
Encoding-Aware Data Placement for Efficient
Degraded Reads in XOR-Coded Storage

Systems: Algorithms and Evaluation
Zhirong Shen ,Member, IEEE, Patrick P. C. Lee , Senior Member, IEEE,

Jiwu Shu, Fellow, IEEE, and Wenzhong Guo ,Member, IEEE

Abstract—Modern storage systems adopt erasure coding to maintain fault tolerance with low storage redundancy. However, how to

improve the performance of degraded reads in erasure-coded storage has been a critical issue. We revisit this problem from two different

perspectives that are neglected by existing studies: data placement and encoding rules. To this end, we propose encoding-aware data

placement (EDP), whichmitigates the number of I/Os in degraded reads during a single failure for general XOR-based erasure codes.

EDP carefully selects appropriate parity units to be generated by sequential data based on the encoding rules and establishes their

generation orders.We further refine the data placement for optimizing the degraded reads to any two sequential data units. Trace-driven

evaluation results show that EDP significantly reduces I/Os in degraded reads and hence shortens the read time.

Index Terms—Encoding-aware data placement, degraded reads, XOR-coded storage systems

Ç

1 INTRODUCTION

F AILURES are prevalent in storage systems [18], [24]. To
maintain data availability, traditional storage systems

often replicate identical data copies across different disks
(or storage nodes) [4], [9]. However, replication incurs sub-
stantial storage overhead, especially in the face of the
unprecedented growth of today’s scale of data storage. In
view of this, erasure coding has been increasingly adopted
by storage systems in enterprises (e.g., Google [6], Microsoft
[10], Facebook [22]) as a practical redundancy alternative
for maintaining data availability. Erasure coding is shown
to incur much lower storage redundancy than traditional
replication, while achieving the same degree of fault toler-
ance [28]. There are many possible ways to construct an
erasure code. Nevertheless, practical erasure codes are
often maximum distance separable (MDS) and systematic.
Specifically, an erasure code can be configured by two
parameters k and m. A ðk;mÞ code treats original data as k
equal-size (uncoded) data units and encodes them to form m
additional equal-size (coded) parity units, such that the

kþm dependent units are collectively called a stripe. The
code is MDS if the original k data units can be recovered
from any k out of the collection of kþm units, while incur-
ring the minimum storage redundancy. In addition, the
code is systematic if the k uncoded data units are kept in the
stripe and can be directly accessed by normal read opera-
tions. A large-scale storage system typically stores multiple
stripes, each of which is independently encoded, and is tol-
erable against anym failures.

For general ðk;mÞ codes, recovering each failed unit
needs to retrieve k available units of the same stripe. This
differs from replication, which can recover a lost unit by
simply retrieving another available unit replica. Thus, while
erasure coding improves storage efficiency, it triggers addi-
tional I/O and bandwidth during recovery. Field studies
show that frequent failures can trigger substantial network
traffic due to recovery in production erasure-coded storage
systems [21]. As opposed to permanent failures (i.e., the
stored units are permanently lost), transient failures (i.e.,
the stored units are temporarily unavailable) account for
over 90 percent of failure events in real-life storage systems
[6], possibly due to power outages, loss of network connec-
tivity, and system reboots and maintenance. In the presence
of transient failures, a storage system issues degraded reads
to unavailable units, whose latencies are higher than normal
reads to available units when no failure happens. Note that
degraded reads differ from recovering the permanently lost
units of entire disks, as the degraded read performance
heavily depends on the read patterns (e.g., sequential or
random access, read size, read position). Thus, given that
degraded reads trigger additional I/O and bandwidth and
are frequently performed in practice, how to improve
degraded read performance becomes a critical concern
when deploying erasure coding in storage systems.

� Z. Shen and P.P.C. Lee are with the Department of Computer Science
and Engineering, The Chinese University of Hong Kong, Hong Kong.
E-mail: zhirong.shen2601@gmail.com, pclee@cse.cuhk.edu.hk.

� J. Shu is with theDepartment of Computer Science and Technology, Tsinghua
University, Beijing 100084, China. E-mail: shujw@tsinghua.edu.cn.

� W. Guo is with Fujian Provincial Key Laboratory of Network Computing
and Intelligent Information Processing, Key Laboratory of Spatial Data
Mining & Information Sharing, College of Mathematics and Computer
Sciences, and Ministry of Education, Fuzhou University, Fuzhou 350003,
China. E-mail: guowenzhong@fzu.edu.cn.

Manuscript received 14 Aug. 2017; revised 28 Mar. 2018; accepted 21 May
2018. Date of publication 31 May 2018; date of current version 9 Nov. 2018.
(Corresponding author: Wenzhong Guo.)
Recommended for acceptance by C. Carothers.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2018.2842210

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 12, DECEMBER 2018 2757

1045-9219� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2673-5868
https://orcid.org/0000-0003-2673-5868
https://orcid.org/0000-0003-2673-5868
https://orcid.org/0000-0003-2673-5868
https://orcid.org/0000-0003-2673-5868
https://orcid.org/0000-0002-4501-4364
https://orcid.org/0000-0002-4501-4364
https://orcid.org/0000-0002-4501-4364
https://orcid.org/0000-0002-4501-4364
https://orcid.org/0000-0002-4501-4364
https://orcid.org/0000-0003-4118-8823
https://orcid.org/0000-0003-4118-8823
https://orcid.org/0000-0003-4118-8823
https://orcid.org/0000-0003-4118-8823
https://orcid.org/0000-0003-4118-8823
mailto:
mailto:
mailto:
mailto:

In this paper, we study the problem of achieving efficient
degraded reads from two specific perspectives that are
neglected by previous studies (see Section 2.3 for related
work): (i) data placement (i.e., howdata is placed across disks)
and (ii) encoding rules (i.e., how parity units are encoded
from data units). Here, we focus on single failures (i.e., either a
single unavailable unit in a stripe, or a single disk failure),
since they are the most common failure scenarios in practice
as opposed to concurrent multiple failures [6], [10], [21]. Also,
our work is driven to be applicable for generalXOR-based era-
sure codes, which refer to a special class of erasure codeswhose
encoding and decoding operations are purely based on XOR
operations for computational efficiency. Our intuition is that
by carefully examining the encoding rules of an erasure code,
we can arrange the data and parity layouts such that the num-
ber of I/Os of degraded reads can be reduced without violat-
ing the fault tolerance of the erasure code. By reducing the
number of I/Os, we not only enhance the performance of
degraded reads, but also reduce the amount of recovery traffic
that can disturb the performance of foreground jobs [21].

To this end, we propose EDP, an encoding-aware data
placement scheme that aims to enhance the performance of
degraded reads in single failures for general XOR-based
erasure codes. EDP attempts to use sequential data units for
parity generation, so that the requested data units of a
degraded read can be associated with common parity units.
Also, it specifies the selection principles for the parity units
being generated by sequential data units, and carefully
establishes the generation order of parity units, so as to fur-
ther reduce the number of I/Os of a degraded read. To the
best of our knowledge, EDP is the first work that exploits
data placement designs to improve degraded read perfor-
mance for any XOR-coded storage systems.

Our contributions can be summarized as follows.

� We present EDP, a new data placement design that
aims to improve degraded read performance for any
XOR-coded storage system.

� We present a greedy algorithm for EDP that can effi-
ciently determine how to place sequential data units
according to the encoding rules, how to select the
appropriate parity units to be generated by sequential
data units, and how to establish the parity generation

order. We also present an algorithm for EDP to refine
data placement. Our proposed algorithms are shown
to have polynomial complexities.

� We realize EDP on a real storage system equipped
with representative erasure codes. Experiments
based on real-world workloads show that EDP sig-
nificantly reduces extra I/O caused by degraded
reads and also reduces the degraded read latency.

The rest of this paper proceeds as follows. Section 2
will introduce the research background and related work.
Section 3 will describe the motivating argument of this
research. Section 4 will present the detailed design of EDP.
Section 5 will present evaluation results. Finally, Section 6
will conclude this paper.

2 BACKGROUND AND RELATED WORK

2.1 Basics of XOR-Based Erasure Codes

XOR-based erasure codes perform purely XOR operations
in encoding and decoding operations, thereby having
higher computational efficiency than erasure codes that
operate over finite fields (e.g., Reed-Solomon Codes [23], SD
Codes [19], and STAIR Codes [14]). Existing XOR-based era-
sure codes support different levels of fault tolerance. They
can tolerate double failures (e.g., EVENODD Code [1], RDP
Code [5], X-Code [34], P-Code [12], Balanced P-Code [33],
HDP Code [29], H-Code [30], HV Code [26], D-Code [7]), tri-
ple failures (e.g., STAR Code [11], T-Code [16], and TIP
Code [36]), or a general number of failures (e.g., Cauchy
Reed-Solomon Code [2]). In this paper, we mainly focus on
XOR-based erasure codes (see Section 1).

Many XOR-based erasure codes often configure the num-
ber of disks as a function of a prime number p. Note that the
value of p may imply different numbers of disks for different
codes (e.g., p� 1 disks for HDP Code [29] and p disks for
X-Code [34]). To perform encoding or decoding, XOR-based
erasure codes often divide a data or parity unit into sub-units,
whichwe call elements (i.e., data elements and parity elements,
respectively). In other words, each stripe contains multiple
rows of elements. Since each stripe is independently encoded
(see Section 1), our discussion focuses on a single stripe.

To illustrate, Fig. 1 shows the element layouts of HDP
Code [29] for a single stripe over six disks, where p ¼ 7,
k ¼ 4, and m ¼ 2 (see Section 1 for the definitions of k and
m). HDPCode is anMDS code that tolerates double disk fail-
ures. It has two kinds of parity elements termed horizontal-
diagonal parity elements and anti-diagonal parity elements.
It first computes the anti-diagonal parity elements using
the data elements (see Fig. 1a), and then computes the
horizontal-diagonal parity elements using both data ele-
ments and the computed anti-diagonal parity elements.
Fig. 2 also shows the element layouts of X-Code [34] for a
single stripe over five disks, where p ¼ 5, k ¼ 3, andm ¼ 2.

In our illustrations, we use numbers to specify the
logical order of how data elements are stored on disks.
Let #i be the ith data element stored in a stripe based on
the logical order. We say that the data elements are sequen-
tial if they follow a continuous logical order. For example,
in Fig. 1, #1 and #2 are two sequential data elements. The
logical order depends on the data placement strategy, as
will be explained in Section 2.2.

Fig. 1. Element layout of HDP Code under horizontal data placement
over p� 1 disks (p ¼ 7). Note that the numbers in data elements repre-
sent the logical order of how the data elements are stored, and the ele-
ments with the same shape and color belong to the same parity chain for
a given encoding direction. We use these representations in our illustra-
tions throughout the paper.

2758 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 12, DECEMBER 2018

Each parity element is encoded (or XOR-ed) from a subset
of elements of a stripe. Each XOR-based erasure code has its
own encoding rule, which specifies the encoding direction
(e.g., horizontal, diagonal, or anti-diagonal) and which ele-
ments are used for generating a parity element. Let Ri be the
ith parity element in a stripe. For example, in Fig. 1a, the anti-
diagonal parity element R9 ¼#1�#6�#15�#20 (where �
denotes the XOR operation), implying that R9 is encoded
from the four data elements along the anti-diagonal direction.
Following the same principle, the horizontal-diagonal parity
elementR1 ¼#1�#2�#3�#4�R7 as shown in Fig. 1b.

We define a parity chain as the collection of a parity ele-
ment and the elements that are XOR-ed together to form
the parity element. The number of elements in a parity
chain is defined as the length of the parity chain. In our illus-
trations, we mark the elements in the same shape and color
if they belong to the same parity chain for a given encod-
ing direction. For example, the collection f#1, #6, #15,
#20, R9g forms an anti-diagonal parity chain in Fig. 1a
whose length is five, and the collection f#1, #2, #3, #4,
R7, R1g forms the horizontal-diagonal parity chain in
Fig. 1b whose length is six. Note that the data element #1
belongs to both of the two parity chains. We can see that
an erasure code may have the different lengths of parity
chains. For example, in HDP code, an anti-diagonal parity
chain has the length of ðp� 2Þ, while a horizontal-diagonal
parity chain has length ðp� 1Þ.

Parity chains can be used for data recovery. For example,
suppose that the data element #1 fails in Fig. 1. It can be
repaired by an anti-diagonal parity chain by performing
#1¼#6�#15�#20�R9 (see Fig. 1a). Based on the same prin-
ciple, it can also be recovered by the associated horizontal-
diagonal parity chain in Fig. 1b.

XOR-based erasure codes have different placement strat-
egies for parity elements. They may place data and parity
elements in separate disks (e.g., RDP Code [5]) or spread
parity elements across all disks (e.g., HDP Code [29] (see
Fig. 1) and X-Code [34] (see Fig. 2)). Our work retains the
same placement of parity elements for a given erasure code
and hence preserves its fault tolerance, and we focus on
designing a placement strategy of data elements for more
efficient degraded reads.

2.2 Data Placement

Data placement refers to how we place data elements across
disks when they are first stored. Given a data placement,
parity elements are placed accordingly based on the erasure

code. To our knowledge, most existing studies do not
specifically consider the data placement of XOR-coded
storage systems (see Section 2.3 for related work). Here, we
consider two baseline data placement strategies: horizontal
and vertical.

Horizontal Data Placement.Horizontal data placement pla-
ces sequential data elements across disks. For example,
Figs. 1 and 2 illustrate the layouts of HDP Code [29] and X-
Code [34] under horizontal data placement, respectively.

Horizontal data placement brings two benefits. First, it
can take full advantage of parallelization [13] to reduce
the access latency. For example, when a storage system
requests data elements f#1,#2g in Fig. 1, it can read them
from disk 2 and disk 3 respectively in parallel. Second,
horizontal data placement can effectively reduce the num-
ber of elements retrieved in degraded reads when the data
elements at the same row associate with the same parity
element (e.g., horizontal parity or horizontal-diagonal par-
ity). For example, in Fig. 1, suppose that disk 2 fails and
the storage system issues a read operation that requests
elements f#1,#2,#3g. Then the storage system can reuse
the available data elements in the request (i.e., #2 and #3)
and only needs to retrieve another three elements f#4,
R1; R7g, such that the unavailable element #1 can be
recovered through the horizontal-diagonal parity chain
(see Fig. 1b).

However, the second advantage will be lost if the erasure
code does not have a horizontal parity chain, for example X-
Code [34]. In these codes, the sequential data elements
placed at the same row may not associate with a common
parity element. Consequently, when the storage system
issues degraded reads to the sequential data elements at the
same row, it may need to retrieve more additional elements
for data reconstruction. For example, Fig. 2 illustrates the
layout of X-Code where data elements are horizontally
placed. Suppose that disk 1 fails, and at this time the storage
system reads data elements f#1,#2,#3g. To reconstruct #1,
the storage system needs to read three elements (i.e., f#7,
#13,R4g in Fig. 2a, or f#10,#14,R8g in Fig. 2b).

Vertical Data Placement. Vertical data placement puts
sequential data elements along the columns in a stripe. For
example, Figs. 3 and 4 illustrate the element layouts of HDP
Code and X-Code under the vertical data placement, respec-
tively. Vertical data placement is also assumed in previous
work (e.g., [38]).

However, vertical data placement has two limitations.
First, it restricts parallel access. For example, reading data

Fig. 2. Element layout of X-Code under horizontal data placement over p
disks (p ¼ 5).

Fig. 3. Element layout of HDP Code under vertical data placement over
p� 1 disks (p ¼ 7).

SHEN ET AL.: ENCODING-AWARE DATA PLACEMENT FOR EFFICIENT DEGRADED READS IN XOR-CODED STORAGE SYSTEMS:... 2759

elements f#1,#2,#3g in HDP Code will only be limited to
disk 1 (see Fig. 3). Second, vertical data placement often
needs to retrieve a large number of elements in degraded
reads, as the reconstructed elements residing in the same
disk generally do not associate with any common parity
chain. For example, suppose that disk 1 fails in Fig. 3 and
the storage system issues a read to the lost data f#1,#2,#3g.
If the system chooses to repair the lost elements by using
anti-diagonal parity, it needs to retrieve another 12 elements
(i.e., f#6, R10, #15, #20, #7, #11, #16, R7, R11, #12, #17,
#21g, shown in Fig. 3a) and then serve the read request.

2.3 Related Work

We summarize existing studies on enhancing the perfor-
mance of degraded reads, and also identify their limitations.

New erasure code constructions have been proposed to
explicitly incorporate the optimization of degraded reads. For
example, Khan et al. [13] design Rotated RS Codes, which
extend Reed-Solomon Codes [23] to include additional parity
units so as to improve the performance of degraded reads
across stripes. Local Reconstruction Codes [10] construct
additional local parity units to reduce the lengths of parity
chains, so that the number of I/Os in degraded reads can be
reduced. However, both Rotated RS Codes and Local Recon-
struction Codes are non-MDS (see Section 1), and hence incur
additional storage redundancy. In addition, HV Code [26]
and D-Code [7] are two RAID-6 codes (i.e., double-fault-
tolerant codes) specifically designed for reducing the amount
of I/Os in degraded reads. HV Code [26] proposes to shorten
the length of parity chains and place sequential data elements
on horizontal parity chains, while D-Code [7] extends X-Code
[34] by adding horizontal parity chains and evenly distribut-
ing parity elements across disks.

Some studies propose to optimize the recovery perfor-
mance for general XOR-based erasure codes. For example,
Khan et al. [13] and Zhu et al. [37] study the problem of
achieving optimal single failure recovery for general XOR-
based erasure codes by searching for the solution with mini-
mum number of I/Os. Both of their approaches address the
recovery of the permanently failed data in a whole-disk fail-
ure, while our work focuses on the degraded reads for gen-
eral XOR-based erasure codes and pays special attention to
the characteristics of read operations. Zhu et al. [38] assume
vertical data placement and optimize the degraded read
performance in heterogeneous storage systems. In contrast,
our work focuses on designing encoding-aware data place-
ment to improve degraded read performance.

Like our work, Shen et al. [27] also study the data place-
ment problem for general XOR-coded storage systems.
However, their proposed data placement scheme aims to
improve partial-stripe write performance, while our data
placement scheme aims to improve degraded read perfor-
mance and hence has an inherently different design.

Some studies address degraded reads from different per-
spectives. Zhang et al. [35] consider the routing of degraded
reads in different topologies of data centers. Li et al. [15] study
the degraded read performance when MapReduce runs on
erasure-coded storage, and propose a different task schedul-
ing algorithm that allows degraded reads to exploit unused
network resources. Xia et al. [31] propose to switch between
erasure coding parameters so as to balance the trade-off
between storage redundancy and degraded read perfor-
mance. Fu et al. [8] propose a framework that improves paral-
lelism of degraded reads for Reed-Solomon Codes [23] and
Local Reconstruction Codes [10]. On the other hand, our
work focuses on reducing the number of I/Os in degraded
reads, and can be integrated with the above approaches for
further performance gains in degraded reads.

3 PROBLEM

In this paper, our primary objective is to design a new data place-
ment strategy that reduces the number of elements to be retrieved
for degraded reads for any XOR-based erasure code. Our data
placement strategy should follow the encoding rule of the
given XOR-based erasure code, so as to preserve its fault tol-
erance. Also, it makes no effect on normal reads, which can
still access the same elements directly for systematic erasure
codes. Moreover, our data placement neither changes the
decoding rule nor increases the parity units, so it does not
degrade the decoding efficiency, the parity update effi-
ciency, and storage efficiency.

Here, we focus on the degraded reads for a single failure,
which is the most common failure event in practical storage
systems (see Section 1). Note that most existing studies on
enhancing the performance of degraded reads also focus on
single failures (e.g., [10], [13], [22]). In addition, we assume
that read requests in many scenarios are sequential and
have small read sizes. For example, Fig. 5 analyzes the read
size distributions of several real-world I/O workloads from
MSR Cambridge Traces [17] (see Section 5 for more details
of the traces). The figure indicates that small reads are
common. For example, the small reads whose read sizes
are no more than 16 KB account for a majority of all read
operations.

Fig. 4. Element layout of X-Code under vertical data placement over p
disks (p ¼ 5).

Fig. 5. Read size of workloads in MSR Cambridge Traces [17].

2760 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 12, DECEMBER 2018

We address the objective through four motivations. In the
following, we use HDP Code over p� 1 disks (p ¼ 7) and X-
Code over p disks (p ¼ 5) as ourmotivating examples.

Motivation 1: Generating Parity Elements from Sequential
Data Elements. We first consider how to reduce the number
of elements retrieved in a degraded read within a parity
chain. Our observation is that we can generate parity ele-
ments by using sequential data elements. If sequential data
elements in a parity chain are requested in a degraded read,
then the available elements in the request can be reused to
reconstruct the unavailable one in the request. As a result,
the number of additional elements to be retrieved for data
reconstruction can be reduced.

For example, Fig. 6 shows the element layouts of
X-Code under both horizontal and anti-diagonal data
placements. Suppose that disk 1 fails and a degraded read
requests sequential data elements f#1,#2,#3g. In the hor-
izontal data placement (see Fig. 6a), the same degraded
read should access another three elements (denoted by the
dashed shape in Fig. 6a) for reconstructing the unavailable
element #1, based on the diagonal parity chain of R8. On
the other hand, we can place sequential data elements to
generate the anti-diagonal parity element R4, as shown in
Fig. 6b. In this case, the degraded read only needs to
retrieve one additional element (i.e., R4) for the reconstruc-
tion of #1.

Motivation 2: Parity Selection Principles. An erasure code
has multiple parity chains. Thus, the degraded read effi-
ciency depends on which parity element is selected to be
generated by sequential data elements. We propose two
principles of parity selection to exploit data sequentiality.

First, we consider the erasure codes constructed over the
parity chains with different lengths (e.g., HDP Code). For
such kind of codes, we prefer using sequential data ele-
ments to generate the parity elements with shorter parity
chains, such that fewer extra elements are needed for data
recovery in degraded reads. For example, Fig. 7 illustrates
two cases of data layouts for HDP Code [29]. Figs. 7a and 7b
generate horizontal-diagonal parity elements and anti-
diagonal parity elements using sequential data elements,
respectively. Suppose that disk 2 fails and a degraded read
requests data elements f#1,#2,#3g. The approach in
Fig. 7a needs to retrieve three elements (i.e., fR1, #4, R7 g)
to repair #1, while that in Fig. 7b should only read another
two elements (i.e., fR9, #4g).

Second, for the erasure codes constructed over the parity
chains with the same length (e.g., X-Code), we will select the
parity element whose generation can place the most sequen-
tial data elements to make the number of sequential data ele-
ments in the same parity chain as many as possible. This
placement can fully utilize the requested data elements that
are available in a parity chain for data recovery. For example,
suppose that R4 is the first parity element to be generated
based on Motivation 1 (see Fig. 6). Fig. 8 presents two exam-
ples of parity selection after the generation of R4. We see that
generating R3 after R4 (see Fig. 8a) can place one more
sequential data element in a parity chain compared to the par-
ity selection in Fig. 8b.

Motivation 3: Parity Generation Orders. In addition to opti-
mize degraded reads in a parity chain, we also exploit the
generation orders of parity elements in order to leverage the
data elements that have been placed in previous iterations.
This design is to reduce the number of elements to be
retrieved in a degraded read across parity chains. To explain
this idea, we start with carefully examining the relationship
between the data elements that have been placed and those
to be placed when generating the next parity element.

Fig. 6. Explanations of Motivation 1, based on X-Code over p ¼ 5 disks.
Anti-diagonal data placement (figure (b)) retrieves fewer elements than
horizontal data placement (figure (a)) for the degraded read f#1,#2,
#3g. The shape with dashed line denotes the extra element to be read
for data recovery.

Fig. 7. The first selection principle of Motivation 2, based on HDP Code
over p� 1 disks (p ¼ 7). A horizontal-diagonal parity chain has six ele-
ments (figure (a)), while an anti-diagonal parity chain has five elements
(figure (b)). Using sequential data elements to generate anti-diagonal
parity elements (figure (b)) retrieves fewer elements for the degraded
read f#1,#2,#3g than to generate horizontal-diagonal parity elements
(figure (a)). The shape with dashed line denotes the extra element to be
read for data recovery.

Fig. 8. The second selection principle of Motivation 2, based on X-Code
over p disks (p ¼ 5). Suppose that R4 is the first parity element to be gen-
erated based on Motivation 1. The first three sequential data elements
f#1, #2, #3g are accordingly placed for R4’s generation. This figure
shows two examples of selecting the second parity element to be gener-
ated after R4. Generating R3 after R4 can place three sequential data
elements f#4, #5, #6g (figure (a)). As a comparison, generating R10

after R4 can only arrange two sequential data elements f#4, #5g
(figure (b)).

SHEN ET AL.: ENCODING-AWARE DATA PLACEMENT FOR EFFICIENT DEGRADED READS IN XOR-CODED STORAGE SYSTEMS:... 2761

To formalize the relationship between the placed data
elements and those to be placed, we refine the concept of
“overlapped data elements”. In particular, suppose Rh is
the parity element to be generated currently. Let #i be a
data element to be placed in the generation of Rh and let #j
be a data element that has been placed in previous parity
generations. We call #j is an overlapped data element if #j
and #i belong to a parity chain of Rq, where Rq 6¼ Rh.

Our finding is that overlapped data elements offer more
choices to reduce the number of extra elements for recovery
in the degraded read across parity chains. Suppose that we
follow Motivation 1 and Motivation 2 to place sequential
data elements along the same parity chain if possible. The
placement in Fig. 9a generates the anti-diagonal parity ele-
ments in the order of fR4; R3g, in which the data elements
placed in the generation of R4 are not associated with any
parity element with those to be placed in the generation of
R3 (i.e., there is no overlapped data element). Suppose that
disk 1 fails and a degraded read requests data elements
f#1; #2; . . . ; #4g at this time. To accomplish the recovery of
#1 and #4, it retrieves four additional elements (i.e., R3, R4,
#5, and #6) through the anti-diagonal parity chains (see
Fig. 9a); or retrieves six extra elements through the diagonal
parity chains (see Fig. 9b).

As a comparison, the placement in Fig. 9c generates the
anti-diagonal parity elements in the order of fR4; R2g. We
see that the generation of R2 will produce two overlapped
data elements (i.e., #1 and #2). In particular, with respect to
the data elements to be placed (i.e., f#4, #5, #6g) in the

generation of R2 (i.e., Rh), #4 joins the parity chain of R10

(i.e., Rq) with the data element #2 which has been placed
(see Fig. 9(d)). Based on the same rule, we can obtain that
#6 (to be placed) and #1 (has been placed) join the parity
chain of R8. Suppose that disk 1 fails and a degraded read
requests data elements f#1; #2; . . . ; #4g at this time. In the
placement of Fig. 9c, we first use anti-diagonal parity chain
to repair #1 by using the elements f#2,#3, R4g (see
Fig. 9c). As the data element #2 is an overlapped data ele-
ment that has been retrieved and it is associated with the
same diagonal parity chain with the lost element #4, we can
reuse the overlapped data element #2 and switch to the
diagonal parity chain to repair #4 (see Fig. 9d). Finally, only
three extra elements are needed in this placement to serve
the degraded read.

Motivation 4: Refinement of Data Placement. In view of the
small reads account for the majority of read operations in real
workloads, we finally consider a special case: the degraded
reads to two sequential data elements. As Motivation 1 has
covered the case when two sequential data elements are in a
parity chain, here wemainly focus on another case when they
are across parity chains. Our observation is to refine the posi-
tions of data elements, so as to reduce the number of elements
retrieved for this kind of degraded read. Suppose that we
first generate a parity element Ri, followed by Rj. We can
make the last data element in the parity chain of Ri and the
first one in the parity chain of Rj associate with another com-
mon parity element. When the two sequential data elements
are requested and some of them fails at this time, another
available data element in the request can be reused for
data recovery.

For example, followed the Motivation 3, Fig. 10a shows
the first two parity elements (i.e., R4 and R2) to be generated
by sequential data elements f#1; #2; . . . ; #6g. In this figure,
the two sequential data elements across parity chains (i.e.,
#3 and #4) are not included in any common parity chain.
We then refine the data placement by switching #2 and #3,
such that #3 and #4 are in the diagonal parity chain of R10

(shown in Fig. 10b).
Suppose that disk 1 fails and a degraded read requests

f#3,#4g. The original data placement in Fig. 10a should
repair #4 by retrieving three additional elements (i.e., #5,
#6, and R2). On the other hand, by switching the positions
of #2 and #3, our refined data placement in Fig. 10b

Fig. 9. Explanations of Motivation 3, based on X-Code over p ¼ 5 disks.
R4 and R3 are selected as the first two parity elements to be generated
by sequential data elements. When #1 and #4 are missing, it needs four
additional elements for data recovery from anti-diagonal parity chains
(figure (a)), or reads even more extra elements when using diagonal par-
ity chains (figure (b)). However, if we generate the first two parity ele-
ments in the order of R4 and R2, then it needs to read only three extra
elements, just by repairing #1 by an anti-diagonal parity chain
(figure (c)) and recovering #4 from a diagonal parity chain (figure (d)).

Fig. 10. Explanations of Motivation 4, based on X-Code over p ¼ 5 disks.
By switching the positions of #2 and #3, #3 can be reused for repairing
#4 for the degraded read f#3, #4g. Finally, repairing #4 by the diagonal
parity chain only reads two additional elements (marked in dashed line
in figure (b)).

2762 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 12, DECEMBER 2018

can reuse #3 in the request and finally only needs to
retrieve two additional elements by using the diagonal par-
ity chain of R10.

4 ENCODING-AWARE DATA PLACEMENT

We propose encoding-aware data placement (EDP) to address
the problem and motivations in Section 3. EDP builds on
two algorithms. The first algorithm selects the shortest par-
ity chains (Motivation 2), places sequential data elements in
the same parity chain (Motivation 1), and exploits a greedy
approach to determine an order of generating parity ele-
ments (Motivation 3). The second algorithm refines the posi-
tions of data elements so that the two sequential data
elements across parity chains associate with another com-
mon parity element (Motivation 4).

4.1 Greedy Parity Generation

As shown in Section 3, the first three key steps of reducing
the number of additional elements to be retrieved in
degraded read is to 1) select the parity element with the
shortest parity chain in priority; 2) choose a parity element
whose generation can place as many sequential data ele-
ments as possible; 3) maximize the number of overlapped
data elements. However, how to realize the above three
steps and find the right generation order is a non-trivial
issue. A straightforward approach is to enumerate all possi-
ble generation orders of all parity elements, yet its complex-
ity is extremely high. For example, for X-Code with 2p
parity elements in a stripe, the enumeration would require
ð2pÞ! permutations in total.

Algorithm 1. Greedy Parity Generation

Input: A given XOR-based erasure code.
Output: Parity generation order O.

1 Set all cells of a stripe to be blank; set R to include all parity
elements of a stripe; set O ¼ ;

2 Select L � R, where Ri 2 L has the shortest parity chain
3 Obtain S � L, such that for Rh 2 S, dh ¼ maxfdijRi 2 Lg
4 Select Rj 2 S, where �j ¼ maxf�ijRi 2 Sg
5 Place sequential data elements on the blank cells of the parity
chain of Rj

6 Remove Rj fromR and append Rj to O
7 Repeat steps 2�6 until all cells in the stripe are occupied by

data elements
8 Generate the remaining parity elements in R through placed

data elements
9 Return O

In this paper, we propose a greedy approach, as shown in
Algorithm 1, which incorporates the three design criteria
referred above so as to efficiently search for a generation order
for parity elements. The main idea is that in each iteration, we
first incorporateMotivation 2 by choosing the parity elements
with the shortest parity chain (see step 2 in Algorithm 1) and
further picking out the ones whose generation can place the
most sequential data elements (step 3). Given the returned
parity elements, we finally follow Motivation 3 by selecting
the parity element whose parity chain can produce the most
overlapped data elements with respect to the data elements
placed in previous iterations (step 4), and then place

sequential data elements to generate the parity element
(step 5) based onMotivation 1.

Details of Algorithm 1. Let R be the set of candidate parity
elements that can be selected in each iteration; let O record
the generation order of parity elements generated from
sequential data elements; let di be the number of sequential
data elements that can be placed in the generation of the
parity element Ri 2 R; let �i be the number of overlapped
data elements derived in the generation of Ri 2 R, with
respect to the data elements placed in previous iterations. In
addition, we define a cell as the storage region (e.g., disk sec-
tor or block) that holds an element, and let Ci;j be the cell
whose position is at the ith row and the jth column in a
stripe. Initially, for a given XOR-based erasure code, we first
set all cells in a stripe to be blank, meaning that no element is
stored in each cell. We also set R to include all parity ele-
ments of a stripe, O to be empty (step 1).

In each iteration, the algorithm first extracts a set L from
R, such that the parity element Ri 2 L has the shortest par-
ity chain among those in R (step 2). Based on L, the algo-
rithm then selects the ones whose generation can place the
most sequential data elements and constructs S (step 3).
Finally, the algorithm chooses the one Rj from S whose gen-
eration can further produce the most overlapped data ele-
ments (step 4). After the parity selection, it places sequential
data elements on the blank cells of the parity chain of Rj

(step 5). The algorithm removes Rj from R and appends it
to O (step 6). The algorithm repeats steps 2-6 until all cells
have been occupied by data elements (step 7). It then com-
pletes the encoding by generating the remaining parity ele-
ments in R from the placed data elements (step 8). The
algorithm finally returns O (step 9).

Example. We take X-Code (p ¼ 5) as an example to show
how Algorithm 1 works. As X-Code has 2p parity ele-
ments, we initialize R ¼ fR1; R2; . . . ; R10g and O ¼ ;. In
the first iteration, O is empty. As all parity elements have
the same length of parity chain (i.e., four, with three data
elements and the generated parity element), L ¼ R estab-
lishes throughout this algorithm. The generation of every
parity element in L can place three sequential data ele-
ments and produce none overlapped data element, so we
select R1 without loss of generality and place sequential
data elements f#1,#2,#3g on the cells fC1;3, C2;4, C3;5g,
respectively (see Fig. 11a). We then update R ¼ fR2; R3;
. . . ; R10g and O ¼ fR1g.

In the second iteration, as L ¼ R, we then scan all the
remaining parity elements in L. For example, generating
R7 after R1 can only further place two sequential data
elements (i.e., #4 and #5 in Fig. 11b), while generating
R3 after R1 can lay three sequential data elements (i.e.,
#4, #5, and #6 in Fig. 11c). Following this principle, we
can obtain S ¼ fR2; R3; . . . ; R5; R6; R8g where di ¼ 3 for
Ri 2 S. We further find that generating R3 results in the
most overlapped data elements (i.e., #2 and #3) with
�3 ¼ 2 (see Fig. 11d). Specifically, with respect to the
sequential data elements to be placed in R3’s generation
(i.e., {#4, #5, #6}), the overlapped data element #2 that
has been placed will join the parity chain of R7 with
#4, and another overlapped data element #3 will be
included in the parity chain of R9 with #5 (see Fig. 11d).

SHEN ET AL.: ENCODING-AWARE DATA PLACEMENT FOR EFFICIENT DEGRADED READS IN XOR-CODED STORAGE SYSTEMS:... 2763

Therefore, we place the sequential data elements on
the cells fC1;5; C2;1; C3;2g to generate R3. Finally, we
obtain the data placement when Algorithm 1 finishes, as
shown in Fig. 12.

4.2 Position Refinement for Data Elements

Given the parity generation order O from Algorithm 1, EDP
further proposes to refine the positions of data elements, as
shown in Algorithm 2.

Algorithm 2. Position Refinement for Data Elements

Input: Parity generation orders O.
Output: A new data layout after refinement.
1 Mark all data elements as “movable”
2 Let Rcur be the first parity element in O and Rnxt be the next

parity element after Rcur

3 for each data element#iin the parity chain of Rcur do
4 for each data element#jin the parity chain of Rnxt do
5 if #iand#jis movable and join a common parity element’s

generation then
6 Switch #i with the last data element in the parity

chain of Rcur

7 Switch #j with the first data element in the parity
chain of Rnxt

8 Mark both #i and #j as non-movable
9 Set Rcur to be Rnxt, and Rnxt to be the next parity element

after Rcur in O
10 Repeat steps 3-9 until Rcur is the last parity element in O.

Details of Algorithm 2. Initially, the algorithm marks all
data elements to as “movable”, meaning that the positions
of the data elements can be changed (step 1). It sets Rcur as
the first parity element in O and Rnxt as the next one after
Rcur (step 2). The algorithm then scans the data element #i
in the parity chain of Rcur and #jin the parity chain of
Rnxt. If both of these two data elements are movable and

join the generation of a common parity element (step 5), it
then switch #i with the last data element in the parity
chain of Rcur and swap #j with the first data element in
the parity chain of Rnxt (step 6�7). After this refinement,
the last data element in the parity chain of Rcur and the
first one in the parity chain of Rnxt will associate with a
common parity element. Subsequently, these two data ele-
ments are marked as “fixed” and are not allowed to be
moved in next refinements (step 8). The algorithm then
tries the next pair of parity elements in O (step 9). The
algorithm repeats steps 3-9 until reaching the last parity
element in O (step 10).

Example. Based on the data placement in Fig. 11c, Fig. 13
shows how we can further refine the data placement. Ini-
tially,R1 andR3 are the first two parity elements to be gen-
erated inO. Thus, we setRcur ¼ R1 andRnxt ¼ R3. We scan
the data elements f#1,#2,#3g in the parity chain of R1

and f#4,#5,#6g in that of R3, and find that #2 (i.e., #i in
Algorithm 2) and #4 (i.e., #j) join the generation of the
diagonal parity elementR7 (see Fig. 11d). We then perform
the data movement by switching #2 with the last data ele-
ment (i.e., #3) in the parity chain of R1. With respect to #4,
as it has been already the first data element in the parity
chain of R3, we do not perform the movement. After the
refinement, the two sequential data elements #3 and #4

will associate with a common parity element (i.e., R7)
and will be non-movable in the subsequent iterations
(see Fig. 13). By scanning every two parity elements whose
generation orders are adjacent inO, we can obtain a refined
data placement, as shown in Fig. 14.

Fig. 11. An example of greedy parity selection.

Fig. 12. Data placement of X-Code (p ¼ 5) after running Algorithm 1.

Fig. 13. An example to refine the data placement when generating R1

and R3. R1 and R3 are both anti-diagonal parity elements and generated
by sequential data elements f#1, #2, #3g and f#4, #5, #6g, respec-
tively. In this example, Rcur ¼ R1 and Rnxt ¼ R3.

2764 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 12, DECEMBER 2018

4.3 Complexity Analysis

Given an XOR-based erasure code, suppose that there are a
total of K data elements and M parity elements in a stripe.
We first analyze the complexity of determining the parity
generation orders in Algorithm 1. In Algorithm 1, to select
an appropriate parity element, it need to scan every candi-
date parity element in R that includes no more than M ele-
ments. For every candidate parity element, it needs to
calculate the overlapped data elements from the data ele-
ments that have been placed, which needs no more than K2

trials. This selection will proceed no more than M times.
Therefore, its complexity is OðK2M2Þ.

For Algorithm 2, as the number of data elements in a par-
ity chain is less than K and the algorithm will take every
two consecutive data elements of O in order, the complexity
of Algorithm 2 is OðK2MÞ. In summary, EDP maintains a
polynomial complexity.

5 PERFORMANCE EVALUATION

We conduct experiments to evaluate the performance of
EDP and aim to address the following three questions:

1) How many additional I/Os caused by degraded
reads can EDP reduce for erasure codes with differ-
ent constructions and fault tolerance degrees?

2) How much reduction on the degraded read time can
EDP gain?

3) What is the scalability of EDP when the number of
disk in a stripe varies?

Evaluation Methodology. In the evaluation, we choose six rep-

resentative XOR-based erasure codes, namely RDP Code [5],

X-Code [34], Balanced P-Code (BP-Code for short) [33], HDP

Code [29], V 2-Code [32], and T-Code [16]. These six codes

have different constructions and properties:

� RDP Code [5] is an MDS RAID-6 code (i.e., double-
fault-tolerant) based on horizontal parity chains and
diagonal parity chains. In this evaluation, we will
examine whether EDP can improve the degraded
read performance for the codes with horizontal par-
ity chains.

� X-Code [34] is an MDS RAID-6 code constructed
based on diagonal parity chains and anti-diagonal
parity chains (see Fig. 2). In this evaluation, we will
study the effect when applying EDP to the codes
with anti-diagonal and diagonal parity chains.

� Balanced P-Code (BP-Code) [33] is an MDS RAID-6
code designed for supercomputing data centers.

Unlike RDP Code and X-Code, BP-Code is built by
vertical parity chains only.

� HDP Code [29] is an MDS RAID-6 code con-
structed over horizontal-diagonal parity chains
and anti-diagonal parity chains (see Fig. 1). These
two kinds of parity chains have different numbers
of elements. In this evaluation, we will examine
how much improvement on degraded read perfor-
mance EDP can gain for the codes with different
lengths of parity chains.

� V 2-Code [32] is a non-MDS RAID-6 code. It is con-
structed over a novel parity chain that has a letter
“V” shape in geometry. In this evaluation, we would
like to learn if EDP can still improve degraded read
efficiency for non-MDS RAID-6 codes.

� T-Code [16] is an MDS array code that tolerates any
triple failures. In this evaluation, we will show
whether EDPcan work for the codes with high fault
tolerance.

Table 1 shows the parameters of our selected erasure
codes, including the number of disks in a stripe (denoted by
n) and the fault tolerance degree (denoted by m). Note that
for RDP Code, X-Code, BP-Code, and HDP Code, the value
of p should be a prime number, which is used to configure
the number of disks in a stripe. According to the design of
V 2-Code, n should be no smaller than ð4y� 3Þ [32], where
y � 2. For T-Code, n should be a prime number and satisfy
n ¼ 3yþ 1 [16].

To evaluate the degraded read efficiency, we first erase the
data on one of the storage devices in a stripe to simulate a sin-
gle failure, and perform the read operations. We repeat the
evaluation by erasing the data for each device and obtaining
the overall average across all devices. In the comparison, we
always choose the degraded read solution that reads less data
for data recovery. For example, if an unavailable element is
included in two parity chains, we will select the one that
repairs the element with fewer elements. In addition, we set
the element size as 16 KB throughout the evaluation.

In this evaluation, we consider two versions of EDP. The
first one is the preliminary version proposed in our previ-
ous conference version [25], which we term EDPv1. The
second one is the version proposed in this journal version,
which we term EDPv2. Compared to EDPv1, EDPv2
makes the following extensions: (1) selecting the appro-
priate parity elements being generated by sequential data
(see Motivation 2), so as to reduce the I/Os when the
requested data elements are in the same parity chain; and
(2) describing a new definition of overlapped data elements
(see Motivation 3) and accordingly order the parity genera-
tion for producing as many overlapped data elements as

Fig. 14. Data placement of X-Code (p ¼ 5) after refinement.

TABLE 1
Configurations of Erasure Codes with Respect to p

Coding Scheme number of disks per stripe k m

RDP Code [5] n ¼ pþ 1 p� 1 2
X-Code [34] n ¼ p p� 2 2
BP-Code [33] n ¼ p� 1 p� 3 2
HDP Code [29] n ¼ p� 1 p� 3 2
V 2-Code [32] n ¼ 4y� 3, where y � 2 n� 2 2
T -Code [16] n ¼ 3yþ 1 n� 3 3

SHEN ET AL.: ENCODING-AWARE DATA PLACEMENT FOR EFFICIENT DEGRADED READS IN XOR-CODED STORAGE SYSTEMS:... 2765

possible, so as to reduce the I/Os when the requested data
elements are across parity chains. Thus, our evaluation
mainly compares EDPv2with three baseline data placement
schemes: the horizontal and vertical data placements (see
Section 2.2), as well as EDPv1.

Evaluation Environment. We conduct our evaluation on a
Linux server with an X5472 processor and 8 GB memory.
The operating system is SUSE Linux Enterprise Server and
the filesystem is EXT3. The deployed disk array consists of
15 Seagate/Savvio 10K.3 SAS disks, each of which has
300 GB storage capability and 10,000 rmp. The machine and
the disk array are connected by a Fiber cable with the band-
width of 800 MB/sec. We implement our selected erasure
codes via Jerasure 1.2 [20].

Evaluation Metrics. We are mainly interested in the
following two metrics in our evaluation:

� Total number of additionally read elements: the total
number of elements that are additionally accessed to
accomplish degraded reads.

� Average read time: the average time to perform a con-
stant number of read operations, including normal
reads (i.e., all the read elements are available) and
degraded reads.

5.1 Storage Overhead

We first measure the storage overhead to keep the place-
ment information (i.e., the mapping relationship between
cells and data elements of a stripe) generated by EDPv2. We
vary the number of disks in a stripe and calculate the
incurred storage overhead to keep the placement informa-
tion of a stripe. Table 2 presents the results. We observe that
the maintenance of the data placement information only
takes up marginal storage space in real storage systems.
Take RDP Code as an example. When p ¼ 11, the storage
overhead is only 0.39 KB. Note that the placement informa-
tion, while being specified for a single stripe, applies to all
stripes. Given the set of disks for a stripe, a storage system
can first locate the stripe identity of any data element, and
then use the placement information to map it to the corre-
sponding disk and cell.

5.2 Impact of Read Size

We now evaluate the impact of read size (i.e., the number
of elements in a read operation). We set p ¼ 7 for
RDP Code, X-Code, and HDP Code, and choose p ¼ 11
for BP-Code. Under this configuration, the number of
disks in a stripe of RDP Code, X-Code, HDP Code, and
BP-Code is 8, 7, 6, and 10, respectively. In addition,

we set the number of disks of a stripe for V 2-Code and
T-Code as 9 and 13, respectively. This configuration
ensures that the stripe sizes (i.e., the number of disks in a
stripe) in our evaluation close to those in practical enter-
prise storage systems [3].

To systematically study the impact of read size, for a
given read size L (L � 1), we let each data element of a
stripe serve as the start element, which should be read with
the next L� 1 sequential data elements in a read operation.
If some of the requested data elements in a read operation is
missing, the degraded read procedure will be triggered by
retrieving additional elements for data recovery. Otherwise,
the read operation will be served as a normal read. We vary
the value of L from 1 to 18. For each given read size, we
repeat the evaluation for all the six erasure codes, accumu-
late the number of additionally read elements, and calculate
the average to complete a read operation. Figs. 15 and 16
show the results. We make two key findings.

First, Fig. 15 shows that EDPv2 significantly reduces
the number of elements to be additionally retrieved in
degraded reads. In general, EDPv2 is more advantageous
when the read size is larger. Take X-Code as an example.
When L ¼ 9, EDPv2 reduces 75.0, 67.9, and 20.1 percent
of extra elements to be retrieved in degraded reads com-
pared to the horizontal data placement, vertical data
placement, and EDPv1, respectively. When L ¼ 18, the
reductions will increase to 84.2, 79.3, and 46.8 percent,
respectively. Note that for RDP Code, the I/O reduction
introduced by EDPv2 is marginal compared to the hori-
zontal data placement. The reason is that the data

TABLE 2
Storage Overhead to Keep the Data Placement Information

Generated by EDPv2

Codes p ¼ 5 p ¼ 7 p ¼ 11 n ¼ 9 n ¼ 13

RDP Code 0.06 KB 0.14 KB 0.39 KB – –
X-Code 0.06 KB 0.14 KB 0.39 KB – –
HDP Code 0.06 KB 0.14 KB 0.39 KB – –
BP-Code 0.03 KB 0.07 KB 0.20 KB – –
V 2-Code – – – 0.07 KB 0.15 KB
T-Code – – – – 0.16 KB

Fig. 15. The number of additionally read elements in degraded reads
under different read sizes.

2766 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 12, DECEMBER 2018

placement established by EDPv2 for RDP Code is close to
the horizontal data placement.

Second, Fig. 16 shows that among the four data placement
methodologies, EDPv2 needs the shortest time to serve a
read operation for most of the codes. Take HDP Code as an
example. EDPv2 decreases the read time by 9.0, 32.9, and
6.2 percent on average when compared to the horizontal data
placement, vertical data placement, and EDPv1, respectively.
Notice that the time saving introduced byEDPv2 is less signif-
icant compared to the additional I/O reduction shown in
Fig. 15. The reason is that for normal readswhich are also eval-
uated in the read time test, EDP will not reduce their addi-
tional I/Os which should only be incurred when serving
degraded reads. Also, as the vertical data placement usually
stores sequential data elements (likely to be requested in a
read operation) on a disk, it almost causes the longest average
read time among all the four data placementmethods.

5.3 Performance Under Different Traces

We also evaluate the performance via different real traces.
We set p ¼ 7 for RDP Code, X-Code, and HDP Code, and

choose p ¼ 11 for BP-Code. Also, we set the number of disks
of a stripe for V 2-Code and T-Code as 9 and 13, respectively.
Our evaluation is driven by real-world block-level MSR
Cambridge Traces [17]. The traces are collected from 36 vol-
umes that span 179 disks of 13 servers for one week (starting
from Feb. 22, 2007), which describe the I/O requests with
various access characteristics of enterprise storage servers.
The total size of the 36 traces is 29 GB. Each request in traces
records a timestamp, the disk number, the offset to start the
I/O operation (in bytes), the request size (in bytes), the
request type (read or write), and the response time to com-
plete the I/O. The 36 traces include 434 million requests, of
which there are 70 percent of read requests. During the trace
period, a total of 8.5 TB (resp. 2.3 TB) of data are read from
(resp. write to) the trace volumes. Here, we select six vol-
umes and mainly focus on the read operations (which allow
us to evaluate the impact of degraded reads). Table 3 lists
the characteristics of the selected traces, including the types
of traces and the statistics of the read operations. We can see
that the selected traces have different average read sizes,
and it enables us to evaluate the performance of EDPv2 for
the traces with varied read sizes. Figs. 17 and 18 show the
evaluation results in terms of additional I/O and the read
time, respectively.

Fig. 17 indicates that among the three data placement
methodologies, EDPv2 always needs the least elements that
are additionally read in degraded reads for data recovery.
For example, when replaying the trace wdev_3 to the
data encoded by V 2-Code (see Fig. 17b), EDPv2 needs
48.6 percent (resp. 35.7 percent) fewer elements that are
additionally read in degraded reads compared to the hori-
zontal (resp. vertical) data placement. Moreover, EDPv2
reduces more elements when the read size increases. Take
the trace wdev_2 whose average read size is 6.12KB as an
example. When being deployed over T-Code, EDPv2
can only reduce 2.3 percent (resp. 1.1 percent) of additional
elements retrieved in degraded reads compared to the
horizontal (resp. vertical) data placement. As a comparison,
for the trace wdev_3 with a larger average read size (i.e.,
63.27 KB), EDPv2 can reduce 46.3 and 38.1 percent of extra
elements in degraded reads, when compared to the horizon-
tal and vertical data placement.

Fig. 18 shows that EDPv2 decreases the time when replay-
ing the read operations. Take the HDP Code as an example.
EDPv2 reduces 16.3 percent (resp. 20.5 percent) of the read
time when replaying the read operations of rsrch_1 com-
pared to the horizontal (resp. vertical) data placement.

5.4 Scalability

We finally evaluate the scalability of EDPv2 in terms of the
number of elements to be additionally read in degraded
reads when the stripe size (i.e., the number of disks in a

Fig. 16. Read time under different read sizes.

TABLE 3
Characteristics of Selected Workloads

Workloads wdev_2 wdev_3 rsrch_1 rsrch_2 web_1 web_3

Types Test web server Test web server Research project Research project Web/SQL server Web/SQL server

Num. of read operations 189 11 43 13,6364 87,058 10,050
Average read size (KB) 6.12 63.27 13.9 4 45.9 74.9

SHEN ET AL.: ENCODING-AWARE DATA PLACEMENT FOR EFFICIENT DEGRADED READS IN XOR-CODED STORAGE SYSTEMS:... 2767

stripe) increases. For RDP Code, X-Code, HDP Code, and
BP-Code, we vary the selection of p. For V 2-Code, we choose
different parameters of n.

Fig. 19 shows that given an erasure code and a data place-
mentmethodology, the number of elements to be additionally
read generally increaseswith the stripe size. The reason is that
when the stripe size increases, the parity chains of an erasure
code will accordingly extend to preserve the given fault toler-
ance. Consequently, more elements should be accessed to
repair a lost element in a longer parity chain.

When the stripe size increases, EDPv2 will still pre-
serve its effectiveness on reducing the number of extra
elements that are accessed in degraded reads. For

example, when being deployed over X-Code with p ¼ 5,
EDPv2 cuts down 38.6 percent (resp. 27.8 percent) of ele-
ments that are additionally read for recovery in degraded
reads compared to the horizontal (resp. vertical) data
placement in the trace web_3 (see Fig. 19d). When the
scale of X-Code increases to p ¼ 11, this reduction reaches
56.1 percent (resp. 50.6 percent).

6 CONCLUSION

Erasure codes have been intensively used in current storage
systems due to their high storage efficiency. In view of
the commonplace of single failure and read operations in

Fig. 17. The number of additionally read elements in degraded reads under different real traces.

Fig. 18. The read time for different real traces. The smaller value is better.

2768 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 12, DECEMBER 2018

real-world applications, this paper proposes EDP, an encod-
ing-aware data placement scheme to optimize single-failure
degraded reads. EDP suggests generating parity elements
by using sequential data elements. It then designs an order
to generate parity elements and refines the data layout to
achieve further optimization. Experimental results show
that EDP can effectively decrease the number of data to be
additionally retrieved in degraded reads, and shorten the
read time.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (Grant No. 61602120, 61327902,
61433008, U1435216, 61672159, U1705262), the Technology
Innovation Platform Project of Fujian Province (Grant No.
2014H2005), the Fujian Collaborative Innovation Center
for Big Data Application in Governments, the Fujian
Engineering Research Center of Big Data Analysis and
Processing, the Fujian Provincial Natural Science Founda-
tion (Grant No. 2017J05102), and the Research Grants
Council of Hong Kong (GRF 14216316 and CRF C7036-
15G). A preliminary version [25] of this paper was pre-
sented at the 2016 IEEE 35th Symposium on Reliable Dis-
tributed Systems (SRDS’16). In this journal version, we

extend the algorithmic design of EDP and conduct more
experimental evaluation.

REFERENCES

[1] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An
efficient scheme for tolerating double disk failures in RAID
architectures,” IEEE Trans. Comput., vol. 44, no. 2, pp. 192–202,
Feb. 1995.

[2] J. Bloemer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and
D. Zuckerman, “An XOR-based erasure-resilient coding scheme,”
International Computer Science, Institute, California, USA,
Tech. Rep. TR-95–048, 1995.

[3] D. Borthakur, R. Schmidt, R. Vadali, S. Chen, and P. Kling, “HDFS
RAID,” in Hadoop User Group Meeting, 2010. [Online]. Available:
https://wiki.apache.org/hadoop/HDFS-RAID

[4] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold,
S. McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, et al.,
“Windows azure storage: A highly available cloud storage service
with strong consistency,” in Proc. 23rd ACM Symp. Operating Syst.
Principles, 2011, pp. 143–157.

[5] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and
S. Sankar, “Row-diagonal parity for double disk failure correction,”
in Proc. 3rd USENIX Conf. File Storage Technol., 2004, pp. 1–1.

[6] D. Ford, F. Labelle, F. Popovici, M. Stokely, V. Truong, L. Barroso,
C. Grimes, and S. Quinlan, “Availability in globally distributed
storage systems,” in Proc. 9th USENIX Conf. Operating Syst. Des.
Implementation, 2010, pp. 61–74.

[7] Y. Fu and J. Shu, “D-Code: An efficient RAID-6 code to optimize
I/O loads and read performance,” in Proc. IEEE Int. Parallel
Distrib. Process. Symp., 2015, pp. 603–612.

Fig. 19. The number of elements to be additionally read under different stripe sizes.

SHEN ET AL.: ENCODING-AWARE DATA PLACEMENT FOR EFFICIENT DEGRADED READS IN XOR-CODED STORAGE SYSTEMS:... 2769

https://wiki.apache.org/hadoop/HDFS-RAID

[8] Y. Fu, J. Shu, and Z. Shen, “EC-FRM: An erasure coding frame-
work to speed up reads for erasure coded cloud storage systems,”
in Proc. 44th Int. Conf. Parallel Process., 2015, pp. 480–489.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file sys-
tem,” ACM SIGOPS Operating Syst. Rev., vol. 37, pp. 29–43, 2003.

[10] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin, “Erasure coding in windows azure storage,” in
Proc. USENIX Conf. Annu. Tech. Conf., 2012, pp. 2–2.

[11] C. Huang and L. Xu, “STAR: An efficient coding scheme for cor-
recting triple storage node failures,” IEEE Trans. Comput., vol. 57,
no. 7, pp. 889–901, Jul. 2008.

[12] C. Jin, H. Jiang, D. Feng, and L. Tian, “P-Code: A new RAID-6
code with optimal properties,” in Proc. 23rd Int. Conf. Supercomput-
ing, 2009, pp. 360–369.

[13] O. Khan, R. C. Burns, J. S. Plank, W. Pierce, and C. Huang,
“Rethinking erasure codes for cloud file systems: Minimizing i/o
for recovery and degraded reads,” in Proc. 10th USENIX Conf. File
Storage Technol., 2012, pp. 251–264.

[14] M. Li and P. P. Lee, “STAIR codes: A general family of erasure
codes for tolerating device and sector failures in practical storage
systems,” in Proc. 12th USENIX Conf. File Storage Technol., 2014,
pp. 147–162.

[15] R. Li, P. P. Lee, and Y. Hu, “Degraded-first scheduling for MapRe-
duce in erasure-coded storage clusters,” in Proc. 44th Annu. IEEE/
IFIP Int. Conf. Depend. Syst. Netw., 2014, pp. 419–430.

[16] S. Lin, G. Wang, D. S. Stones, X. Liu, and J. Liu, “T-Code: 3-erasure
longest lowest-density MDS codes,” IEEE J. Sel. Areas Commun.,
vol. 28, no. 2, pp. 289–296, Feb. 2010.

[17] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
Practical power management for enterprise storage,” ACM Trans.
Storage, vol. 4, no. 3, 2008, Art. no 10.

[18] E. Pinheiro, W.-D. Weber, and L. A. Barroso, “Failure trends in a
large disk drive population,” in Proc. 5th USENIX Conf. File Storage
Technol., 2007, pp. 2–2.

[19] J. S. Plank and M. Blaum, “Sector-disk (SD) erasure codes for
mixed failure modes in RAID systems,” ACM Trans. Storage,
vol. 10, no. 1, 2014, Art. no. 4.

[20] J. S. Plank, S. Simmerman, and C. D. Schuman, “Jerasure: A
library in C/C++ facilitating erasure coding for storage applica-
tions-version 1.2,” Univ. Tennessee, Knoxville, TN, Tech. Rep. CS-
08–627, 2008.

[21] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, “A solution to the network challenges of data
recovery in erasure-coded distributed storage systems: A study
on the facebook warehouse cluster,” in Proc. 5th USENIX Conf.
Hot Topics Storage File Syst., 2013, pp. 8–8.

[22] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, “A hitchhiker’s guide to fast and efficient data
reconstruction in erasure-coded data centers,” in Proc. ACM Conf.
SIGCOMM, 2014, pp. 331–342.

[23] I. S. Reed and G. Solomon, “Polynomial codes over certain finite
fields,” J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300–304, 1960.

[24] B. Schroeder and G. Gibson, “Disk failures in the real world: What
does an mttf of 1, 000, 000 hours mean to you?” in Proc. 5th
USENIX Conf. File Storage Technol., 2007, pp. 1–16.

[25] Z. Shen, P. Lee, J. Shu, and W. Guo, “Encoding-aware data place-
ment for efficient degraded reads in XOR-coded storage systems,”
in Proc. IEEE 35th Symp. Reliable Distrib. Syst., 2016, pp. 239–248.

[26] Z. Shen and J. Shu, “HV code: An all-aroundMDS code to improve
efficiency and reliability of RAID-6 systems,” in Proc. 44th Annu.
IEEE/IFIP Int. Conf. Dependable Syst. Netw., 2014, pp. 550–561.

[27] Z. Shen, J. Shu, and Y. Fu, “Parity-switched data placement: Opti-
mizing partial stripe writes in XOR-coded storage systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 11, pp. 3311–3322,
Nov. 2016.

[28] H. Weatherspoon and J. D. Kubiatowicz, “Erasure coding versus
replication: A quantitative comparison,” in Proc. 1st Int. Workshop
Peer-to-Peer Syst., 2002, pp. 328–337.

[29] C. Wu, X. He, G. Wu, S. Wan, X. Liu, Q. Cao, and C. Xie, “HDP
code: A horizontal-diagonal parity code to optimize I/O load bal-
ancing in RAID-6,” in Proc. IEEE/IFIP 41st Int. Conf. Dependable
Syst. Netw., 2011, pp. 209–220.

[30] C. Wu, S. Wan, X. He, Q. Cao, and C. Xie, “H-code: A hybrid MDS
array code to optimize partial stripe writes in RAID-6,” in Proc.
IEEE Int. Parallel Distrib. Process. Symp., 2011, pp. 782–793.

[31] M. Xia, M. Saxena, M. Blaum, and D. A. Pease, “A tale of two era-
sure codes in HDFS,” in Proc. 13th USENIX Conf. File Storage Tech-
nol., 2015, pp. 213–226.

[32] P. Xie, J. Huang, Q. Cao, X. Qin, and C. Xie, “V 2-code: A new non-
MDS array code with optimal reconstruction performance for
RAID-6,” in IEEE Int. Conf. Cluster Comput., 2013, pp. 1–8.

[33] P. Xie, J. Huang, Q. Cao, and C. Xie, “Balanced P-code: A RAID-6
code to support highly balanced I/Os for disk arrays,” in Proc. 9th
IEEE Int. Conf. Netw. Archit. Storage, 2014, pp. 133–137.

[34] L. Xu and J. Bruck, “X-code: MDS array codes with optimal
encoding,” IEEE Trans. Inf. Theory, vol. 45, no. 1, pp. 272–276,
Jan. 1999.

[35] J. Zhang, X. Liao, S. Li, Y. Hua, X. Liu, and B. Lin, “Aggrecode:
Constructing route intersection for data reconstruction in erasure
coded storage,” in Proc. IEEE INFOCOM, 2014, pp. 2139–2147.

[36] Y. Zhang, C. Wu, J. Li, and M. Guo, “TIP-code: A three indepen-
dent parity code to tolerate triple disk failures with optimal
update complextiy,” in Proc. 45th Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Netw., 2015, pp. 136–147.

[37] Y. Zhu, P. P. Lee, Y. Hu, L. Xiang, and Y. Xu, “On the speedup of
single-disk failure recovery in XOR-coded storage systems: The-
ory and practice,” in Proc. IEEE 28th Symp. Mass Storage Syst. Tech-
nol., 2012, pp. 1–12.

[38] Y. Zhu, J. Lin, P. Lee, and Y. Xu, “Boosting degraded reads in het-
erogeneous erasure-coded storage systems,” IEEE Trans. Comput.,
vol. 64, no. 8, pp. 2145–2157, Aug. 2015.

Zhirong Shen received the BS degree from the
University of Electronic Science and Technology
of China, in 2010, and the PhD degree from the
Department of Computer Science and Technol-
ogy, Tsinghua University, in 2016. He is now a
postdoctoral fellow with the Department of Com-
puter Science and Engineering, Chinese Univer-
sity of Hong Kong. His current research interests
include storage reliability and storage security.
He is a member of the IEEE.

Patrick P. C. Lee received the BEng degree
(first-class honors) in information engineering
from the Chinese University of Hong Kong, in
2001, the MPhil degree in computer science and
engineering from the Chinese University of Hong
Kong, in 2003, and the PhD degree in computer
science from Columbia University, in 2008. He is
now an associate professor with the Department
of Computer Science and Engineering, Chinese
University of Hong Kong. His research interests
are in cloud storage, distributed systems and
networks, and security/resilience. He is a senior
member of the IEEE.

Jiwu Shu received the PhD degree in computer
science from Nanjing University, in 1998, and
finished the postdoctoral position research with
Tsinghua University, in 2000. Since then, he has
been teaching with Tsinghua University. His cur-
rent research interests include storage security
and reliability, non-volatile memory based stor-
age systems, and parallel and distributed com-
puting. He is a fellow of the IEEE.

WenzhongGuo received the BS andMSdegrees
in computer science, and the PhD degree in com-
munication and information system from Fuzhou
University, Fuzhou, China, in 2000, 2003, and
2010, respectively. He is currently a full professor
with the College of Mathematics and Computer
Science, Fuzhou University. His research inter-
ests include intelligent information processing,
sensor networks, network computing, and net-
work performance evaluation. He is a member of
the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2770 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 12, DECEMBER 2018

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

