si Wu, Zhirong Shen, and Patrick P. C. Lee
Department of Computer Science and Engineering, The Chinese University of Hong Kong

Abstract—How to improve the repair performance of erasure-
coded storage is a critical issue for maintaining high reliability
of modern large-scale storage systems. Locally repairable codes
(LRC) are one popular family of repair-efficient erasure codes
that mitigate the repair bandwidth and are deployed in practice.
To adapt to the changing demands of access efficiency and
fault tolerance, modern storage systems also conduct frequent
scaling operations on erasure-coded data. In this paper, we
analyze the optimal trade-off between the repair and scaling
performance of LRC in clustered storage systems. Specifically,
we design placement strategies that operate along the optimal
repair-scaling trade-off curve subject to the fault tolerance con-
straints. We prototype and evaluate our placement strategies on
a LAN testbed, and show that they outperform the conventional
placement scheme in repair and scaling operations.

I. INTRODUCTION

As storage systems continue to scale, failures become
commonplace [7]. To provide reliability guarantees for data
storage even in the presence of failures, modern storage systems
increasingly adopt erasure coding to maintain fault tolerance
at low redundancy. Compared to traditional replication, erasure
coding provably achieves higher degree of reliability at the
same degree of redundancy [27], and has been widely deployed
in enterprise storage systems [7], [11], [14], [21]. At a high
level, erasure coding takes a set of original data blocks as
input, and generates additional redundant blocks called parity
blocks, such that all original data blocks can be reconstructed
from a subset of available data and parity blocks.

To maintain data availability, storage systems need to perform
frequent repair operations to recover any lost data from failures.
However, erasure coding amplifies the network traffic and disk
I/Os in repair operations [19]. Specifically, the repair of a single
lost block incurs network transfers and disk I/Os of multiple
available blocks for reconstruction. To mitigate the expensive
repair cost introduced by erasure coding, many erasure code
constructions have been proposed in the literature to improve
repair efficiency. Locally repairable codes (LRC) [11], [14],
[21], [24], in particular, are a new family of erasure codes
that mitigate the network traffic and disk I/Os of repair with
slight addition of storage redundancy. The main idea of LRC
is to partition the original data blocks into several small-size
local groups and generate a local parity block for each local
group, such that the repair of any single failed block can be
achieved within a short-size group. Due to its simplicity, ease
of implementation, and the repair efficiency, LRC has been
widely deployed in production [11], [14], [21].

In addition to repair, storage systems also perform frequent
scaling operations to adapt to the requirements of fault tolerance
and access efficiency. By scaling, we refer to the change of
erasure coding parameters to balance the trade-off between
access performance and storage efficiency [32]. Scaling is
important for not only the expansion in storage capacity [34],
but also adapting to the storage redundancy requirements with
respect to the change of storage reliability [13].

In this paper, we analyze the interplay of both repair and
scaling operations of LRC in clustered storage systems, which
hierarchically organize nodes in multiple clusters such that the
cross-cluster network bandwidth appears much more scarce
than the inner-cluster bandwidth [2], [5], [26]. We show that the
cross-cluster repair and scaling costs cannot be simultaneously
minimized, and there exists a fundamental trade-off between the
repair and scaling performance. To the best of our knowledge,
this is the first work that unveils the inherent optimal repair-
scaling trade-off in erasure-coded storage. To summarize, our
contributions are as follows.
• We present a formal analysis on the optimal trade-off between

the repair and scaling performance of LRC in clustered
storage systems (Section III). We first derive the feasible
data placement strategies subject to the single-cluster fault
tolerance constraint, under which we explore different data
placement strategies that operate along the optimal repair-
scaling trade-off curve. Specifically, for a given (cross-cluster)
scaling cost, we can find a data placement strategy that
minimizes the (cross-cluster) repair cost.

• We implement the two extreme points of our placement
strategies: one on minimizing the scaling cost, and another
on minimizing the repair cost. We conduct experiments on a
LAN testbed. Experimental results show that the placement
with the minimum scaling cost reduces the scaling time of
the baseline by up to 95.2%, while the placement with the
minimum repair cost reduces the repair time of the baseline
by up to 91.5% (Section IV).

II. BACKGROUND

A. Clustered Storage System Architecture

We consider a clustered storage system modeled as a two-
level hierarchical architecture [5], as shown in Figure 1. The
system partitions storage nodes (or nodes in short) into multiple
clusters, such that the nodes within a cluster are connected via
the same switch, while multiple clusters are interconnected via
a network core. A cluster can refer to a rack [11], [21] or a data



Network 

Core

Cluster

Node

Fig. 1. Example of a clustered stor-
age system architecture.

D
0
D
1

D
3
D
4

D
2

D
5

G
0
G
1

L
0

L
1

Fig. 2. LRC with (k, l,g,c) =
(6,2,2,3), where each dotted-line
represents a cluster.

center [3], [17]. The system organizes data in a collection of
fixed-size blocks, which form the basic read/write units. Here,
we assume that the cross-cluster bandwidth in clustered storage
systems is much more scarce than the inner-cluster bandwidth
[2], [5], [26]. Our goal is to minimize the cross-cluster network
traffic in both repair and scaling operations.

B. Locally Repairable Codes

Basics of LRC. We present the basics of locally repairable
codes (LRC). We configure an LRC construction with four
parameters (k, l,g,c), meaning that there are k data blocks
(denoted by D0,D1, · · · ,Dk−1), l local parity blocks (denoted
by L0,L1, · · · ,Ll−1), and g global parity blocks (denoted by
G0,G1, · · · ,Gg−1), such that all k+ l+g data/parity blocks are
stored in k+ l +g nodes located in c clusters. We call the set
of k+ l +g data/parity blocks that are encoded together to be
a stripe, and a large-scale storage system typically contains
multiple stripes that are independently encoded. In the paper,
our analysis focuses on a single stripe.

By storing each LRC stripe of blocks in multiple nodes
and clusters, a storage system achieves both node-level and
cluster-level fault tolerance. Since cluster failures are much
less common than node failures in practice [17], we enforce
the data placement of each LRC stripe such that the storage
system provides only single-cluster fault tolerance (i.e., the
data remains available under a single-cluster failure), while still
providing multi-node fault tolerance. By storing multiple blocks
in a single cluster, we can significantly reduce cross-cluster
network traffic during repair [9], [10], [16], [18], [22].

There are various LRC constructions in the literature [11],
[21], [24]. In this paper, we focus on the LRC construction
based on Azure’s Local Reconstruction Codes [11]. Specifically,
LRC divides the k data blocks into l equal-size groups,
assuming that k is divisible by l. It computes an XOR sum
based on each group of k

l data blocks to form a local parity
block. It also computes the g global parity blocks from all k
data blocks. Let b be the number of data blocks that encode
into a local parity block, i.e., b = k

l . We call the collection
of b data blocks and their corresponding local parity block
to be a local group. Figure 2 gives an example of LRC for
(k, l,g,c) = (6,2,2,3).

Repair of LRC. LRC is designed to mitigate the network
traffic and disk I/Os for a single-block repair (which is much
more common than a multi-block repair in practice [11],
[19]) by limiting the repair within a local group. Given that
transient failures account for the majority of failure events
[7] and the temporarily unavailable data blocks are served by

D
0

D
1

L
0

L
1

L
2

D
2

D
3

D
6

D
7

L
3

L
4 L

5

D
8

D
9

G
0

G
1

D
4

D
5

D
10

D
11

L’
0

L’
1

D
0

D
1

L’
0

L
1

L
2

D
2

D
3

D
6

D
7

L’
1

L
4 L

5

D
8

D
9

G
0

G
1

D
4

D
5

D
10

D
11

L
0

L
3

(a) Upcoding (b) Downcoding

Fig. 3. Upcoding and downcoding examples for fast LRC (12,6,2,20) and
compact LRC (12,2,2,16), in which each block is stored in a distinct cluster.

degraded reads, in this paper, we focus on the repair of a single
unavailable data block in LRC.

We quantify the (single-data-block) repair performance of
LRC in clustered storage systems as follows. To repair any
unavailable data block, LRC retrieves other available blocks of
the same local group. Let C(Di) denote the amount of cross-
cluster network traffic being transferred for repairing a data
block Di. Then we define the repair cost of LRC (a.k.a. the
average repair cost in [14]) as 1

k ∑
k−1
i=0 C(Di).

If each local group is put in the same cluster (e.g., in
Figure 2), the repair cost is zero as there is no cross-cluster
network transfer. If LRC adopts the flat data placement by
storing each of the k+ l + g blocks of a stripe in a distinct
cluster [11], [21], [32], then the repair cost is equal to b.

Scaling of LRC. We define scaling as the change of coding
parameters in erasure coding. In this paper, we consider the
change of two sets of LRC parameters in response to workload
changes as described in [32]. Specifically, we consider two
LRC constructions: (i) fast LRC, which stores more local parity
blocks for higher repair performance (e.g., for hot data), and (ii)
compact LRC, which stores fewer local parity blocks for higher
storage efficiency (e.g., for cold data). Both fast and compact
LRCs store the same numbers of data blocks and global parity
blocks. We perform scaling operations to switch between the
fast LRC and the compact LRC to balance between access
performance and storage efficiency. We call the conversion
upcoding when scaling from the fast LRC to the compact LRC,
and downcoding when scaling from the compact LRC to the
fast LRC. Accordingly, we define the upcoding cost and the
downcoding cost as the amounts of cross-cluster network traffic
transferred for upcoding and downcoding, respectively.

Figure 3 depicts the upcoding and downcoding for the fast
LRC with (k, l,g,c) = (12,6,2,20) and the compact LRC with
(k, l,g,c)= (12,2,2,16). Both codes are deployed under the flat
data placement (i.e., each block is stored in a distinct cluster).
The upcoding operation (from (12,6,2,20) to (12,2,2,16))
sends L1 and L2 across clusters to L0 to compute a new local
parity block L

′
0, and sends L4 and L5 across clusters to L3

to compute a new local parity block L
′
1. Thus, the upcoding

cost is 4. On the other hand, the downcoding operation (from
(12,2,2,16) to (12,6,2,20)) sends D2 and D3 to another cluster
to compute L1, and sends D4 and D5 to another cluster to
compute L2. It then sends L1 and L2 to the cluster that holds
L
′
0 to compute L0. The same is for L3,L4, and L5. In total, the

downcoding cost is 12.



III. TRADE-OFF BETWEEN REPAIR AND SCALING

We now show that there exists a fundamental trade-off
between the repair and scaling (i.e., upcoding/downcoding)
performance in clustered storage systems.

A. Fault Tolerance of LRC

We first analyze the feasible data placement strategies subject
to the single-cluster fault tolerance constraint (Section II-B).

Lemma 1. A (k, l,g) LRC can tolerate any g+ i block failures
that span i local groups, where 1≤ i≤ l. However, the fault
tolerance will fail if there exist i local groups with more than
g+ i block failures.

Proof. Consider a set of up to g+ i failed blocks that span i
local groups (1≤ i≤ l). Suppose that the failed blocks comprise
d data blocks, x local parity blocks (0≤ x≤ i), and y global
parity blocks (0≤ y≤ g), such that d + x+ y≤ g+ i. In other
words, x local groups have failed local parity blocks, while i−x
local groups have failed data blocks only and their local parity
blocks are available for repair. For each of the i−x local groups
with available local parity blocks, we can swap the available
local parity block with one failed data block, and mark the
data block as available and the local parity block as failed.
By doing so, we can transform the set of failed blocks into
d−(i−x) failed data blocks, which can now be decoded by the
g− y surviving global parity blocks as d− (i−x)≤ g− y [11].
After decoding the failed data blocks, we can recover all failed
local/global parity blocks. The fault tolerance is maintained.

Based on the above analysis, we can also prove that a (k, l,g)
LRC cannot tolerate any more than g+ i block failures if they
span i local groups (1≤ i≤ l). By swapping the available local
parity blocks and the failed data blocks, we have d− (i− x)
failed data blocks that need to be decoded from g−y available
global parity blocks. If there are more than g+ i block failures,
we have d−(i−x)> g−y, implying that there are more failed
data blocks than the available global parity blocks. Thus, the
data blocks cannot be repaired.

By Lemma 1, we can deduce that if we provide single-cluster
fault tolerance for a (k, l,g) LRC, we have to place no more
than g+ i blocks that span i local groups in a cluster; otherwise,
a cluster failure will cause data loss.

B. Motivating Examples

We show via motivating examples that there is no data
placement that can simultaneously minimize both the repair
and scaling costs for LRC. Here, we focus on comparing
the repair of the fast LRC and the upcoding from the fast
LRC (for hot data) to the compact LRC (for cold data), since
the transition from hot data to cold data is more common in
real-world storage workloads [17].

Figure 4 presents two data placements for a fast LRC with
(12,6,2,7), which is to be upcoded to a compact LRC with
(12,2,2,7). As l reduces from 6 to 2, we generate a local
parity block of the compact LRC based on every three local
parity blocks of the fast LRC.

D
0
D
1

L
0

L
1

L
2

D
2
D
3

D
6
D
7

L
3

L
4

L
5

D
8
D
9

G
0
G
1

D
4
D
5

D
10
D
11

L’
0

L’
1

Core Core

L’
0

L’
1

D
0
D
1

L
0

L
1

L
2

D
2
D
3

D
6
D
7

L
3

L
4

L
5

D
8
D
9

G
0
G
1

D
4
D
5

D
10
D
11

Core Core

(a) Minimum upcoding cost (b) Minimum repair cost

Fig. 4. Two data placements for the fast LRC with (k, l,g,c) = (12,6,2,7)
being upcoded to the compact LRC with (k, l,g,c) = (12,2,2,7).

In Figure 4(a), we place the local parity blocks in two
clusters. Since there is no cross-cluster transfer in upcoding,
the upcoding cost is zero, which is the minimum. On the other
hand, the cost for repairing each of D0 to D5 is 0, 0, 1, 1, 1, 1,
respectively, while the same is for D6 to D11. Thus, the repair
cost is 0.67.

In Figure 4(b), we place each local group (the local parity
block and its corresponding encoding data blocks) in one
cluster. The repair of each data block can now be done in each
cluster locally, so the repair cost is zero, which is the minimum.
However, the upcoding needs to transfer four blocks across
clusters. Thus, the upcoding cost is four.

Figure 4 shows that the repair and upcoding costs cannot be
simultaneously minimized for any possible data placement.

C. Trade-off Analysis

Preliminaries. We now formally analyze the trade-off between
repair and upcoding (we address the case of downcoding in
Section III-D). We first present the definitions and notations.
Since the access performance of LRC is mainly related to
the number of local parity blocks, we consider the scaling
operation that varies the number of local parity blocks as in
[32]. To simplify our analysis, we consider the case where the
number of local parity blocks for the fast LRC (denoted by l) is
divisible by the number of local parity blocks for the compact
LRC (denoted by l′), such that every local parity block of the
compact LRC can be updated from l

l′ local parity blocks of
the fast LRC. Let δ be the scaling factor, defined as δ = l

l′ .
For a local parity block Li, we call the set of data

blocks that generates Li a local data set, denoted by Ei =
{Di×b, · · · ,Di×b+b−1}, where b is the number of data blocks
that are encoded to Li (defined in Section II-B). For example,
in Figure 4, the local data sets for L0 and L1 are E0 = {D0,D1}
and E1 = {D2,D3}, respectively. Note that Ei and Li together
form a local group. During upcoding, we convert every δ local
groups of the fast LRC into to one local group of the compact
LRC, and we call these δ local groups an upcoding unit. There
are a total of l′ upcoding units, and the i-th one is composed of
the blocks Ei×δ ,Li×δ , · · · ,E(i+1)×δ−1,L(i+1)×δ−1. For example,
in Figure 4, we have δ = 3, and there are two upcoding units:
(i) {E0,L0, E1,L1, E2,L2}, and (ii) {E3,L3, E4,L4, E5,L5}.



For each upcoding unit, we define a core cluster as the
cluster that stores the δ local parity blocks and aggregates
them into one local parity block of the compact LRC. For
example, in Figure 4(a), a core cluster stores L0, L1, and L2
and encodes them into L

′
0, while another core cluster stores

L3,L4, and L5 and encodes them into L
′
1. Suppose that b≤ g,

such that a local data set can be entirely stored in one cluster
without breaking single-cluster fault tolerance. Let θ be the
maximum number of local data sets that can be collocated
with their corresponding local parity blocks in one cluster. By
Lemma 1, the number of data and local parity blocks (i.e.,
θ ×b+θ ), which span θ local groups, cannot exceed g+θ .
Thus, we can calculate θ as θ = b g

bc.
For example, in Figure 4, every θ = 1 local data set can

be collocated with its local parity block in one cluster. Our
analysis focuses on b≤ g, while we will later show that the
analysis for b > g is similar.

Roadmap. Our trade-off analysis between repair and upcoding
is organized as follows. (i) We first design the placement
of the local parity blocks to achieve the globally minimum
upcoding cost. (ii) Given the condition that the upcoding cost is
minimized, we vary the locations of the data blocks to minimize
the repair cost; note that the repair cost is not necessarily
globally minimum (Section III-B). (iii) We gradually relocate
the local parity blocks, so as to trade the increased upcoding
cost for the decreased repair cost and finally achieve the
globally minimum repair cost. The number of clusters (i.e.,
c) is determined by the placement policy. Since the global
parity blocks do not participate in repair and scaling operations,
we simply place them in a dedicated cluster and omit their
discussion in our analysis.

Guiding example. For better understanding of our analysis,
we use a guiding example that upcodes from the fast LRC
with (12,6,2,7) to the compact LRC with (12,2,2,7).
• Minimizing upcoding cost: First, from Figure 5(a), we place

L0,L1, and L2 in a core cluster, and place L3,L4, and L5
in another core cluster. We perform upcoding in each core
cluster by aggregating the three local parity blocks without
any cross-cluster transfer. The upcoding cost is zero.

• Minimizing repair cost under minimum upcoding cost: Next,
in Figure 5(b), we place E0 in one core cluster, and place E1
and E2 in two different clusters. We place E3,E4, and E5 in
the same way. We can show that the cost for repairing each
data block in E0 and E3 is zero, while the cost for repairing
each data block in E1,E2,E4, and E5 is one. The repair cost
of the fast LRC is 4

6 = 0.67. We will show that this repair
cost is minimized under the minimum upcoding cost.

• Trading increased upcoding cost for decreased repair cost:
In this example, we see that the main reason that causes
non-zero repair cost is the separate placement of the local
parity block and its corresponding local data set. For example,
in Figure 5(b), L1 is stored in the core cluster, while E1 is
stored in a different cluster; the same holds for L2, L4, and
L5. Thus, we can gradually move one local parity block from
the core cluster to the cluster where its local data set resides.

Algorithm 1 Trade-off placement
Input: Integer x (0≤ x≤ (δ −θ)× l′), which is a multiple of θ

Output: A placement for the fast LRC
1: for the i-th (0≤ i≤ l′−1) upcoding unit do
2: // Minimizing upcoding cost
3: Select a new core cluster
4: Put Li×δ , · · · ,L(i+1)×δ−1 in the core cluster
5: // Further minimizing repair cost
6: for j = 0 to θ −1 do
7: Put Ei×δ+ j into the core cluster
8: end for
9: for j = θ to δ −1 do

10: if j mod θ = 0 then
11: Select a new cluster
12: end if
13: Put Ei×δ+ j into the new cluster
14: end for
15: end for
16: // Trading upcoding cost for repair cost
17: Move x local parity blocks from the core clusters to the clusters

where their corresponding local data sets reside

In Figure 5(c), we move L1 to the cluster that holds E1.
By doing so, we reduce the repair cost by 1

6 = 0.17, while
the upcoding cost increases by one (the core cluster must
now retrieve the relocated L1 across cluster for upcoding).
We will also show that the repair cost in Figure 5(c) (i.e.,
3
6 = 0.5) is minimized subject to the upcoding cost of one.

• Minimizing repair cost: Finally, in Figure 5(d), we move all
of L1,L2,L4, and L5 to the clusters where their corresponding
local data sets reside. As the repair can now be executed
without any cross-cluster traffic, the repair cost is zero.

Algorithm design. We now present a data placement algorithm
(Algorithm 1) that is guaranteed to operate on the optimal trade-
off curve from the minimum upcoding cost to the minimum
repair cost. The input of Algorithm 1 is a parameter x that
decides the operation point in the optimal trade-off curve, while
the output is a placement for the fast LRC.

(i) Placing local parity blocks to minimize upcoding cost to
zero. We first gather the δ local parity blocks into the selected
core cluster in each upcoding unit (lines 3-4), such that we can
complete upcoding within each core cluster. By doing this, the
upcoding cost is zero. For example, in Figure 5(a), we store
every δ = 3 local parity blocks in each core cluster.

(ii) Placing data blocks to further minimize repair cost
(x = 0). We next determine the locations of the data blocks to
minimize the repair cost given the condition that the upcoding
cost has been minimized. We first focus on an upcoding unit.
There are δ local parity blocks that are collocated in the core
cluster, and we have to decide how to place the δ local data
sets. If we put more local data sets also in the core cluster, then
more data blocks can be repaired in the core cluster locally
and the repair cost can be minimized. Note that the blocks in
the core cluster span δ local groups, so the sum of the number
of local parity blocks (i.e., δ ) and the number of data blocks
cannot exceed g+δ to promise single-cluster fault tolerance.
As a result, we can put θ = b g

bc local data sets in the core



L
0

L
1

L
2

L
3

L
4

L
5Core Core

δ local parity blocks

θ local data sets

L
0

D
0

L
1

L
2

D
2
D
3

D
4
D
5

Ɛ
0

Ɛ
1

Ɛ
2

D
1

0-th upcoding unit

L
3

D
6

L
4

L
5

D
8
D
9

D
10
D
11

Ɛ
3

Ɛ
4

Ɛ
5

D
7

1-th upcoding unit

δ local parity blocks 

+ θ local data sets Core Core L
0

D
0

L
2

D
2
D
3

D
4
D
5

Ɛ
0

Ɛ
1

Ɛ
2

D
1

0-th upcoding unit

L
3

D
6

L
4

L
5

D
8
D
9

D
10
D
11

Ɛ
3

Ɛ
4

Ɛ
5

D
7

1-th upcoding unit

Core Core

L
1

θ local parity blocks

L
0

D
0

L
2

D
2
D
3

D
4
D
5

Ɛ
0

Ɛ
1

Ɛ
2

D
1

0-th upcoding unit

Core

L
1

L
3

D
6

L
5

D
8
D
9

D
10
D
11

Ɛ
3

Ɛ
4

Ɛ
5

D
7

1-th upcoding unit

Core

L
4

(a) Minimum upcoding cost (b) Further minimizing repair cost (c) Trading upcoding for repair (d) Minimum repair cost

Fig. 5. Illustration of the different steps of our placement policy for fast LRC with (k, l,g,c) = (12,6,2,7) scaled to compact LRC with (k, l,g,c) = (12,2,2,7).

cluster (lines 6-8), and the cost for repairing each data block
in these θ local data sets is zero. For example, in Figure 5(b),
we put one local data set (i.e., θ = 1) into a core cluster.

For the remaining δ −θ local data sets, We make sure that
each local data set is entirely stored in one cluster (not the
core cluster), such that the cost for repairing each data block
in these δ −θ local data sets is one, as the corresponding local
parity block is in the core cluster. In this manner, the repair
cost is minimized. We further collocate every θ local data sets
into one different cluster (lines 9-14). Each such cluster will
have θ ×b = b g

bc×b≤ g data blocks, hence complying with
single-cluster fault tolerance. For example, in Figure 5(b), for
the remaining two local data sets, we put each into a different
cluster. The data blocks of other upcoding units are placed
in the same way. We call this placement Opt-S, where the
upcoding cost is zero and the repair cost is δ−θ

δ
= 1− θ

δ
. Note

that Opt-S is derived by inputting x = 0 in Algorithm 1.
The values of δ and θ significantly influence the upcoding

and repair costs, which we discuss as follows.

• If δ ≤ θ , then we can directly put all δ local data sets of an
upcoding unit in the core cluster. Under this placement, the
repair and upcoding operations can be directly performed
within the core cluster, and therefore the repair and upcoding
costs are zero.

• In the case where δ > θ , for the remaining δ −θ local data
sets, we collocate every θ ones into a different cluster. If we
collocate more than θ local data sets in a different cluster,
then when we move the corresponding local parity blocks
into this cluster, it will violate single-cluster fault tolerance.
If we collocate less than θ , say s (s < θ) local data sets in a
different cluster, then after we relocate the s corresponding
local parity blocks into this cluster, the repair cost reduces
by s

l while the upcoding cost increases by one. However,
in our design, after we relocate the θ corresponding local
parity blocks into this cluster, the repair cost reduces by θ

l
while the upcoding cost increases by one. That is to say, the
reduction of the repair cost is the most in our design while
the upcoding cost increases by one.

• We assume that δ −θ is divisible by θ , such that every θ

local data sets can be stored in the selected cluster.

(iii) Relocating local parity blocks to trade upcoding cost for
repair cost (0≤ x≤ (δ −θ)× l′). In Opt-S, for each upcoding
unit, there are δ−θ local parity blocks lying in the core cluster,

while their local data sets are located in different clusters. If
we move such local parity blocks to where their local data sets
reside, then the repair cost can be further reduced.

Since we collocate every θ local data sets into one different
cluster, we can move θ corresponding local parity blocks to
this cluster. By doing this, we reduce the repair cost by θ

l
as we move θ local parity blocks to be collocated with their
local data sets, such that the cost for repairing any data block
in these θ local data sets reduces from one to zero. During
upcoding, we first apply partial encoding of the θ local parity
blocks to calculate an XOR sum in this cluster, and then send
the XOR sum to the core cluster. Thus, the upcoding cost
increases by one. We move (θ local parity blocks) for one
different cluster in a step, and in an upcoding unit by upcoding
unit basis, to transform Opt-S into a placement that trades
increased upcoding cost for decreased repair cost. Since there
are δ −θ local parity blocks (per upcoding unit) that can be
moved and l′ upcoding units, we can then move x local parity
blocks for x

θ
different clusters, where x is a multiple of θ and

0 ≤ x ≤ (δ −θ)× l′ (line 17). The repair cost reduces by x
l

and the upcoding cost increases by x
θ

compared to those costs
of Opt-S. Thus, the cost values of the placement derived in a
transformation step are shown as follows.

upcoding cost = x
θ

repair cost = 1− θ

δ
− x

l .
(1)

For example, in Figure 5(c), we move L1 to the cluster that
holds E1, and we reduce the repair cost by 1

6 = 0.17 while the
upcoding cost increases by one.

Note that each transformation step will not break the fault
tolerance guarantee. Specifically, suppose that a core cluster has
moved out t (t is a multiple of θ and 0≤ t ≤ δ−θ ) local parity
blocks, it then remains δ − t local parity blocks and θ local
data sets. The number of blocks is (θ×b+δ−t)≤ (g+δ−t),
and the blocks span δ − t local groups. For a different cluster
that accommodates the relocated local parity blocks, it now has
θ local parity blocks collocated with their corresponding local
data sets. According to Lemma 1, both clusters can guarantee
single-cluster fault tolerance.

The movements (line 17) guarantee that the repair cost of
the placement derived in a transformation step (i.e., 1− θ

δ
− x

l )
is minimized given the upcoding cost (i.e., x

θ
), which can be

readily deduced by the following Theorem.



0.0
0.4
0.8
1.2
1.6
2.0
2.4

0 1 2
Upcoding Cost

R
ep

ai
r 

C
os

t
(8,4,2,5) to (8,2,2,5)
(12,4,2,7) to (12,2,2,7)
(16,4,2,7) to (16,2,2,7)
(20,4,2,9) to (20,2,2,9)

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4
Upcoding Cost

R
ep

ai
r 

C
os

t

(12,6,2,7) to (12,2,2,7)
(12,6,4,5) to (12,2,4,5)
(12,6,6,3) to (12,2,6,3)
(12,6,8,3) to (12,2,8,3)

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5 6 7 8 9 10
Upcoding Cost

R
ep

ai
r 

C
os

t

(24,12,2,13) to (24,2,2,13)
(24,8,2,11) to (24,2,2,11)
(24,6,2,11) to (24,2,2,11)
(24,4,2,11) to (24,2,2,11)

(a) Varying k (b) Varying g (c) Varying l

Fig. 6. Trade-off curve between the upcoding cost and the repair cost.

Theorem 1. For any placement subject to single-cluster fault
tolerance, if the upcoding cost is u, then the lower bound of
the repair cost is 1− θ

δ
− u×θ

l .

The proof is elaborated in the Appendix. Since the repair cost
of the placement derived in each transformation step touches
the lower bound, it is minimized under the upcoding cost.

(iv) Minimizing repair cost to zero (x = (δ −θ)× l′). In the
end (i.e., inputting x = (δ −θ)× l′ in Algorithm 1), every θ

local parity blocks lie together with their local data sets in
one cluster. We call this placement Opt-R, where all repair
operations can be done within each cluster locally, so the repair
cost is zero. For example, in Figure 5(d), every local parity
block lies together with its local data set in one cluster.

Extension to b > g. We now demonstrate that the analysis for
b > g is similar. If b ≥ g+ 1 and we further assume that b
mod (g+ 1) 6= 0. Since at most g+ 1 data blocks of a local
data set can be put into one cluster without breaking the fault
tolerance guarantee, a local data set can be put into b b

g+1c+1
clusters, where b b

g+1c ones hold g+1 data blocks each, and
the remaining one holds (m = b mod (g+1))≤ g data blocks.
If we focus on the remaining m data blocks, then the above
analysis directly applies. The only change is that the repair
cost has to be added by a difference of b b

g+1c as we have to
retrieve an XOR sum of all blocks in each of the other b b

g+1c
clusters to repair any data block in a local data set.

If b is divisible by (g+1), then a local data set spans b
g+1

clusters with g+1 data blocks each. To achieve the minimum
upcoding cost, we gather every δ local parity blocks in each
core cluster, and then we can put at most another g data blocks
in a core cluster (Lemma 1). We cannot move data blocks
to reduce the number of clusters (except the core cluster) a
local data set spans. As a result, the cost for repairing any data
block cannot be further reduced. Thus, in the placement with
the minimum upcoding cost, the repair cost is also minimized.

Trade-off exemplification. We plot the upcoding cost and the
repair cost of each placement and obtain a trade-off curve
between the upcoding cost and the repair cost. We give some
examples in Figure 6 to show the trade-off curve. Several
findings are stated as follows.

The most important trend is that as the upcoding cost
increases, the repair cost decreases.

As shown in Figures 6(a) and 6(c), increasing k or decreasing
l makes the overall repair cost increased. This is because b
increases, which further results in larger b b

g+1c. For example, in
Figure 6(a), in the case where (k, l,g,c)= (8,4,2,5), b b

g+1c= 0
(i.e., a local data set is entirely stored in one cluster), while

in the case where (k, l,g,c) = (20,4,2,9), b b
g+1c = 1 (i.e., a

local data set has to span two clusters).
Figure 6(b) tells that, as g increases, there are less trade-off

points, and the overall repair cost decreases. The reason is that
larger g means that more local data sets can be put into the core
cluster, such that the cost for repairing any data block therein
is zero. For example, in the case where (k, l,g,c) = (12,6,2,7),
we can put one local data set into the core cluster, while in
the case where (k, l,g,c) = (12,6,4,5), we can put two local
data sets into the core cluster.

In Figure 6(a), the case where (k, l,g,c) = (12,4,2,7) only
exhibits one point as b is divisible by (g+ 1), and the case
where (k, l,g,c) = (16,4,2,7) also has one point because δ ≤
b g

mc where m = b mod (g + 1). The cases with one point
in Figure 6(b) are due to that δ ≤ (θ = b g

bc), and those in
Figure 6(c) are due to that b is divisible by (g+1).

D. Downcoding Procedures

We now address the downcoding procedure to restore the
original layout of the fast LRC. We mainly consider the
downcoding processes for Opt-S and Opt-R. We can see that
the block layout for each upcoding unit is the same in Opt-S
and Opt-R, and we can readily derive that the downcoding
operation for each upcoding unit is the same. Therefore, we
conduct our analysis within a single upcoding unit.
Downcoding for Opt-S. In Opt-S, after upcoding, the δ local
parity blocks in the core cluster are updated into a local parity
block of the compact LRC. Downcoding is to rebuild the δ

local parity blocks in the core cluster. Since there are θ local
data sets (i.e., E0, · · · ,Eθ−1) in the core cluster, we can first
recalculate θ local parity blocks (i.e., L0, · · · ,Lθ−1) within the
core cluster. Note that there is a local parity block of the
compact LRC (i.e., L

′
0) in the core cluster that can be utilized,

we then have to retrieve at least δ −θ −1 local parity blocks
from other clusters. Thus, for each of Eθ , · · · ,Eδ−2, we locate
the cluster that holds it, calculate the corresponding local parity
block, and send the local parity block to the core cluster. Finally,
we use L0, · · · ,Lδ−2 and L

′
0 to calculate Lδ−1.

The downcoding cost is readily deduced as (δ−θ−1)× l
′
, if

b≤ g. If considering general parameters, then when calculating
each of the δ −1 local parity blocks, we should access partial
encoded blocks from another b b

g+1c clusters. Therefore,

downcoding cost = ((δ −b g
mc−1)+ b b

g+1c× (δ −1))× l
′
,

(2)
where m = b mod (g+1).

For example, in Figure 4(a), during downcoding, we can
recalculate L0 based on E0 in the core cluster. We then calculate
L1 based on E1 in a different cluster, and send L1 to the core
cluster. Finally, we use L0,L1 and L

′
0 to calculate L2. The same

is for L3,L4 and L5, and thus the downcoding cost is two.
Downcoding for Opt-R. In Opt-R, downcoding is to restore
the layout that every θ local parity blocks and their local data
sets are collocated in one cluster. Thus, we can regenerate each
local parity block within each cluster locally, implying that
the downcoding cost is zero. For general parameters, when



recalculating each local parity block, we should access partial
encoded blocks from another b b

g+1c clusters. Thus,

downcoding cost = b b
g+1c×δ × l

′
= b b

g+1c× l. (3)

For example, in Figure 4(b), we can regenerate L0-L5 within
each cluster locally, so the downcoding cost is zero.

IV. EVALUATION

We evaluate via numerical analysis and testbed experiments
the two optimal placements (Section III-C): (i) Opt-S, the
placement with the minimum upcoding cost, and (ii) Opt-R,
the placement with the minimum repair cost. We compare them
with the flat placement (Flat) that stores each block of a stripe
in a distinct cluster [11], [21].

A. Numerical Analysis

Our numerical analysis considers four metrics: the repair
cost of the fast LRC, the repair cost of the compact LRC, the
upcoding cost, and the downcoding cost.
Flat. For Flat, the repair costs of the fast LRC and the compact
LRC are k

l = b and k
l′ = b′, respectively (Section II-B).

During upcoding, we send every δ −1 local parity blocks
to the cluster that holds one remaining local parity block to
encode into a local parity block of the compact LRC (per
upcoding unit). Thus, the upcoding cost is calculated as

upcoding cost = (δ −1)× l′ = l− l′.

During downcoding, each of the first δ − 1 local parity
blocks is recalculated by sending its encoding data blocks
across clusters to another cluster. The remaining one local
parity block can be derived in two ways: (i) the same as
the first δ −1 local parity blocks, and (ii) sending the δ −1
available local parity blocks to the cluster that holds the local
parity block of the compact LRC. Hence,

downcoding cost = min{δ ×b× l′,((δ −1)×b+δ −1)× l′}
= min{k, k+ l− l′× (b+1)}.

Opt-S and Opt-R. The repair cost of the fast LRC of Opt-S
and Opt-R is calculated using Equation (1), and the repair cost
of the compact LRC of Opt-S and Opt-R is easily derived
based on the layout after upcoding (Figure 4).

The upcoding cost of Opt-S and Opt-R is calculated using
Equation (1). The downcoding cost of Opt-S is calculated using
Equation (2), and that of Opt-R is calculated using Equation (3).
Scaling operations. We consider eight sets of scaling opera-
tions from (k, l,g,c) to (k, l

′
,g,c), denoted by p0 to p7:

p0: (4,2,2,3)↔ (4,1,2,3) p1: (8,4,2,5)↔ (8,2,2,5)
p2: (12,6,2,7)↔ (12,2,2,7) p3: (12,6,4,5)↔ (12,2,4,5)
p4: (24,12,4,7)↔ (24,2,4,7) p5: (24,6,2,11)↔ (24,2,2,11)
p6: (32,16,4,9)↔ (32,4,4,9) p7: (32,8,2,13)↔ (32,2,2,13)

Results. Figure 7 plots the costs for the three placements. We
summarize the following observations.
• From Figures 7(a) and 7(c), Opt-S always has the minimum

upcoding cost (zero), while Opt-R is designed with the
minimum repair cost.

1
0

1
2

0

2

4

0

4

2

0

4 4

0

10

2

0

4 4

0

12

2

0

6

0

2

4

6

8

10

12

p0 p1 p2 p3 p4 p5 p6 p7
Scaling Operation

U
pc

od
in

g 
C

os
t

Flat Opt-S Opt-R

00
3

00

6

0
2

12

00

12

0

6

24

6
4

20

0

4

32

88

30

0
4
8

12
16
20
24
28
32

p0 p1 p2 p3 p4 p5 p6 p7
Scaling Operation

D
ow

nc
od

in
g 

C
os

t

Flat Opt-S Opt-R

(a) Upcoding cost (b) Downcoding cost

0
0.5

2

0
0.5

2

0

0.67

2

0
0.33

2

0

0.67

2

1
1.33

4

0
0.5

2

1
1.5

4

0

1

2

3

4

5

p0 p1 p2 p3 p4 p5 p6 p7
Scaling Operation

R
ep

ai
r 

C
os

t (
F

as
t)

Flat Opt-S Opt-R

11

4

11

4

22

6

11

6

22

12

44

12

11

8

55

16

0

4

8

12

16

p0 p1 p2 p3 p4 p5 p6 p7
Scaling Operation

R
ep

ai
r 

C
os

t (
C

om
pa

ct
) Flat Opt-S Opt-R

(c) Repair cost (fast) (d) Repair cost (compact)

Fig. 7. Numerical results of the scaling and repair costs.

• Opt-S and Opt-R outperform Flat in terms of the scaling and
repair costs stably.

• For the cases where b = g (e.g., p0-p2), we can only put
θ = 1 local parity block and its local data set in one cluster,
and so we cannot utilize partial encoding of the local parity
blocks in each cluster for upcoding. Thus, the upcoding cost
of Opt-R equals that of Flat. For other cases, we put more
than one local parity block in one cluster, and so partial
encoding of the local parity blocks brings benefit to the
upcoding cost. For example, for scaling operation p4, the
upcoding cost of Flat is 10 while that of Opt-R is four.

• In Figure 7(b), Opt-S has less downcoding cost than Opt-
R for scaling operation p5, and the reason is that Opt-S
can exploit the local parity block of the compact LRC to
calculate one remaining local parity block, therefore saving
one network transfer in each upcoding unit (Section III-D).
However, for scaling operations p2, p4 and p6, Opt-R can
regenerate each local parity block within each cluster locally,
and thus has less downcoding cost (zero) than Opt-S.

• From Figure 7(d), the repair cost of the compact LRC of Opt-
S equals that of Opt-R (because the layout of the compact
LRC of Opt-S is the same as that of Opt-R (Figure 4)), and
both are much smaller than that of Flat.

• When g increases, the scaling and repair costs of both Opt-S
and Opt-R decrease, while these costs of Flat keep constant.
Hence, the improvements of Opt-S and Opt-R over Flat
become greater with larger g. For example, Opt-S reduces
the repair cost of the fast LRC of Flat by 67% for scaling
operation p2 (i.e., g = 2), while the reduction becomes 83%
for scaling operation p3 (i.e., g = 4).

B. Testbed Experiments

We implement Opt-S, Opt-R, and Flat in a distributed
storage system prototype, and conduct testbed experiments
to understand their scaling and repair performance. In our
prototype, repair and scaling are both implemented as two
phase processes, where we first aggregate relevant data within
a cluster, and then send the aggregated data across cluster to
the destination cluster. Our prototype is written in C++ and



implemented with a Coordinator (CN) and multiple Datanodes
(DN). The CN sends commands, while the DNs receive
commands and execute the actual data read, write, and transfer
independently and in parallel, and finally reply acks to the CN.

Setup. Our testbed comprises 22 physical nodes, each of which
runs Ubuntu 16.04.5 LTS with a quad-core 3.40 GHz Intel Core
i5-3570, 16 GB RAM, and a Seagate ST1000DM003 7200 RPM
1 TB SATA hard disk. Each node achieves 170 MBps of disk
read bandwidth and 130 MBps of write bandwidth, and 1 Gbps
of network bandwidth (measured by iperf). We deploy the CN
in one node, and the DNs on 20 nodes. We configure the DNs
into different clusters according to the scaling operations and
the placement strategy. We also configure a dedicated node to
act as a network core, such that any cross-cluster traffic must
traverse the network core. We use the Wonder Shaper tool [1]
to control the outgoing bandwidth of the network core.

Methodology. We assume the following default configura-
tions. We adopt the scaling operation p2 (i.e., (12,6,2,7) to
(12,2,2,7)). We configure the block size as 64 MB, the packet
size as 1 MB (packet is the unit for network transfer), and the
cross-cluster bandwidth as 100 Mbps (such that the ratio of
inner-cluster bandwidth to cross-cluster bandwidth is 10:1). We
may vary some of the settings in our experiments. We measure
the repair time per block and the scaling time per stripe. The
results of each experiment are averaged over five runs.

Experiment 1 (Performance for different scaling opera-
tions). We first evaluate the performance for different scaling
operations. We consider three sets of scaling operations, i.e.,
p0, p1 and p2. We fix the block size as 64 MB and the cross-
cluster bandwidth as 100 Mbps, and then compare the scaling
time and the repair time. Figure 8 shows the results.

According to our analysis, the upcoding cost of Opt-S is
zero, while that of Flat and Opt-R increases as l− l′ increases.
From Figure 8(a), the experimental results comply with the
theoretics. As l− l′ grows, the upcoding time of Opt-S keeps
fairly stable while that of Flat and Opt-R increases. Thus,
Opt-S will achieve more gain for larger l− l′. Overall, Opt-S
reduces the upcoding time of Flat and Opt-R by 80.6% and
80.2%, 87.6% and 87.2%, and 91.0% and 91.0%, for p0, p1
and p2, respectively. The upcoding time of Opt-R is similar to
that of Flat, which confirms to the numerical results.

The repair cost of Opt-R is zero while that of Flat keeps
constant as b keeps unchanged. The repair cost of Opt-S (i.e.,
1− θ

δ
) grows as δ = l

l′ increases. From Figure 8(c), the repair
time of Opt-R and Flat keeps stable while that of Opt-S grows
slightly. However, Opt-R always has the smallest repair time.
Overall, Opt-R reduces the repair time of Flat and Opt-S by
85.5% and 56.8%, 84.2% and 55.8%, and 84.0% and 61.5%,
for scaling operations p0, p1 and p2, respectively.

From Figure 8(b), both Opt-S and Opt-R show better down-
coding time performance compared to Flat. For example, for
scaling operation p2, Opt-S and Opt-R reduce the downcoding
time of Flat by 80.7% and 97.3%, respectively.

Finally, from Figure 8(d), the repair time of the compact LRC
of Opt-S is almost identical to that of Opt-R, and both show

0

5

10

15

20

25

30

p0 p1 p2
Scaling Operation

U
pc

od
in

g 
T

im
e 

(s
)

Flat Opt-S Opt-R

0

10

20

30

40

50

60

70

80

p0 p1 p2
Scaling Operation

D
ow

nc
od

in
g 

T
im

e 
(s

) Flat Opt-S Opt-R

(a) Upcoding time (b) Downcoding time

0

3

6

9

12

15

p0 p1 p2
Scaling Operation

R
ep

ai
r 

T
im

e 
(F

as
t)

 (
s)

Flat Opt-S Opt-R

0

10

20

30

40

p0 p1 p2
Scaling Operation

R
ep

ai
r 

T
im

e 
(C

om
pa

ct
) 

(s
)

Flat Opt-S Opt-R

(c) Repair time (fast) (d) Repair time (compact)

Fig. 8. Experiment 1: Comparison of the scaling and repair time.

0

10

20

30

40

50

60

16 32 64 128
Block Size (MB)

U
pc

od
in

g 
T

im
e 

(s
) Flat

Opt-S
Opt-R

0

5

10

15

20

25

30

16 32 64 128
Block Size (MB)

R
ep

ai
r 

T
im

e 
(s

)

Flat
Opt-S
Opt-R

(a) Upcoding time (b) Repair time

Fig. 9. Experiment 2: Impact of the block size.

improvements over Flat. For example, for scaling operation
p2, Opt-S and Opt-R reduce the repair time of Flat by 62.8%
and 62.8%, respectively.

Experiment 2 (Impact of block size). We now evaluate the
impact of the block size, varied from 16 MB to 128 MB. We
test the default scaling operation (i.e., p2) and fix the cross-
cluster bandwidth as 100 Mbps. We only show the results for
the upcoding time and the repair time of the fast LRC in the
following experiments. Figure 9 shows the results. We can see
that the upcoding time and the repair time increases with a
larger block size, and Opt-S and Opt-R constantly outperform
Flat. For example, Opt-S reduces the upcoding time of Flat
from 89.6%-91.3%, and Opt-R reduces the repair time of Flat
from 83.2%-84.3%, across all block sizes.

Experiment 3 (Impact of bandwidth). We now study the
impact of cross-cluster bandwidth. Here, we adopt p2 and
fix the block size as 64 MB, and then vary the cross-cluster
bandwidth from 50 Mbps to 400 Mbps (the ratio of inner-cluster
bandwidth to cross-cluster bandwidth is 20:1-2.5:1). Figure 10
shows the results. As expected, the upcoding and repair time
decreases with larger bandwidth. Besides, in Figure 10(a),
Opt-S reduces the upcoding time of Flat by 95.2%, 91.0%,
84.1% and 74.7% when the bandwidth is 50 Mbps, 100 Mbps,
200 Mbps and 400 Mbps, respectively. In Figure 10(b), Opt-R
reduces the repair time of Flat by 91.5%, 84.0%, 72.6% and
56.6% when the bandwidth changes. These indicate that the
improvements of Opt-S and Opt-R over Flat are greater with
more scarce cross-cluster bandwidth.



0

10

20

30

40

50

50 100 200 400
Bandwidth (Mbps)

U
pc

od
in

g 
T

im
e 

(s
) Flat

Opt-S
Opt-R

0

5

10

15

20

25

50 100 200 400
Bandwidth (Mbps)

R
ep

ai
r 

T
im

e 
(s

)

Flat
Opt-S
Opt-R

(a) Upcoding time (b) Repair time

Fig. 10. Experiment 3: Impact of the cross-cluster bandwidth.

V. RELATED WORK

There has been extensive work on the repair performance
of LRC in the literature. Theoretical studies on LRC (e.g.,
[8], [23]–[25]) focus on the relationship between the optimal
minimum Hamming distance and the theoretical repair cost, and
design explicit LRC constructions. LRC is also implemented
and evaluated in Azure [11] and Facebook [21]. Kolosov et
al. [14] study the trade-offs of different LRC constructions
between storage overheads and repair costs. In contrast, our
work mainly focuses on the trade-off between the repair and
scaling costs in hierarchical clustered storage systems.

Several studies address the scaling problem on the change of
erasure coding configurations. Some studies (e.g., [4], [12], [30],
[31], [33], [34]) explore the efficient data redistribution when
a storage cluster expands and adds new storage nodes, while
others (e.g., [6], [15], [28], [29]) address the transition from
replication to erasure coding. HeART [13] suggests the change
of redundancy settings to balance between storage overhead and
reliability. To efficiently adapt to workload changes, HACFS
[32] proposes efficient transitions between two erasure codes
to balance between storage overhead and access performance.
Our work is motivated by the scenario in HACFS, and presents
a formal repair-scaling trade-off analysis.

A number of studies consider the deployment of erasure cod-
ing in clustered storage that spans multiple geographic regions
[3], [20]. In particular, some studies focus on minimizing the
cross-cluster bandwidth during repair [9], [10], [16], [18], [22].
Our work is the first one that addresses scaling performance
in clustered storage.

VI. CONCLUSION

We investigate the optimal trade-off between the repair
and scaling performance of LRC in clustered storage sys-
tems. We design placement strategies that operate along the
optimal repair-scaling trade-off curve subject to the single-
cluster fault tolerance constraint. Both numerical studies and
testbed experiments validate the efficiency of our placement
strategies. The source code of our implementation is available
at http://adslab.cse.cuhk.edu.hk/software/lrctradeoff.

Acknowledgements: This work is supported by the Research
Grants Council of Hong Kong (GRF 14216316 and CRF
C7036-15G), the National Natural Science Foundation of
China (61602120), and the Fujian Provincial Natural Science
Foundation (2017J05102).

APPENDIX

Proof of Theorem 1. Suppose that the upcoding cost of a
placement is u, and the upcoding cost induced by the i-th (0≤
i≤ l′−1) upcoding unit is ui (∑l′−1

i=0 ui = u). For an upcoding
unit, there must be a core cluster that will collect and encode
the δ local parity blocks. There must also be some different
clusters that hold local parity blocks. We call each of such
clusters a remote cluster. Our proof is organized as follows.

(i) We first prove that the number of remote clusters for
the i-th upcoding unit is exactly ui. During upcoding, the core
cluster will retrieve an XOR sum of the local parity blocks in
each remote cluster. If the number of remote clusters is not ui,
then the upcoding cost will be different from ui.

(ii) We next prove that a core cluster also holds local parity
blocks. Otherwise, we can choose one of the remote clusters as
the new core cluster. During upcoding, the local parity blocks
in the new core cluster can be retrieved locally, so the upcoding
cost for the i-th upcoding unit will be ui−1 rather than ui.

(iii) We then prove that we can collocate (at most) θ local
data sets into a cluster that holds local parity blocks if the
corresponding local parity blocks of these local data sets are
also in this cluster. Suppose that a cluster holds r local parity
blocks, and we can collocate (at most) w local data sets whose
local parity blocks are included in the r ones. The number
of blocks (i.e., w×b+ r), which span r local groups, cannot
exceed g+ r (Lemma 1). Thus, w = b g

bc= θ , and the cost for
repairing any data block in these θ local data sets is zero.

(iv) We now show that the core cluster and remote clusters
of one upcoding unit should be different from those of another
upcoding unit so as to minimize the repair cost. If cluster
A of one upcoding unit is the same as cluster B of another
upcoding unit, then according to (iii), we can put (at most) θ

local data sets into A (or B). If A is different from B, then we
can put θ local data sets into A and another θ local data sets
into B. Hence, if the core cluster and remote clusters for each
upcoding unit are different, then we can collocate more local
data sets to be together with their local parity blocks, and so
the repair cost of more data blocks is zero.

(v) We now prove that the maximum number of data blocks
whose repair cost is zero is (l′+u)×θ ×b. According to (iii),
we can put (at most) θ local data sets into a cluster that holds
local parity blocks, so as to make the cost for repairing any data
block in these θ local data sets as zero. According to (i), (ii)
and (iv), we have (at most) l

′
core clusters and u remote clusters

that hold local parity blocks. Thus, the maximum number of
data blocks whose repair cost is zero is (l′+u)×θ ×b.

(vi) Finally, we prove that we cannot have a placement whose
repair cost is less than 1− θ

δ
− u×θ

l subject to the upcoding
cost of u. Otherwise, since the repair cost is less than one,
there must be some data blocks whose repair cost is zero. We
assume that the number of data blocks whose repair cost is
zero is α , so the number of data blocks whose repair cost is
at least one is k−α . Therefore, k−α

k < 1− θ

δ
− u×θ

l , implying
α > (l′+u)×θ×b. However, this is conflicting with our proof
in (v). Thus, we complete our proof.



REFERENCES

[1] The Wonder Shaper 1.4. https://github.com/magnific0/wondershaper.
[2] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. Vijaykumar.

ShuffleWatcher: Shuffle-aware Scheduling in Multi-tenant Mapreduce
Clusters. In Proc. of USENIX ATC, 2014.

[3] Y. L. Chen, S. Mu, J. Li, C. Huang, J. Li, A. Ogus, and D. Phillips.
Giza: Erasure Coding Objects across Global Data Centers. In Proc. of
USENIX ATC, 2017.

[4] L. Cheng, Y. Hu, and P. P. Lee. Coupling Decentralized Key-Value
Stores with Erasure Coding. In Proc. of ACM SoCC, 2019.

[5] M. Chowdhury, S. Kandula, and I. Stoica. Leveraging Endpoint Flexibility
in Data-Intensive Clusters. In Proc. of ACM SIGCOMM, 2013.

[6] B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson. DiskReduce: RAID for
Data-Intensive Scalable Computing. In Proc. of ACM PDSW, 2009.

[7] D. Ford, F. Labelle, F. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan. Availability in Globally Distributed Storage
Systems. In Proc. of USENIX OSDI, 2010.

[8] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin. On the Locality of
Codeword Symbols. IEEE Trans. on Information Theory, 58(11):6925–
6934, 2012.

[9] H. Hou, P. P. Lee, K. W. Shum, and Y. Hu. Rack-Aware Regenerating
Codes for Data Centers. IEEE Trans. on Information Theory, 65(8):4730–
4745, Aug 2019.

[10] Y. Hu, X. Li, M. Zhang, P. P. Lee, X. Zhang, P. Zhou, and D. Feng.
Optimal Repair Layering for Erasure-Coded Data Centers: From Theory
to Practice. ACM Trans. on Storage, 13(4):33, 2017.

[11] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin. Erasure Coding in Windows Azure Storage. In Proc. of
USENIX ATC, 2012.

[12] J. Huang, X. Liang, X. Qin, P. Xie, and C. Xie. Scale-RS: An Efficient
Scaling Scheme for RS-Coded Storage Clusters. IEEE Trans. on Parallel
and Distributed Systems, 26(6):1704–1717, 2014.

[13] S. Kadekodi, K. Rashmi, and G. R. Ganger. Cluster storage systems gotta
have HeART: improving storage efficiency by exploiting disk-reliability
heterogeneity. In Proc. of USENIX FAST, 2019.

[14] O. Kolosov, G. Yadgar, M. Liram, I. Tamo, and A. Barg. On Fault
Tolerance, Locality, and Optimality in Locally Repairable Codes. In
Proc. of USENIX ATC, 2018.

[15] R. Li, Y. Hu, and P. P. Lee. Enabling Efficient and Reliable Transition
from Replication to Erasure Coding for Clustered File Systems. IEEE
Trans. on Parallel and Distributed Systems, 28(9):2500–2513, 2017.

[16] X. Li, R. Li, P. P. Lee, and Y. Hu. OpenEC: Toward Unified and
Configurable Erasure Coding Management in Distributed Storage Systems.
In Proc. of USENIX FAST, 2019.

[17] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan,
S. Shankar, V. Sivakumar, L. Tang, et al. f4: Facebook’s Warm BLOB
Storage System. In Proc. of USENIX OSDI, 2014.

[18] N. Prakash, V. Abdrashitov, and M. Médard. The Storage versus Repair-
Bandwidth Trade-off for Clustered Storage Systems. IEEE Trans.on
Information Theory, 64(8):5783–5805, Aug 2018.

[19] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and K. Ram-
chandran. A Solution to the Network Challenges of Data Recovery in
Erasure-coded Distributed Storage Systems: A Study on the Facebook
Warehouse Cluster. In Proc. of USENIX HotStorage, 2013.

[20] J. K. Resch and J. S. Plank. AONT-RS: Blending Security and
Performance in Dispersed Storage Systems. In Proc. of USENIX FAST,
2011.

[21] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur. XORing Elephants: Novel Erasure
Codes for Big Data. In Proc. of VLDB Endowment, pages 325–336,
2013.

[22] Z. Shen, J. Shu, and P. P. Lee. Reconsidering Single Failure Recovery
in Clustered File Systems. In Proc. of IEEE/IFIP DSN, 2016.

[23] N. Silberstein, A. S. Rawat, O. O. Koyluoglu, and S. Vishwanath. Optimal
Locally Repairable Codes via Rank-Metric Codes. In Proc. of IEEE
International Symposium on Information Theory, 2013.

[24] I. Tamo and A. Barg. A Family of Optimal Locally Recoverable Codes.
IEEE Trans. on Information Theory, 60(8):4661–4676, 2014.

[25] I. Tamo, D. S. Papailiopoulos, and A. G. Dimakis. Optimal Locally
Repairable Codes and Connections to Matroid Theory. IEEE Trans. on
Information Theory, 62(12):6661–6671, 2016.

[26] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye, and
G. Varghese. Global Analytics in the Face of Bandwidth and Regulatory
Constraints. In Proc. of USENIX NSDI, 2015.

[27] H. Weatherspoon and J. D. Kubiatowicz. Erasure Coding Vs. Replication:
A Quantitative Comparison. In Proc. of IPTPS, 2002.

[28] S. Wei, Y. Li, Y. Xu, and S. Wu. DSC: Dynamic Stripe Construction
for Synchronous Encoding in Clustered File System. In Proc. of IEEE
INFOCOM, 2017.

[29] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP AutoRAID
Hierarchical Storage System. ACM Trans. on Computer Systems,
14(1):108–136, 1996.

[30] C. Wu and X. He. GSR: A Global Stripe-Based Redistribution Approach
to Accelerate RAID-5 Scaling. In Proc. of IEEE ICPP, 2012.

[31] S. Wu, Y. Xu, Y. Li, and Z. Yang. I/O-Efficient Scaling Schemes for
Distributed Storage Systems with CRS Codes. IEEE Trans. on Parallel
and Distributed Systems, 27(9):2639–2652, 2016.

[32] M. Xia, M. Saxena, M. Blaum, and D. A. Pease. A Tale of Two Erasure
Codes in HDFS. In Proc. of USENIX FAST, 2015.

[33] X. Zhang, Y. Hu, P. P. Lee, and P. Zhou. Toward Optimal Storage
Scaling via Network Coding: From Theory to Practice. In Proc. of IEEE
INFOCOM, 2018.

[34] W. Zheng and G. Zhang. Fastscale: Accelerate RAID Scaling by
Minimizing Data Migration. In Proc. of USENIX FAST, 2011.


