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Abstract—Erasure coding is a storage-efficient means to guarantee data reliability in today’s commodity storage systems, yet its repair

performance is seriously hindered by the substantial repair traffic. Repair in clustered storage systems is even complicated because of

the scarcity of the cross-cluster bandwidth. We present ClusterSR, a cluster-aware scattered repair approach. ClusterSR minimizes

the cross-cluster repair traffic by carefully choosing the clusters for reading and repairing chunks. It further balances the cross-cluster

repair traffic by scheduling the repair of multiple chunks. Large-scale simulation and Alibaba Cloud ECS experiments show that

ClusterSR can reduce 5.6-52.7 percent of the cross-cluster repair traffic and improve 14.4–68.8 percent of the repair throughput.

Index Terms—Cross-cluster repair traffic, scattered repair, load balancing, full duplex transmission

Ç

1 INTRODUCTION

LARGE-SCALE clustered storage systems, often built on hun-
dreds or even thousands of storage servers (also called

nodes), have to tackle prevalent unexpected failures [19]. To
guarantee data reliability against failures, pre-storing addi-
tional data redundancy is a commonly adopted approach in
production systems [2], [11], [26], [27], [28], where replication
and erasure coding are two representatives. Compared to
replication, erasure coding [2], [18], [26], [28] is much more
storage-efficient, which can attain the same degree of fault
tolerance with far less storage redundancy [38]. Generally,
erasure coding takes pieces of fixed-size data information
(called data chunks) as input and generates a small number of
equal-size redundant chunks (called parity chunks) through a
predefined encoding functionality. If any data or parity
chunk accidentally fails, erasure coding can retrieve a subset
of the surviving data and parity chunks to restore the origi-
nal chunk. Because of its high storage efficiency, erasure cod-
ing is more preferable in today’s production systems, such as
Hadoop HDFS [3], Windows Azure Storage [17], and Face-
book f4 [26].

While being storage-efficient, erasure coding incurs
substantial repair traffic (i.e., data retrieved for repair). For
example, Reed-Solomon codes (RS codes) [31], which are a
well-known family of erasure codes, demand to retrieve
the chunks whose size may be even several times that of
the lost data for repair (Section 2.2). Repair becomes more
complicated in large-scale clustered storage systems. Mod-
ern clustered storage systems usually organize nodes into
multiple clusters in a hierarchical manner, where nodes
are first grouped into a cluster connected via a common
switch and the switches are then interconnected through
the network core [6], [10], [16], [33]. In such network archi-
tecture, the cross-cluster bandwidth, which is competed
among the nodes within the same cluster for various
workloads (e.g., replication writes [6] and shuffle in Map-
Reduce jobs [4]), is often oversubscribed and shown to be
much more scarce than the intra-cluster bandwidth (Sec-
tion 2.1). Hence, the repair that incurs heavy cross-cluster
repair traffic (i.e., data retrieved across clusters for repair)
will significantly prolong the repair process and take more
repair time.

To alleviate the influence of the cross-cluster repair traf-
fic, existing studies design new families of cluster-aware
erasure codes [15], [16] to sustain the same fault tolerance
degree with less cross-cluster repair traffic, or develop new
repair scheduling approach to minimize the cross-cluster
repair traffic [36]. However, these prior designs all consider
the dedicated repair scenario, which repairs all the failed
chunks in a dedicated node. Such repair scenario easily
makes the bandwidth of the dedicated node be the perfor-
mance bottleneck of the repair.

In this paper, we strive to remove this performance bot-
tleneck and reconsider the repair in erasure-coded clustered
storage. We mainly focus on the scattered repair scenario,
which stores the repaired chunks across all the surviving
nodes in the clustered storage. Our observations are two-
fold. On one hand, as the cross-cluster bandwidth seriously
hinders the repair procedure, it becomes crucial to minimize
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the cross-cluster repair traffic in scattered repair as well. On
the other hand, as network interface cards (NICs) and net-
work cables extensively support full duplex transmission [7],
[23], which can send (upload) and receive (download) data
independently at the same transmission rate, balancing the
cross-cluster upload and download traffics (i.e., data uploaded
and downloaded across clusters) for repair is essential to
further reduce the repair time.

Transplanting existing scattered repair approaches [34]
in data centers still faces several non-trivial challenges.
The first is that conventional scattered repair approaches
neglect the bandwidth diversity phenomenon (i.e., the cross-
cluster bandwidth is much scarcer). Directly deploying
them in data centers cannot minimize the cross-cluster
repair traffic and hence easily prolongs the repair process.
The second is that conventional scattered repair approaches
ignore the reality of extensive full duplex transmission
supported in today’s NICs and network cables. Therefore,
they cannot well balance the upload and download repair
traffic, hence falling short of further shortening the repair
procedure.

We therefore present ClusterSR, a Cluster-aware Scat-
tered Repair approach that aims to minimize and balance
the cross-cluster repair traffic. ClusterSR first carefully
examines the data distribution and determines the repair
solution (which specifies the nodes to read the surviving
data and store the repaired data) for each failed chunk, with
the primary objective of minimizing the cross-cluster repair
traffic. It then seeks to schedule the repair of multiple
chunks, such that the resulting cross-cluster upload and
download traffics are both balanced across clusters. To our
best knowledge, ClusterSR is the first work that considers
minimizing and balancing both of the cross-cluster upload
and download traffics in scattered repair.

In summary, we make the following contributions.

1) We formulate the problem of cluster-aware scattered
repair in erasure-coded clustered storage and iden-
tify that the lower bound of the repair time can be
attained by minimizing and balancing the cross-clus-
ter upload and download traffics.

2) We present ClusterSR, a cluster-aware scattered
repair approach. ClusterSR carefully chooses the
nodes that participate in a single chunk’s repair to
minimize the cross-cluster repair traffic. It addition-
ally seeks to schedule the repair of multiple chunks
for balancing the cross-cluster upload and download
traffics. ClusterSR is a general design for different
erasure codes.

3) We implement a ClusterSR prototype in C++ and
show that it can be effortlessly tuned for assisting
the repair in HDFS of Hadoop 3.1.1 [3].

4) We evaluate ClusterSR via large-scale simulation
and Alibaba Cloud Elastic Compute Service (ECS)
[1] experiments to demonstrate its scalability and
effectiveness in real-world environments. We show
that ClusterSR can reduce 8.6-52.7 percent of the
cross-cluster repair traffic and improve 14.4-68.8 per-
cent of the repair throughput. We also demonstrate
that ClusterSR is effective on balancing the cross-
cluster upload and download traffics.

The source code of ClusterSR can be reached via: https://
github.com/shenzr/clustersr

2 BACKGROUND

2.1 Clustered Storage

We consider the clustered storage with a two-level hierar-
chical architecture, in which nodes are first organized into
clusters and multiple clusters are then interconnected via
the network core. A cluster can physically be a rack [33],
[36] or even a data center [5]. Fig. 1 depicts the architecture
of the clustered storage. Such architecture has been applied
in modern data center deployment [10], [26] and assumed
in previous work [6], [16], [33], [36].

The hierarchical architecture results in the bandwidth
diversity phenomenon, where the cross-cluster bandwidth is
often oversubscribed [4], [6], [13] and therefore appears
more scarce than the intra-cluster bandwidth. To define the
scarcity of the cross-cluster bandwidth, previous studies
use the oversubscription ratio calculated as the ratio of the
intra-cluster bandwidth and the cross-cluster bandwidth.
They find that the oversubscription ratio normally varies
from 5 to 20 [4], [6], and even reaches 240 in some extreme
cases [13].

2.2 Erasure Coding

Erasure coding often operates on chunks, which are a collec-
tion of fixed-size information in units of MBs (e.g., 64 MB by
default in Hadoop HDFS [3]). In this paper, we mainly focus
on the linear codes, including RS codes [31], regenerating
codes [9], [29], and locally repairable codes (LRCs) [17], [32],
[37]. For easy presentation, we mainly use RS codes as an
instance to clarify our algorithmic designs. We also show
that ClusterSR can be readily extended for regenerating
codes and LRCs (Section 4.1).

RS codes often use two parameters, namely k and n
(where k < n), to configure their storage efficiency and
fault-tolerance capability, which can be denoted by RS(n; k).
In the encoding stage, RS(n; k) takes k data chunks as input
and generates additional n� k parity chunks via linear
arithmetics over Galois finite field [31]. These n data and
parity chunks that are generated together in the encoding
stage collectively constitute a stripe, such that any k chunks
of a stripe can decode (recover) the original k data chunks;
in other words, RS(n; k) can tolerate any n� k chunk failures
within a stripe. In the following discussion, we use the term
“chunks” to refer to the data and parity chunks for brevity,
as all of them are treated equally in the repair.

Therefore, by distributing the n chunks of each stripe
across n distinct nodes (i.e., one chunk per node), RS(n; k)
can tolerate anyn� k node failures. Besides, if a cluster is

Fig. 1. Example of a clustered storage system deployed with RS(9,6).
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allowed to store at most n� k chunks of each stripe, then we
can attain cluster-level fault tolerance (i.e., tolerating any sin-
gle cluster failure), as we can always find at least k chunks
of the same stripe for repair from other clusters. Fig. 1
shows that the nine chunks of a stripe encoded by RS(9,6)
(i.e., n ¼ 9 and k ¼ 6) are stored in a clustered storage sys-
tem with four clusters, where each cluster stores at most n�
k chunks (i.e., three in this example). Such a deployment can
tolerate any single cluster failure.

2.3 Repair in Erasure Coding

Repairing in erasure coding is an I/O intensive operation.
For instance, RS(n; k) requires retrieving k surviving chunks
to repair a chunk, indicating that the storage and network
I/Os for repair are k times the size of the failed chunk. To
improve the repair efficiency, regenerating codes [9], [29]
trade additional computation cycles for reduced repair traf-
fic. To repair a chunk, the surviving node will send a sub-
chunk computed as a linear combination of the locally
stored data. These subchunks are then assembled to restore
the failed chunk. To further reduce the amount of storage
I/O incurred in repair, recently proposed regenerating
codes [29] obviate the need of linear computations per-
formed on the surviving nodes, meaning that the subchunks
can be directly read from the local storage for repair.

On the other hand, LRCs [17], [32], [37] save repair traf-
fic by maintaining slightly more parity chunks. They cate-
gorize the k data chunks of a stripe into several local
groups, and generate a local parity chunk based on the data
chunks of the same local group. Hence, LRCs can repair a
chunk by merely retrieving the surviving chunks of the
same local group.

3 OBSERVATIONS AND PROBLEM FORMULATION

3.1 Observations

Given the scarcity of the cross-bandwidth, we have the fol-
lowing two observations. To clarify, we use the clustered
storage system in Fig. 1 as an instance and label the four
clusters by fC1; C2; C3; C4g.

Observation 1. We first notice that the nodes selected in
repair directly determine the cross-cluster repair traffic.
Based on the data layout in Fig. 1, suppose that a node in
the cluster C4 fails and the system chooses a destination node
in C4 to store the repaired chunk. As the system in Fig. 1
uses RS(9,6), it requires to retrieve any six surviving chunks
to perform repair.

Fig. 2 shows two repair solutions with different cross-
cluster repair traffics, where the chunks selected for
repaired are marked in dash lines. Specifically, the first
repair solution (Fig. 2a) retrieves six surviving chunks from
fC1; C2; C3g and stores the repaired chunk in C4. By relying

on the linearity of the repair (decoding) operation, a cluster
that has chunks requested can aggregate these chunks into
an aggregated chunk (whose size is the same as the original
data chunk [36]) and therefore only needs to send one
chunk to C4 [36]. Consequently, Fig. 2a transmits three
chunks across clusters for repair. As a comparison, the
repair solution in Fig. 2b reads six surviving chunks from
fC1; C2; C4g. As the chunk requested in C4 can be directly
transmitted within the same cluster, Fig. 2b merely needs to
send two chunks across cluster to accomplish the repair.

Observation 2. We also identify that when repairing
multiple chunks, the unbalanced repair solutions easily pro-
long the repair procedure. Fig. 3 presents an example that
illustrates the cross-cluster upload and download traffics of
repairing two chunks. For example, the repair solution of
the first chunk in Fig. 3 is based on Fig. 2b, where the two
clusters fC1; C2g send (upload) one chunk across clusters,
while the cluster C4 receives (download) two chunks. We
can also notice that for a repair solution, the induced cross-
cluster upload traffic is equal to the cross-cluster download
traffic. Figs. 3a and 3b have two different options in repair-
ing the second chunk, and hence result in different distribu-
tions of cross-cluster upload and download traffics. For
example, C4 is the most loaded cluster in Fig. 3a and needs
to download four chunks from other clusters. By contrast,
each of the four clusters in Fig. 3b has to send or receive two
chunks across clusters. As NICs and network cables exten-
sively support full duplex technology (i.e., a node can send
and receive data independently at the same transmission
rate), the repair procedure is bottlenecked by the cluster
that affords the maximum cross-cluster upload or down-
load traffic. Therefore, a repair solution with balanced
cross-cluster upload and download traffics can well shorten
the repair process.

3.2 Modeling

We further formulate the repair problem based on the fol-
lowing assumptions. First, the computation time in repair is
often trivial [19], [36] and can be negligible. Second, as each
node can be attached with multiple disks, the cumulative

Fig. 2. Observation 1: The selection of nodes for repair (marked in dash lines) directly determines the cross-cluster repair traffic.

Fig. 3. Observation 2: Unbalanced cross-cluster upload and download
traffics prolong the repair procedure.
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disk I/O bandwidth of a node is much larger than its NIC
speed [6], making the network transmission be the true bot-
tleneck in repair. Third, because of the scarcity of the cross-
cluster bandwidth [4], [6], [13], we assume that the cross-
cluster transmission dominates the network transmission.
Fourth, we focus on single failure, which accounts for more
than 90 percent of all the failure events in practical storage
deployment [19].

Suppose that the clustered storage system consists of l
clusters termed fC1; C2; . . . ; Clg and the capacity of the
cross-cluster bandwidth assigned for repair is b. Let ui and
di be the amounts of the cross-cluster upload and download
traffics for repair over the ith cluster (where 1 � i � l),
respectively. Then the most cross-cluster upload and down-
load traffics can be denoted by u and d, where u ¼
maxfuij1 � i � lg and d ¼ maxfdij1 � i � lg, respectively.
Obviously, the repair time is determined by m ¼ maxfu; dg
and can be given by T ¼ m

b . As the cross-cluster upload and
download traffics have equal size (i.e.,

Pl
i¼1 ui ¼

Pl
i¼1 di),

the average cross-cluster upload and download traffics
loaded on a cluster are equal and can both be calculated by
a ¼ 1

l

Pl
i¼1 ui. Hence, we can have

T ¼ m

b
� a

b
: (1)

The equation holds if m ¼ a ¼ 1
l

Pl
i¼1 ui, implying that

the cross-cluster upload and download traffics are both
evenly distributed across the l clusters.

We can further derive the lower bound of the repair time.
Suppose that a� is the lower bound of a. Finally, based on
Equation (1), we can have

T ¼ m

b
� a

b
� a�

b
: (2)

Equation (2) indicates that the minimum repair time can
be achieved when the cross-cluster upload and download
repair traffics are both balanced (i.e., m ¼ a) and minimized
(i.e., a ¼ a�).

3.3 Objective Formulation

To attain the minimum repair time, our objective is to make
the cross-cluster upload and download traffics most bal-
anced, with the constraint that their amounts have been
minimized. This objective can be formulated as follows:

minimize
m

a

subject to a ¼ a�:

We call the objective function m
a the load balancing rate.

Therefore, the minimum load balancing rate is one (i.e.,
when m ¼ a), when the cross-cluster upload and download
traffics for repair are both evenly distributed across the l
clusters.

4 CLUSTER-AWARE SCATTERED REPAIR

We now present ClusterSR, a cluster-aware scattered repair
approach. ClusterSR is composed of two components. The
first is to find the repair solutions (which specify the nodes

for reading data and performing repair) with the minimum
cross-cluster repair traffic for each stripe (Section 4.1). The
second is a greedy algorithm that seeks to schedule the
repair of multiple chunks and searches their repair solu-
tions, such that the cross-cluster upload and download traf-
fics are both balanced across clusters (Section 4.2). We also
analyze the computational complexity of ClusterSR (Sec-
tion 4.3), and finally show via rigorous theoretical analysis
to demonstrate the reliability improvement gained by
ClusterSR (Section 4.4).

4.1 MinimizingCross-Cluster Repair Traffic

We first consider the minimization of the cross-cluster
repair traffic in scattered repair. The main idea behind
ClusterSR is to access the fewest clusters for collecting suffi-
cient surviving chunks, and choose a destination node with-
out violating the cluster-level fault tolerance. ClusterSR
then performs the intra-cluster aggregation on the requested
chunks within the same cluster, such that each accessed
cluster can merely send one aggregated chunk to the desti-
nation node for repair. Algorithm 1 elaborates the detail
procedures.

Algorithm 1.Minimizing Cross-Cluster Repair Traffic

Input: A failed stripe
Output: A valid repair solution for the failed stripe
1: // Find the fewest clusters for retrieving data

2: Get fC0
1; C

0
2; . . . ; C

0
lg, where h1 � h2 � � � � � hl

3: Establish a smallest value v, such that
P

1�i�v hi � k
4: // Find a destination cluster

5: for 1 � i � l do
6: if hi < n� k then
7: C� ¼ C0

i

8: break
9: end if
10: end for
11: // Perform repair

12: Select k surviving chunks from fC0
ij1 � i � vg [ C�

13: Select a destination node from C�

14: for 1 � i � v do
15: Aggregate the selected chunks in C0

i

16: Send the aggregated chunk to the destination node
17: end for
18: Perform repair and restore the failed chunk

Algorithm Details. Once identifying a failed stripe with a
chunk loss, ClusterSR first sorts the clusters based on the
number of surviving chunks of the failed stripe in descend-
ing order, and get the sorted clusters fC0

1; C
0
2; . . . ; C

0
lg, where

hi is the surviving chunks of C0
i (1 � i � l). It then estab-

lishes a smallest value v (where 1 � v � l), such that the first
v clusters after sorting have at least k surviving chunks for
repair (Lines 2-3).

To select the cluster for storing the repaired chunk,
ClusterSR scans the sorted clusters and finds the first one
(denoted by C�) that has less than n� k surviving chunks of
the failed stripe (Lines 4-10). We call C� the destination clus-
ter. The selection of C� ensures that the cluster-level fault
tolerance can still be guaranteed even after repair (i.e., C�

still stores no more than n� k chunks of the failed stripe
after repair). ClusterSR then chooses k surviving chunks
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from the union of the first v sorted clusters and C� (Line 12).
It also picks a node from C� to serve as the destination
node, with the requirement that the destination node should
not store any chunk of the failed stripe before repair
(Line 13). Finally, for each of the v clusters, ClusterSR aggre-
gates the requested chunks and transmits the aggregated
chunk to C� for repair (Lines 14-18).

Example. We show an example via Fig. 4 to clarify the
repair process of Algorithm 1. Suppose that the system
deploys RS(9,6) (i.e., n ¼ 9 and k ¼ 6) and a node in C4 fails
at this time. Then we can obtain the sorted clusters
fC1; C2; C3; C4g based on the number of surviving chunks
they have. We can deduce that v ¼ 3, as the first three clus-
ters have seven chunks, whose number is no smaller than k.
We then find that C2 can serve as the destination cluster, as
it is the first cluster among the sorted ones that have less
than n� k ¼ 3 chunks. We choose a destination node in C2

that does not store any chunk of the failed stripe before
repair. Finally, we select six chunks (marked in dashed
lines) from the first three clusters, aggregate the selected
chunks for each cluster, and transmit the aggregated chunks
to the destination node in C2. Thus, we only transmit two
chunks across clusters for repair.

Discussion. Algorithm 1 is designed to capture one of the
repair solutions that can attain the least cross-cluster repair
traffic for a failed stripe. For example, in Fig. 4, we can
change the destination cluster to be C3, and selectively read
six chunks from fC1; C2; C3g. This repair solution also only
needs to transmit two chunks across clusters after aggrega-
tion (from C1 and C2 to C3). Therefore, we say a repair solu-
tion is valid for a failed stripe if it can repair the failed chunk
with the least cross-cluster repair traffic [36]. All valid repair
solutions of a stripe will be considered when trying to bal-
ance the cross-cluster repair traffic (Section 4.2).

Optimality.We now prove that the repair solution found
by Algorithm 1 incurs the least cross-cluster repair traffic
for RSðn; kÞ, without violating the cluster-level fault toler-
ance. We can readily deduce that v is the smallest number
of clusters that have at least k available chunks to repair the
failed chunk by contradiction (if we can find v0 < v clusters
to collect at least k surviving chunks, then it violates the
assumption that v is the smallest value that stores at least k
surviving chunks).

After establishing the v clusters for data retrieval, the selec-
tion of the destination cluster C� directly determines the
cross-cluster repair traffic. There are two possibilities in select-
ing C�. If each C0

i in fC0
1; C

0
2; . . . ; C

0
vg has exactly n� k surviv-

ing chunks of the failed stripe, thenC� =2 fC0
1; C

0
2; . . . ; C

0
vg and

theminimumnumber of chunks transmitted across clusters is
v. Otherwise, C� will store more than n� k chunks of the
failed stripe after repair, thereby violating the cluster-level
fault tolerance (each cluster is allowed to store at most n� k
chunks for promising cluster-level fault tolerance).

On the other hand, if some cluster Ci in fC0
1; C

0
2; . . . ; C

0
vg

stores fewer than n� k surviving chunks of the failed
stripe, then we have C� 2 fC0

1; C
0
2; . . . ; C

0
vg. In this case,

each Ci in the first v clusters (except C�) will send an
aggregated chunk to C� and hence the number of chunks
transmitted across clusters is v� 1. We can prove that v�
1 is the minimum value via contradiction. We assume that
C� can repair the failed chunk by reading chunks from
another v0 clusters (where v0 < v� 1). That said, we can
find v0 þ 1 < v clusters (i.e., the v0 clusters plus C�) for
retrieving k surviving chunks. This violates the condition
that v is the smallest number of clusters that have sufficient
surviving chunks for repair.

Algorithm 2. Balancing Cross-Cluster Repair Traffic

Input: U (The residual chunks ), r (number of chunks repaired
in a repair round), and t (number of steps)
Output: Chunks to be repaired in each repair round
1: function RepairU
2: // Initialize a set of chunks to be repaired

3: SetR � U
4: Construct S ¼ fS1;S2; . . . ;SjRjg forR
5: // Balance the cross-cluster repair traffic

6: while true do
7: if SubstituteR, S equals False then
8: SwapR, S, U
9: end if
10: Set t ¼ t� 1
11: if t ¼ 0 then
12: break
13: end if
14: end while
15: Set U ¼ U �R
16: return (R, S, U)
17: end function
18: procedureMain(U)
19: Initialize e ¼ 0
20: while U 6¼ f do
21: Set e ¼ eþ 1
22: (Re, Se, U) = Repair(U)
23: end while
24: return {(R1; S1Þ; . . . ; ðRe; Se)}
25: end procedure

Extension.ThoughAlgorithm 1mainly focuses on RS codes,
it can be effortlessly tuned for LRCs and regenerating codes
(Section 2.3). Due to page limits, we only use LRCs as an
instance. For LRCs, to repair a global parity chunk, we can
sort the clusters based on the number of surviving chunks of
the k data chunks, and choose the fewest v clusters that have
enough surviving chunks for repair. When selecting the desti-
nation cluster C� in LRCs, one should ensure that C�’s failure
is still an information-theoretically decodable pattern [17]
after repair (i.e., the remaining parity chunks that can take
effect in repair are no less than the failed chunks), such that
the cluster-level fault tolerance is still preserved after repair.
In addition, for the LRC that keeps only one local parity chunk
in each local group, ClusterSR cannot save the cross-cluster
repair traffic when repairing any single data chunk, as all the
surviving chunks of the same local group are required in
repair. However, we argue that ClusterSR can still retain its

Fig. 4. A repair solution with the least repair traffic for RS(9, 6).
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effect for the LRCs [39] that store multiple local parity chunks
within a local group.

4.2 Balancing Cross-Cluster Repair Traffic

After establishing the repair solution with minimized cross-
cluster repair traffic for each failed stripe, we next consider
the balancing of cross-cluster upload and download traffics
in the repair of multiple chunks. For easy manipulation, we
propose to partition the repair into multiple repair rounds
that are iteratively performed, where each repair round will
selectively repair a constant number of chunks (denoted by
r). We then design Algorithms 2, 3, and 4, whose objectives
are to seek a combination of r failed chunks as well as their
repair solutions, such that the induced cross-cluster upload
and download traffics in this repair round are balanced
across clusters. Algorithm 2 is the main algorithm, whose
main idea is to iteratively mitigate the cross-cluster traffic on
the most loaded cluster via substituting the selected repair
solutions with its alternatives and swapping the chunks to be
repaired in a repair round. Algorithms 3 and 4 elaborate the
substitution and swapping procedures, respectively.

Algorithm 3. Substitute Function

1: function Substitute(R, S)
2: Derive u and d from S

3: if d > u then
4: Get Cx, where dx ¼ d
5: for each solution Si 2 S do
6: if Si performs repair in Cx then
7: Find S0

i by substituting Cx in Si with another desti-
nation cluster

8: Set Si ¼ S� Si [ S0
i, and get di from Si

9: end if
10: end for
11: Set i� ¼ argminifdig
12: if di� < d then
13: Set S ¼ S� Si� [ S0

i�
14: return True
15: else
16: return False
17: end if
18: else
19: Get Cx, where ux ¼ u
20: for each solution Si 2 S do
21: if Si reads data from Cx then
22: Find S0

i by substituting Cx in Si with another clus-
ter for reading data

23: Set Si ¼ Si � Si [ S0
i, and get ui from Si

24: end if
25: end for
26: Set i� ¼ argminifuig
27: if ui� < u then
28: Set S ¼ S� Si� [ S0

i�
29: return True
30: else
31: return False
32: end if
33: end if
34: end function

Details of Algorithms 2. Algorithm 2 presents the main
idea of balancing the cross-cluster upload and download

traffics. Let U denote the residual chunks to be repaired and
R be the chunks selected to be repaired in a repair round.

Algorithm 2 finds the chunks to be repaired in a repair
round via calling the REPAIR procedure (Lines 1-17). In each
repair round, we first randomly select chunks from U and
construct an initial set of chunks (denoted by R) to be
repaired (Line 3). We use the symbol jRj to represent the
number of chunks in R. Therefore, jRj is always equal to r
except the final repair round. For each chunk Hi 2 R, we
then generate a valid repair solution Si to repair Hi (where
1 � i � jRj) and get a multi-stripe repair solution S (Line 4).
To balance the repair traffic, we give priority to calling the
SUBSTITUTE function (Algorithm 3), which seeks to mitigate
the traffic on the most loaded cluster through substituting a
repair solution in S with another valid one. If the SUBSTITUTE

function cannot take effect, then we resort to the SWAP func-
tion (Algorithm 4), which tries to swap a chunk in R with
another chunk in U to look for traffic reduction on the most
loaded cluster (Lines 7-9). We repeat the balancing trial for t
times (Lines 10-13), and finally obtain a set of chunks
selected to be repaired in this repair round as well as their
repair solutions. We then update U by evicting the chunks
that are selected inR (Line 15).

In the MAIN procedure (Lines 18-25), we repeatedly call
the REPAIR function until all the chunks in U have been suc-
cessfully scheduled for being repaired (Lines 19-23). Finally,
we return the chunks to be repaired as well as the corre-
sponding valid repair solutions in each repair round, where
e is the number of repair rounds to be performed (Line 24).

Details of Algorithms 3.Algorithm 3 presents the detailed
procedures of the SUBSTITUTE function. Given the multi-
stripe repair solution S, we can get the cross-cluster upload
traffics loaded over the l clusters, denoted by fu1; u2;
. . . ; ulg. Therefore, the most cross-cluster upload traffic
among the l cluster is u ¼ maxfuij1 � i � lg. Similarly, we
can derive the most cross-cluster download traffic over the
l clusters, denoted by d (Line 2). If d > u, then the repair
procedure is bottlenecked by the cross-cluster download
traffic, which should be given priority in traffic balancing.
We first pinpoint the cluster Cx that affords the most
cross-cluster download traffic (Line 4), and locate every
repair solution Si 2 S, satisfying that Si chooses Cx as the
destination cluster. We then seek to find another valid
repair solution S0

i by substituting Cx in Si with another
destination cluster (Line 7). By substituting Si with S0

i, we
can generate a new multi-stripe repair solution Si, and get
its most cross-cluster download traffic (termed di) (Line 8).
Because S0

i is also a valid repair solution, Si introduces the
least cross-cluster repair traffic as well, implying that a
smaller di results in more balanced cross-cluster download
traffic. We finally select the substitution that can produce
the most balanced cross-cluster download traffic (Lines 11-
14). If the substitution cannot further balance the cross-
cluster download traffic, then the function returns false
(Lines 15-16).

Balancing the cross-cluster upload traffic is similar
(Lines 18-33), except that we will substitute the cluster that
affords the most cross-cluster upload traffic with another
cluster for reading data (Line 22). Finally, we will perform
the substitution that introduces the most balanced cross-
cluster upload traffic (Lines 26-29).
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Example. Fig. 5 depicts a substitution example. Fig. 5a
first shows the initial repair solutions of two chunks
(namely H1 and H2). We can observe that C1 and C2 both
afford the most cross-cluster upload traffic and need to
send two chunks across clusters (i.e., u ¼ 2), while C4

receives the most chunks across clusters (i.e., d ¼ 5). There-
fore, the repair procedure is bottlenecked by the cross-clus-
ter download traffic over C4. To balance the cross-cluster
download traffic, we select C1 to serve as the destination
cluster of H2 in Fig. 5b, and hence the most cross-cluster
download traffic of the new multi-stripe repair solution is
reduced to three chunks after substitution.

Algorithm 4. Swap Function

1: function Swap(R, S, U)
2: Derive u and d from S

3: // Find a chunk to be swapped

4: if d > u then
5: Get Cx, where dx ¼ d
6: FindSi 2 SwhereSi selectsCx as the destination cluster
7: else
8: Get Cx, where ux ¼ u
9: Find Si 2 Swhere Si reads data from Cx for repair
10: end if
11: // Find a chunk from U and its repair solution

12: for each chunkHj 2 U do
13: Find Sj forHj

14: Set Sj ¼ S� Si [ Sj

15: Get uj and dj from Sj
16: if uj � u then
17: continue
18: end if
19: end for
20: Set j� ¼ argminjfdjg
21: SetR ¼ R�Hi [Hj�
22: Set U ¼ U �Hj� [Hi

23: Set S ¼ S� Si [ Sj�
24: end function

Details of Algorithms 4. Algorithm 4 further elaborates the
procedures of the SWAPfunction. Given a multi-stripe repair
solution S, we use u and d to denote the most cross-cluster
upload and download traffics over the l clusters, respec-
tively (Line 2). If the repair is bottlenecked by the cross-clus-
ter download traffic, then we can pinpoint the cluster Cx,
which affords the most cross-cluster download traffic. We
randomly choose a chunk Hi 2 R for being swapped, satis-
fying that the repair solution of Hi chooses Cx as the desti-
nation cluster (Lines 4-6). Similarly, if the repair is
bottlenecked by the cross-cluster upload traffic, then we

turn to select the chunk that reads data from Cx for repair
(Lines 8-9). We then consider each chunk Hj 2 U for being
swapped and measure the resulting cross-cluster upload
and download traffics when temporarily swapping Hi 2 R
with Hj. We select the chunk Hj� 2 U, such that swapping
Hi 2 R with Hj� can reach the most balanced cross-cluster
download traffic among all possible trials, while also pro-
ducing more balanced cross-cluster upload traffic (Lines 12-
20). We swap Hi 2 R and Hj� 2 U and update the corre-
sponding multi-stripe repair solution S (Lines 21-23).

Example. Fig. 6 gives a swap example based on Fig. 5. To
further balance the cross-cluster download traffic, we swap
H2 with another chunk H3 2 U, such that the most cross-
cluster download traffic among the four clusters reduces
from three chunks (Fig. 6a) to two chunks (Fig. 6b). The
chunk H2 will be re-organized in U and scheduled in next
repair rounds.

4.3 Complexity Analysis and Discussion

Complexity Analysis. Suppose that l is the number of clusters
and r is the number of chunks repaired in a repair round.
The complexity of Algorithm 1 is Oðllog lÞ. The complexity
of Algorithm 3 is OðrlÞ. Let f be the total number of chunks
to be repaired, then the complexity of Algorithm 4 is
Oðfllog lÞ. Algorithm 2 calls the SUBSTITUTE and SWAP func-
tions for at most t times in each repair round, therefore the
complexity of Algorithm 2 is Oðetfllog lÞ, where e is the
number of repair rounds.

Multi-Failure Repair. While ClusterSR mainly focuses on
single node failure repair at present, it can be effortlessly
extended to tackle multiple node failures. For example, we
can simply repair each failed node individually by running
ClusterSR directly. Besides, we can also schedule the repair of
multiple nodes using ClusterSR through the following steps:
1) we first find the repair solutions that minimize the cross-
cluster repair traffic for each failed chunk (i.e., based on Algo-
rithm 1); 2) we then schedule the chunks to be repaired with
the objective of balancing the cross-cluster upload and down-
load repair traffic (throughAlgorithms 2, 3, and 4).

Degraded Read.ClusterSR can to some extent favor degraded
read (i.e., requesting a chunk that fails coincidentally). When
requesting a failed chunk in degraded read, ClusterSR can
also minimize the amount of cross-cluster repair traffic by
accessing the fewest clusters to collect k available chunks for
serving the request (Lines 1-3 in Algorithm 1) and aggregate
the selected chunks within the same cluster before cross-clus-
ter transmission (Lines 14-15 inAlgorithm 1).

Scenario With Limited Intra-Cluster Bandwidth. ClusterSR
mainly focuses on the single node repair by minimizing and
balancing the cross-cluster repair traffic, and therefore it is

Fig. 5. Example of substitution. By substituting the repair solution of H2,
we can reduce the most cross-cluster download traffic.

Fig. 6. Example of swapping. By swapping H2 with H3, we can further
balance the cross-cluster download traffic in this repair round.
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more suitable to be deployed in the scenariowith scarce cross-
cluster bandwidth. For the scenario with limited intra-cluster
bandwidth, we think that ClusterSR is also advantageous as
it does not increase the intra-cluster bandwidth consumed
whileminimizing the cross-cluster repair traffic.

4.4 Reliability Analysis

We now analyze the reliability improvement achieved by
ClusterSR. Data loss probability [33] and MTTDL [16] are
two different yet important metrics to evaluate the system
reliability. In this paper, as the repair approaches differ in
the time of repairing the failed data (as they will select dif-
ferent repair methods driven by their objectives), our major
objective is to show that ClusterSR can vastly shorten the
repair process and hence reduce the data loss probability
during the single failure repair. We think that the data loss
probability is straightforward and easily understood to
reflect the influence of ClusterSR on the system reliability.
We can also deduce that ClusterSR achieves longer MTTDL
as it has a larger repair rate (i.e., a shorter repair procedure).

Setting. Here, to simplify our analysis, we use rack to
denote the cluster. We consider both node failures and clus-
ter failures that might occur during the repair. Let u1 and u2
be the expected lifetimes of a node and a cluster, respec-
tively. Suppose that the node and cluster failures are inde-
pendent and their lifetimes are exponentially distributed.
Such assumptions allow us to make simple and useful
approximations [21]. The probability that a node fails
(denoted by f1) and the probability that a cluster fails
(denoted by f2) for a duration of time t can be computed by

f1 ¼ 1� e
� t
u1 ; f2 ¼ 1� e

� t
u2 : (3)

We then establish the values of the parameters of u1 and
u2 based on field studies. For node failures, we set u1 ¼ 10
years [8]. For cluster failures, we mainly consider top-of-
rack (ToR) switch failures. We can identify the average
probability of a ToR switch failure in one year as 0.0278
from the field study [12, Fig. 4]. Therefore, based on Equa-
tion (3), we can estimate that u2 ¼ 36 years (by setting f2 ¼
0:0278 and t ¼ 1 year). After establishing the values of u1
and u2, we calculate the approximate probabilities of node
failure and cluster failure under different lengths of the
observed period (i.e., t).

Assumptions. To simplify our reliability analysis, we
make the following assumptions. We focus on a storage sys-
tem that organizes y nodes into l cluster, where each cluster
consists of the same number of nodes (i.e., yl , assuming that
y
l is an integer). Suppose that the data and parity chunk
encoded by RS(n; k) are randomly distributed across the y
nodes, while still ensuring cluster-level fault tolerance (Sec-
tion 2.2). Consequently, the chunk distribution and the sys-
tem configurations collectively determine the overall
reliability of the stored data.

As chunks are randomly distributed across the whole
clustered storage, we assume that the event with any than
n� k node failures will result in data loss for simplicity.

Comparison. In this analysis, we mainly compare
ClusterSR with another two repair approaches, namely
CAR [36] and RR (i.e., random repair). Specifically, CAR
[36] aims to minimize and balance the cross-cluster upload

repair traffic in the dedicated repair, while RR randomly
selects k surviving chunks for repair without minimizing
and balancing the cross-cluster repair traffic. The detailed
description of these two repair approaches can be referred
to the second paragraph of Section 6.1.

Failure Events and Probabilities. We first consider a general
number of node failures that might happen during the sin-
gle failure repair. We use Ei to denote the event when any i
remaining nodes fail during the single failure repair (where
0 � i � y� 1), while there is no cluster failure. Therefore,
we can compute the probability of Ei (denoted by PrðEiÞ) as

PrðEiÞ ¼ y� 1

i

� �
� fi1 � ð1� f1Þy�1�i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
i node failures

� ð1� f2Þl|fflfflfflfflffl{zfflfflfflfflffl}
no cluster failure

: (4)

We next consider a general number of cluster failures that
occur during the single failure repair. We use Fj to denote the
event when j clusters fail (where 0 � j � l), while the nodes
in the l� j clusters are still healthy. Therefore, the probability
ofFj (denoted byPrðFjÞ) can be given by

PrðFjÞ ¼ l

j

� �
�fj

2 � ð1� f2Þl�j

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
j cluster failures

� ð1� f1Þðl�jÞy=l|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
remaining nodes are healthy

: (5)

From Equations (3)	(5), we can observe that PrðEiÞ and
PrðFjÞ closely relate to the repair time (i.e., t), where the lon-
ger repair time (i.e., the larger t) will result in the larger data
loss probability.

Reliability Analysis for RS(9,6). We first consider the reli-
ability for RS(9,6), as it is often used in production (e.g., QFS
[28]). We consider the repair of 100 stripes encoded by RS
(9,6) and assume that the chunks of these stripes are ran-
domly dispersed across the clustered storage with y ¼ 16
nodes and l ¼ 4 clusters, such that each cluster is composed
of y

l ¼ 4 nodes. In the chunk placement, we also ensure that
any cluster does not store more than n� k chunks of any
stripe, such that this configuration can tolerate any three-
node failure or any single cluster failure.

Suppose that a node fails at this time. During the single
failure repair, the clustered storage can still ensure data reli-
ability in the face of the following failures: (i) no more than
two node fail while there is no cluster failure (i.e., [2

i¼0Ei),
and (ii) only the cluster where the failed node resides fails,
while all the nodes in the surviving clusters are still avail-
able. Therefore, the data loss probability can be deduced as

Prdl ¼ 1�
h X
0�i�2

PrðEiÞ þ PrðF1Þ
l

i
:

Reliability Analysis for RS(16,12). We also consider the reli-
ability of RS(16,12), since it is also considered in production
systems (e.g., Windows Azure Storage [17]). Similar with
the analysis of RS(9,6), we consider the repair of 100 stripes
encoded by RS(16,12) in the clustered storage with y ¼ 20
nodes and l ¼ 5 clusters, where each cluster consists of y

l ¼ 4
nodes. The placement can ensure data reliability under any
four-node failure or any single cluster failure.
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Suppose a node fails at this time. The reliability analysis
is similar with that of RS(9,6), except the difference that RS
(16,12) can tolerate no more than three node failures during
the single failure repair (i.e., [3

i¼0Ei). Therefore, the data
loss probability can be given by:

Prdl ¼ 1�
h X
0�i�3

PrðEiÞ þ PrðF1Þ
l

i
:

Results. We finally investigate Prdl under different repair
approaches. Suppose that chunks of each stripe are ran-
domly distributed across the whole cluster without violating
the single cluster fault tolerance. Assuming that a node fails
at this time, we then execute the three repair approaches,
and measure the maximum cross-cluster upload and down-
load traffics loaded among the clusters for each repair
approach. Suppose that the repair procedure is seriously bot-
tlenecked by the cross-cluster bandwidth. Therefore, the
repair time can be simply deduced through dividing the
maximum cross-cluster upload (resp. download) traffic by
the cross-cluster bandwidth, once the cross-cluster upload
(resp. download) traffic is the bottleneck of the repair pro-
cess. We then set the chunk size as 64 MB and vary the cross-
cluster bandwidth from 0.1 to 1 Gb/s. Finally, given the
repair time (i.e., t in the reliability analysis, see Equation (3))
of each repair approach, we enumerate every possible node
and cluster failure event and calculate the data loss probabil-
ityPrdl . Fig. 7 presents the results.

We can observe that by minimizing and balancing the
cross-cluster repair traffic, ClusterSR incurs the shortest
repair process and thereby the smallest data loss probability
among the three repair approaches. In addition, as CAR can
reduce the cross-cluster repair traffic compared to RR, it
induces less repair time and thereby a smaller data loss
probability. Specifically, for RS(9,6), the average data loss
probabilities of ClusterSR, CAR, and RR are 2:01
 10�7,
2:83
 10�7, and 3:81
 10�7, respectively.

5 IMPLEMENTATION

We have implemented a ClusterSR prototype in C++ with
around 2,700 lines of code. We use Jerasure v.1.2 [30] to real-
ize the encoding and decoding functionalities.

System Architecture. Fig. 8 presents the system architecture
of the ClusterSR prototype. In particular, the ClusterSR pro-
totype comprises a global coordinator, a proxy for every clus-
ter, and an agent per storage node. The coordinator keeps
track of the metadata information for each chunk, including
the storage node that each chunk resides and the stripe iden-
tity that each chunk is organized into. When detecting a
node failure, the coordinator first identifies the stripes that

have the failed chunks and constructs repair solutions. It
then issues the commands to the proxies and agents for
instructing the repair procedure (step �1 in Fig. 8). Upon
receiving the commands, the agent will read the requested
chunk from local storage and send it to the corresponding
proxy within the same cluster (step �2 ). For each stripe, the
proxy will aggregate the chunks received from the storage
nodes within the same cluster, and send the resulting chunk
to the proxy of the cluster where the destination node resides
for aggregating the chunks received across clusters (step �3 ).
Finally, the proxy sends the resulting chunk to the destina-
tion node for performing the repair operation (step�4 ). After
all the chunks have been successfully repaired, the agents
return acknowledgements to the coordinator.

Multi-Threading. To improve the repair efficacy, we parti-
tion a chunk into many small fixed-size packets and use
multi-threading to realize the repair pipelining as follows.
For the agent that is to send data for repair, we create two
threads, with one thread continually reads packets from the
local storage and the other sends the packets. The proxy
also creates multiple threads to receive packets, aggregate
them, and send the resulting packets to the agent for final
repair. If an agent is responsible for repairing the failed
chunk, it will generate multiple threads to receive packets
from the proxies, perform repair, and write each repaired
packet to the local storage.

Integration With HDFS. Our ClusterSR prototype can be
effortlessly integrated into state-of-the-art distributed stor-
age systems. Here, we show how ClusterSR can assist the
data repair in HDFS.1 Specially, HDFS comprises a Name-
Node (for metadata management) and multiple DataNodes
(for data storage). Therefore, we can deploy the coordinator
in the NameNode, and run the agents in the DataNodes.
Besides, we deploy a proxy in a DataNode for each cluster.
The coordinator executes the command “hdfs fsck /

-files -blocks -locations” in the NameNode to learn
the location and stripe identity of each chunk. It then estab-
lishes the repair solutions for the failed chunks and guides
the repair procedure by sending the commands to the
involved proxies and agents. The integration needs nomodi-
fication to the HDFS codebase.

6 PERFORMANCE EVALUATION

We carry out extensive performance evaluation, in terms of
large-scale simulation and testbed experiments on Alibaba
Cloud ECS. The large-scale simulation and the testbed

Fig. 7. Reliability analysis: Data loss probability.

Fig. 8. System architecture of ClusterSR.

1. In HDFS each data chunk is stored along with its metadata chunk.
In this integration, we mainly focus on the repair of the data chunk.
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experiments are actually complementary to each other. In
the large-scale simulation, we aim to learn the effectiveness
of ClusterSR on reducing and balancing the cross-cluster
repair traffic when ClusterSR is deployed in large-scale
clusters (with hundreds of nodes). We then conduct testbed
experiments to measure the real repair performance
(denoted by the repair throughput) when ClusterSR is
deployed in a real-world cloud data center. To summarize,
the large-scale simulation and textbed experiments can well
evaluate the overall performance of ClusterSR from differ-
ent perspectives (i.e., the cross-cluster repair traffic, the load
balancing rate, and the repair throughput).

We expect to answer the following questions.

� Is ClusterSR effective on balancing the cross-cluster
upload and download repair traffics? (Section 6.1)

� How sensitive ClusterSR is when any configuration
varies? (Sections 6.1	6.3)

� Howmuch cross-cluster repair traffic can be reduced
by ClusterSR? (Section 6.1)

� How much computation time ClusterSR needs to
establish the repair solution? (Section 6.3)

6.1 Large-Scale Simulation

We conduct simulations to unveil the performance of
ClusterSR in large-scale storage clusters. We remove the stor-
age and network I/O operations in our prototype, and evalu-
ate the load balancing rate and cross-cluster repair traffic.

We compare ClusterSR with another two repair
approaches, namely random repair (RR) and cross-rack-
aware repair (CAR) [36]. RR randomly retrieves k out of the
ðn� 1Þ surviving chunks for repair without concerning the
clusters they reside. Therefore, RR can be treated as a base-
line repair approach as it considers neither the reduction
nor the balancing of the cross-cluster repair traffic. For fair
comparison, we also allow RR to aggregate the requested
chunks within the same cluster before cross-cluster trans-
mission. CAR is originally designed to minimize the cross-
cluster repair traffic in dedicated repair (i.e., storing all the
repaired chunks in a dedicated node), but it only balances
cross-cluster upload traffic. To compare ClusterSR with
CAR fairly, we extend CAR to scattered repair by randomly
choosing a node to store the repaired chunk while preserv-
ing cluster-level fault tolerance.

We adopt the following default configurations. We set
the chunk size as 64 MB and generate 10,000 stripes that are
encoded via RS(9,6) (also deployed in Quantcast File System
[28]). These encoded stripes are then dispersed across five
clusters with 100 nodes (i.e., 20 nodes per cluster), while
promising the cluster-level fault tolerance. We repair 5
 l
chunks in each repair round, where l is the number of

clusters. For both CAR and ClusterSR, we set the iteration
steps as 50 to balance the cross-cluster repair traffic. We
repeat each test for 10 runs and show the average values, as
well as the maximum and minimum values in the figures
(some may be invisible as the values are small).

Experiment A.1 (Impact of Number of Nodes).We first investi-
gate the impact of the number of nodes. We vary the number
of nodes from 50 to 200, and measure the load balancing rate
and the induced cross-cluster repair trafficwhen repairing the
chunks of a randomly selected node. Fig. 9 shows the results.

We canmake two observations. First,ClusterSR has signifi-
cant effect on balancing the cross-cluster upload anddownload
traffics. In particular, the average load balancing rate of
ClusterSR across all the test is 1.04, which closely approaches
to the optimum value (i.e., 1). As a comparison, the average
load balancing rates of RR and CAR are 1.61 and 1.59, respec-
tively. We can observe that because of the negligence on the
cross-cluster download traffic, even though CAR can well bal-
ance the cross-cluster upload traffic, it still has almost the same
load balancing rate as RR, a repair approach that does not per-
form any load balancing operation at all. Besides, the load bal-
ancing rate of ClusterSR is much more stable than the other
two approaches, implying that ClusterSR can still work well
under different chunk distributions and system architectures.

Second, ClusterSR can reduce 8.6 and 36.8 percent of
cross-cluster repair traffic compare to CAR and RR, respec-
tively. This is because ClusterSR can minimize the cross-
cluster repair traffic in scattered repair by carefully choosing
chunks to be retrieved for repair and the destination node to
store the repaired chunk (Section 4.1). Although CAR can
minimize the cross-cluster repair traffic in dedicated repair
[36], it cannot sustain its effectiveness in scattered repair.

Experiment A.2 (Impact of Number of Clusters).We then study
how the number of clusters impact the load balancing rate and
the cross-cluster repair traffic incurred.We perform the simu-
lationwhen the default 100 nodes are organized into five clus-
ters (i.e., with 20 nodes per cluster) and ten clusters (i.e., with
10 nodes per cluster), respectively. Fig. 10 depicts the results.

We can make two observations. First, ClusterSR retains
its advantage on balancing the cross-cluster upload and
download repair traffic under different numbers of clusters
(Fig. 10a). The average load balancing rates of ClusterSR,
CAR, and RR are 1.05, 1.65, and 1.69, respectively.

Second, the cross-cluster repair traffic significantly
increases with the number of clusters (Fig. 10b). This is
because when a clustered storage system has more clusters,
each cluster will store fewer chunks of a stripe, such that the
system has to access more clusters to collect enough surviv-
ing chunks for repair. Overall, ClusterSR reduces 9.7-12.8
and 36.9-52.7 percent of cross-cluster repair traffic com-
pared to CAR and RR, respectively.

Fig. 9. Experiment A.1 (Impact of number of nodes). Fig. 10. Experiment A.2 (Impact of number of clusters).
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Experiment A.3 (Impact of Erasure Coding).We also measure
how different erasure codes influence the repair. Wemeasure
the load balancing rates and the cross-cluster repair traffics
when the deployed erasure codes are set as RS(9,6), RS(11,8),
and RS(14,10), respectively. Fig. 11 presents the results.

We can observe that ClusterSR can well balance the cross-
cluster upload and download traffic under different erasure
codes. The average load balancing rate of ClusterSR is 1.11.

In addition, the amount of cross-cluster repair traffic is
easily susceptible to the values of k and n in erasure coding.
For example, ClusterSR incurs additional 23.6 percent of
cross-cluster repair traffic when the system transitions from
RS(9,6) to RS(11,8). The underlying reason is that compared
to RS(9,6), a stripe of RS(11,8) will be stored in more clusters
and the repair of RS(11,8) requires to take back more surviv-
ing chunks (i.e., k ¼ 8).

Experiment A.4 (Impact of Number of Chunks Repaired per
Round). We further study the impact of the number of
chunks repaired in each repair round. We vary the number
of chunks repaired in a round from 50 to 200, and measure
the resulting load balancing rates and the cross-cluster
repair traffics. Fig. 12 illustrates the results.

We can observe that the load balancing rate of ClusterSR
stays nearly unchanged, whereas those of CAR and RR
decline when more chunks are repaired in a round
(Fig. 12a). However, repairing a large number of chunks
simultaneously is usually not preferable, as it easily blows
up the network and storage I/Os to the clustered storage
system. Besides, the cross-cluster repair traffics of the three
repair approaches are nearly constant when repairing dif-
ferent numbers of chunks in a round. This is reasonable as
each chunk on the failed node is recovered independently.

Experiment A.5 (Impact of Iterative Steps). We then investi-
gate the number of iterative trials (i.e., t in Algorithm 2) per-
formed to substitute and swap repair solutions for
opportunistically balancing the cross-cluster repair traffic.
We vary the number of iterative steps from 5 to 100, and
show the resulting load balancing rates in Table 1.

The load balancing rate of ClusterSR first sharply declines
and then exhibits stable. The reason is that given amulti-stripe

unbalanced repair solution, it is much easier to find a much
more balanced one at the beginning. The optimization room
becomes smallerwith the increase of the iteration steps.

Experiment A.6 (Breakdown Analysis). We conduct the
breakdown of ClusterSR and investigate the effectiveness
of each technique in ClusterSR. Actually, the three techni-
ques in ClusterSR can be abbreviated as follows: (i) the Min
technique, which stands for the technique for minimizing
the cross-cluster repair traffic (i.e., Algorithm 1); (ii) the Sub
technique, which substitutes a single-stripe repair solution
with another one for repairing the same chunk, so as to seek
for a lower load balancing rate (i.e., Algorithm 3); and (iii)
the Swp technique, which swaps a chunk selected to be
repaired with another chunk that is not chosen yet to look
for a lower load balancing rate (i.e., Algorithm 4). We try all
the six possible combinations of the three approaches, and
compare them to CAR and RR on the load balancing rate
and the cross-cluster repair traffic. Fig. 13 shows the result,
where ClusterSR is the synthesis ofMinþ Subþ Swp.

We can observe that Minþ Subþ Swp (i.e., ClusterSR) is
the sole one approach that achieves both of the lowest load
balancing rate (see Fig. 13a) and the least cross-cluster repair
traffic (see Fig. 13b) among all the approaches. For example,
though the Min approach can minimize the cross-cluster
repair traffic (Fig. 13b), it introduces the largest load balanc-
ing rate (Fig. 13a). As a comparison, the Sub and Swp
approaches can well balance the cross-cluster repair traffic
(Fig. 13a), but they induce a considerable amount of the
cross-cluster repair traffic instead (Fig. 13b).

This experiment also indicates that the three techniques
designed in ClusterSR are complementary mutually and do
not compromise the effectiveness of each other.

Experiment A.7 (Effect on LRCs).Wefinally assess the perfor-
mance of ClusterSR for non-RS codes. We mainly use LRC
[17], [32] as an instance. Generally, LRC is configured by three
parameters namely k, l, and g. LRC(k; l; g) takes k data chunks
as input and generates another g global parity chunks;
besides, it also breaks the k data chunks into l local groups

Fig. 11. Experiment A.3 (Impact of erasure coding).

Fig. 12. Experiment A.4 (Impact of number of chunks repaired in each
round).

TABLE 1
Experiment A.5 (Impact of Number of Steps)

Steps 5 10 20 50 100

Load balancing rate 1.42 1.16 1.04 1.04 1.04

Fig. 13. Experiment A.6 (Breakdown analysis).
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with k=l data chunks per local group (assume that k is divisi-
ble by l) and keeps a local parity chunk for each group. We
choose LRC(6,2,2), LRC(8,2,2), and LRC(10,2,4) in this evalua-
tion, which are also considered in previous work [20]. For
each stripe encoded by LRC,we ensure that each cluster stores
at most gþ 1 chunks to promise the cluster-level fault toler-
ance. The remaining configurations (including the number of
nodes and the number of chunks repaired in each round) are
consistent with the tests in evaluating the RS codes (see the
third paragraph of Section 6.1). Fig. 14 depicts the load balanc-
ing rates and cross-cluster repair traffics.

ClusterSR remains effective on minimizing and balanc-
ing the cross-cluster repair traffic for different LRCs. Specifi-
cally, the average load balancing rate of the three LRCs
achieved by ClusterSR is 1.15; besides, ClusterSR can
reduce the cross-cluster repair traffic by 8.8 and 5.6 percent
compared to RR and CAR, respectively.

6.2 Testbed Experiments

We further evaluate ClusterSR on Alibaba Cloud ECS [1] to
study its performance in real-world cloud environment. We
set up 21 virtualmachine instances of typeecs.g6.large in
East China region (Hangzhou Zone H). Each instance is
equipped with 2 vCPUs (2.5 GHz Intel Xeon Platinum), 8 GB
memory, and 40 GB ultra-disk space. The operating system is
Ubuntu 14.04 and the network bandwidth that each instance
can achieve is around 3Gb/s (measured by iperf).

To run ClusterSR on the 21 instances, we deploy the
coordinator on one instance and organize the remaining 20
instances into four clusters (i.e., five instances per cluster).
For each cluster, we run the agents on four instances and
deploy the proxy on the last instance. To mimic the network
bandwidth diversity, we use the Linux traffic control tool
tc to throttle the network bandwidth among proxies.

We use the following default configurations.We use RS(9,6)
as the default erasure code, and set the chunk size and packet
size as 64 and 4MB, respectively. The cross-cluster bandwidth
is set as 0.15 Gb/s.We then generate the stripes and randomly
distribute their chunks across the cluster. We repair 100
chunks in total by performing five repair rounds, where each
repair round repairs 20 chunks. We measure the overall dura-
tion starting from the time when the coordinator detects a
node failure until the time when all the lost chunks are all
repaired. We then calculate the repair throughput (i.e., the size
of data that can be repaired per second) via dividing the size of
the repaired data by the duration time.We repeat each test for
five runs and plot the average result as well as the error bars
showing themaximumand theminimum in the test.

Experiment B.1 (Impact of Cross-Cluster Bandwidth). We
first measure the repair throughput when the cross-cluster
bandwidth is varied as 0.1, 0.15, and 0.3 Gb/s. Fig. 15a

shows the results. We can derive the following findings.
First, ClusterSR can improve the repair throughput by 15.2-
34.3 and 35.4-48.6 percent when compared with CAR and
RR, respectively. This is because ClusterSR can both mini-
mize and balance the cross-cluster upload and download
traffics for repair. Second, the repair throughput increases
with the cross-cluster bandwidth, demonstrating that the
repair process is seriously restricted by the scarce cross-
cluster bandwidth. This observation reveals the necessity of
minimizing the cross-cluster repair traffic.

Experiment B.2 (Impact of Different Erasure Codes). We next
study how erasure coding affects the repair throughput. We
select RS(6,4), RS(9,6), and RS(11,8), and measure the repair
throughput for different erasure codes. Fig. 15b shows the
results. The repair throughput of all the three approaches
decreases when the value k becomes larger. For example, the
repair throughput of ClusterSR decreases from 19.6 MB/s
(when k ¼ 4) to 14.7 MB/s (when k ¼ 8). This is generally
because when k increases, we have to retrieve more chunks
for repair, thereby adding more computation and network
transmission latencies. Second, ClusterSR can accelerate the
repair process by 26.6-42.1 and 47.8-68.8 percent when com-
paredwithCAR andRR, respectively.

Experiment B.3 (Impact of Chunk Size). We further evaluate
the repair throughput under different chunk sizes. Fig. 15c
shows the results. The repair throughput is stable when the
chunk size changes. Overall, ClusterSR improves the repair
throughput by 14.4-18.7 and 31.8-47.9 percent when com-
pared with CAR and RR, respectively.

Experiment B.4 (Impact of Packet Size). We vary the packet
size from 4 to 64 MB (i.e., the chunk size) and measure the
resulting repair throughputs of the three approaches.
Fig. 15d shows the results. We can see that the repair
throughputs are relatively stable under different packet
sizes. For example, the repair throughput of ClusterSR is
19.8 MB/s when the packet size is 4 MB, which remains
19.1 MB/s when the packet size increases to 64 MB. We sus-
pect the scarcity of the cross-cluster bandwidth is the under-
lying reason, which makes the time spent in cross-cluster
data transfer take up the majority of the repair time. Conse-
quently, the packet size has marginal impact on the result-
ing repair time. Overall, ClusterSR can accelerate the repair
process by 17.5 and 44.5 percent compare to CAR and RR,
respectively.

Fig. 14. Experiment A.7 (Effect on LRCs).

Fig. 15. Experiments on Alibaba Cloud ECS.
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6.3 Microbenchmarks

ClusterSR generates the multi-stripe repair solutions for
instructing the surviving nodes for repair. Therefore, the
time needed to establish the repair solutions is rather crucial
to fulfill the online repair. We allocate one instance on Ali-
baba Cloud ECS [1] with the same configuration as those in
the testbed experiments. We generate 200,000 stripes
encoded by RS(9,6) and randomly distribute them in a 100-
node data center with five clusters. We suppose to repair 50
chunks in a repair round. We then vary the total number of
chunks to be repaired and the number of iterative steps, and
measure the resulting time to generate the repair solutions.

Fig. 16a shows that ClusterSR is efficient to derive the
repair solutions. For example, it merely needs about 0.15 sec-
onds to obtain the repair solutions for repairing 5,000 chunks.
As ClusterSR only incurs extremely lightweight computation
overhead, it can be deployed in the online repair scenario.

Fig. 16b indicates that the time for ClusterSR to generate
the repair solutions increases with the number of iterative
steps performed (i.e., t in Algorithm 2). However, as the
load balancing rate becomes stable when the number of iter-
ative steps is around 30 (see Experiment A.5), ClusterSR
merely needs about 0.11 seconds to generate the repair solu-
tions with near-optimal load balancing rate.

7 RELATED WORK

Repair-Efficient Codes. Some repair-efficient codes are designed
to suppress the repair traffic. LRCs [17], [32] associate a subset
of data chunks of a stripe with a local parity chunk, thereby
trading additional storage for reduced repair traffic. Regener-
ating codes [9], [29] employ the subpacketization technique
and allow surviving nodes to send the subchunks calculated
from the locally stored data. As an independent study,
ClusterSR can work for different erasure codes to achieve fast
repair in clustered storage.

Repair Scheduling. Some studies schedule the repair by fully
utilizing the available bandwidth. PPR [24] decomposes a
repair operation into partial repair sub-operations that are
parallelized across multiple nodes. CAR [36] minimizes the
cross-cluster repair traffic in data centers by accessing
the minimum number of clusters in each chunk’s repair.
ECPipe [22] partitions a chunk into small-size slices and pipe-
lines the repair of slices across nodes to achieve Oð1Þ repair
time. DoubleR [16] performs both intra-cluster and cross-clus-
ter regenerations tominimize the cross-cluster repair traffic in
hierarchical data centers. These studies focus on dedicated
repair, while ClusterSR balances the cross-cluster upload and
download traffics in scattered repair.

Parity Declustering. Parity declustering [14], [25] distrib-
utes stripes across different nodes, with the aim of exploiting

the available resources of the entire system in repair. One
similar approach is applied in RAMCloud [27], a replication-
based storage system that scatters the replicas across the sys-
tem for fast repair. FastPR [34] couples migration and repair
to fully leverage the I/O of the soon-to-fail node and parallel-
ize the repair across the whole storage cluster. As a compari-
son, ClusterSR focuses on the scattered repair in the cluster
storagewith bandwidth diversity phenomenon.

8 CONCLUSION

We consider the scattered repair in clustered storage and pro-
pose ClusterSR, a cluster-aware scattered repair approach. By
carefully examining the data distribution, ClusterSR first
finds the valid repair solutions that achieve the least cross-
cluster repair traffic for each failed chunk. ClusterSR then
constructs multi-stripe repair solutions to balance the cross-
cluster upload and download traffics for repair. We evaluate
ClusterSR via both large-scale simulation and Alibaba Cloud
ECS experiments, and demonstrate that ClusterSR can well
suppress and balance the induced cross-cluster repair traffic,
and hence improve the repair throughput.
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