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Abstract—Erasure coding is a storage-efficient means to guar-
antee data reliability in today’s commodity storage systems, yet its
repair performance is seriously hindered by the substantial repair
traffic. Repair in clustered storage systems is even complicated
because of the scarcity of the cross-cluster bandwidth. We
present ClusterSR, a cluster-aware scattered repair approach.
ClusterSR minimizes the cross-cluster repair traffic by carefully
choosing the clusters for reading and repairing chunks. It further
balances the cross-cluster repair traffic by scheduling the repair
of multiple chunks. Large-scale simulation and Alibaba Cloud
ECS experiments show that ClusterSR can reduce 6.7-52.7% of
the cross-cluster repair traffic and improve 14.1-68.8% of the
repair throughput.

I. INTRODUCTION

Large-scale clustered storage systems, often built on hun-

dreds or even thousands of storage servers (also called nodes),

have to tackle prevalent unexpected failures [17], [27]. To

guarantee data reliability against failures, pre-storing additional

data redundancy is a commonly adopted approach in production

systems [2], [10], [22]–[24], where replication and erasure

coding are two representatives. Compared to replication, erasure

coding [2], [16], [22], [24] is much more storage-efficient,

which can attain the same degree of fault tolerance with far

less storage redundancy [34]. Generally, erasure coding takes

pieces of fixed-size data information (called data chunks) as

input and generates a small number of equal-size redundant

chunks (called parity chunks) through a predefined encoding

functionality. If any data or parity chunk accidentally fails,

erasure coding can retrieve a subset of the surviving data and

parity chunks to restore the original data chunk. Because of

its high storage efficiency, erasure coding is more preferable

in today’s production systems, such as Hadoop HDFS [3],

Windows Azure Storage [15], and Facebook F4 [22].

While being storage-efficient, erasure coding incurs substan-

tial repair traffic (i.e., data retrieved for repair). For example,

Reed-Solomon codes (RS codes) [28], which are a well-known

family of erasure codes, demand to retrieve the chunks whose

size may be even several times that of the lost data for repair

(Section II-B). Repair becomes more complicated in large-scale

clustered storage systems. Modern clustered storage systems

usually organize nodes into multiple clusters in a hierarchical

manner, where nodes are first grouped into a cluster connected

via a common switch and the switches are then interconnected

through the network core [6], [9], [14], [30]. In such network

architecture, the cross-cluster bandwidth, which is competed

among the nodes within the same cluster for various workloads

(e.g., replication writes [6] and shuffle in MapReduce jobs [4]),

is often oversubscribed and is shown to be much more scarce

than the intra-cluster bandwidth (Section II-A). Hence, the

repair that incurs heavy cross-cluster repair traffic (i.e., data

retrieved across clusters for repair) will significantly prolong

the repair process and take more repair time.

To alleviate the influence of the cross-cluster repair traffic,

existing studies design new families of cluster-aware erasure

codes [13], [14] to sustain the same fault tolerance degree with

less cross-cluster repair traffic, or develop new repair scheduling

approach to minimize the cross-cluster repair traffic [32].

However, these prior designs all consider the dedicated repair
scenario, which repairs all the failed chunks in a dedicated

node. Such repair scenario easily makes the bandwidth of the

dedicated node be the performance bottleneck of the repair.

In this paper, we strive to remove this performance bottleneck

and reconsider the repair in erasure-coded clustered storage. We

mainly focus on the scattered repair scenario, which stores the

repaired chunks across all the surviving nodes in the clustered

storage. Our observations are two-fold. On one hand, as the

cross-cluster bandwidth seriously hinders the repair procedure,

it becomes crucial to minimize the cross-cluster repair traffic in

scattered repair as well. On the other hand, as NICs (network

interface cards) and network cables extensively support full
duplex transmission [7], [19], which can send (upload) and

receive (download) data independently at the same transmission

rate, balancing the cross-cluster upload and download traffics
(i.e., data uploaded and downloaded across clusters) for repair

is essential to further reduce the repair time.

We therefore present ClusterSR, a Cluster-aware Scattered

Repair approach that aims to minimize and balance the cross-

cluster repair traffic. ClusterSR first carefully examines the

data distribution and determines the repair solution (which

specifies the nodes to read the surviving data and store the

repaired data) for each failed chunk, with the primary objective

of minimizing the cross-cluster repair traffic. It then seeks to

schedule the repair of multiple chunks, such that the resulting

cross-cluster upload and download traffics are both balanced

across clusters. To our best knowledge, ClusterSR is the first
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work that considers minimizing and balancing both of the

cross-cluster upload and download traffics in scattered repair.

In summary, we make the following contributions.

1) We formulate the problem of cluster-aware scattered

repair in erasure-coded clustered storage and identify that

the lower bound of the repair time can be attained by

minimizing and balancing the cross-cluster upload and

download traffics.

2) We present ClusterSR, a cluster-aware scattered repair

approach. ClusterSR carefully chooses the nodes that

participate in a single chunk’s repair to minimize the cross-

cluster repair traffic. It additionally seeks to schedule the

repair of multiple chunks for balancing the cross-cluster

upload and download traffics. ClusterSR is a general

design for different erasure codes.

3) We implement a ClusterSR prototype in C++ and show

that it can be effortlessly tuned for assisting the repair in

HDFS of Hadoop 3.1.1 [3].

4) We evaluate ClusterSR via large-scale simulation and

Alibaba Cloud Elastic Compute Service (ECS) [1] experi-

ments to demonstrate its scalability and effectiveness in

real-world environments. We show that ClusterSR can

reduce 6.7-52.7% of the cross-cluster repair traffic and

improve 14.1-68.8% of the repair throughput. We also

demonstrate that ClusterSR is effective on balancing the

cross-cluster upload and download traffics.

The source code of ClusterSR can be reached via:

https://github.com/shenzr/clustersr

II. BACKGROUND

A. Clustered Storage

We consider the clustered storage with a two-level hierar-

chical architecture, in which nodes are first organized into

clusters and multiple clusters are then interconnected via the

network core. A cluster can physically be a rack [30], [32]

or even a data center [5]. Figure 1 depicts the architecture

of the clustered storage. Such architecture has been applied

in modern data center deployment [9], [22] and assumed in

previous work [6], [14], [30], [32].

The hierarchical architecture results in the bandwidth di-
versity phenomenon, where the cross-cluster bandwidth is

often oversubscribed [4], [6], [11] and therefore appears

more scarce than the intra-cluster bandwidth. To define the

scarcity of the cross-cluster bandwidth, previous studies use the

oversubscription ratio calculated as the ratio of the intra-cluster

bandwidth and the cross-cluster bandwidth. They find that the

oversubscription ratio normally varies from 5 to 20 [4], [6],

and even reaches 240 in some extreme cases [11].

B. Erasure Coding

Erasure coding often operates on chunks, which are a

collection of fixed-size information in units of MBs (e.g., 64MB

by default in Hadoop HDFS [3]). In this paper, we mainly

focus on the linear codes, including RS codes [28], regenerating

codes [8], [25], and locally repairable codes (LRCs) [15], [29],

[33]. For easy presentation, we mainly use RS codes as an

Fig. 1. Example of a clustered storage system deployed with RS(9, 6).

instance to clarify our algorithmic designs. We also show that

ClusterSR can be readily extended for regenerating codes and

LRCs (Section IV-A).

RS codes often use two parameters, namely k and n (where

k < n), to configure their storage efficiency and fault-tolerance

capability, which can be denoted by RS(n, k). In the encoding

stage, RS(n, k) takes k data chunks as input and generates

additional n − k parity chunks via linear arithmetics over

Galois finite field [28]. These n data and parity chunks that are

generated together in the encoding stage collectively constitute

a stripe, such that any k chunks of a stripe can decode (recover)

the original k data chunks; in other words, RS(n, k) can tolerate

any n − k chunk failures within a stripe. In the following

discussion, we use the term “chunks” to refer to the data and

parity chunks for brevity, as all of them are treated equally in

the repair.

Therefore, by distributing the n chunks of each stripe across

n distinct nodes (i.e., one chunk per node), RS(n, k) can tolerate

any n − k node failures. Besides, if a cluster is allowed to

store at most n− k chunks of each stripe, then we can attain

cluster-level fault tolerance (i.e., tolerating any single cluster

failure), as we can always find at least k chunks of the same

stripe for repair from other clusters. Figure 1 shows that the

nine chunks of a stripe encoded by RS(9, 6) (i.e., n = 9 and

k = 6) is stored in a clustered storage system with four clusters

where each cluster stores at most n− k chunks (i.e., three in

this example), such that any single cluster failure is tolerated.

C. Repair in Erasure Coding

Repairing in erasure coding is an I/O intensive operation.

For instance, RS(n, k) requires retrieving k surviving chunks to

repair a chunk, indicating that the storage and network I/Os for

repair are k times the size of the failed chunk. To improve the

repair efficiency, regenerating codes [8], [25] trade additional

computation cycles for reduced repair traffic. To repair a chunk,

the surviving node will send a subchunk computed as a linear

combination of the locally stored data. These subchunks are

then assembled to restore the failed chunk. To further reduce

the amount of storage I/O incurred in repair, recently proposed

regenerating codes [25] obviate the need of linear computations

performed on the surviving nodes, meaning that the subchunks

can be directly read from the local storage for repair.

On the other hand, LRCs [15], [29], [33] save repair traffic

by maintaining slightly more parity chunks. They categorize

the k data chunks of a stripe into several local groups, and

generate a local parity chunk based on the data chunks of the
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(a) A repair solution that transmits three chunks across clusters. (b) A repair solution that transmits two chunks across clusters.

Fig. 2. Observation 1: The selection of nodes for repair (marked in dash lines) directly determines the cross-cluster repair traffic.

(a) Unbalanced repair traffic. (b) More balanced repair traffic.

Fig. 3. Observation 2: Unbalanced cross-cluster upload and download traffics
prolong the repair procedure.

same local group. Hence, LRCs can repair a chunk by merely

retrieving the surviving chunks of the same local group.

III. OBSERVATIONS AND PROBLEM FORMULATION

A. Observations

Given the scarcity of the cross-bandwidth, we have the

following two observations. To clarify, we use the clustered

storage system in Figure 1 as an instance and label the four

clusters by {C1, C2, C3, C4}.
Observation 1: We first notice that the nodes selected in repair

directly determine the cross-cluster repair traffic. Based on the

data layout in Figure 1, suppose that a node in the cluster C4

fails and the system chooses a destination node in C4 to store

the repaired chunk. As the system in Figure 1 uses RS(9, 6), it

requires to retrieve any six surviving chunks to perform repair.

Figure 2 shows two repair solutions with different cross-

cluster repair traffics, where the chunks selected for repaired

are marked in dash lines. Specifically, the first repair solution

(Figure 2(a)) retrieves six surviving chunks from {C1, C2, C3}
and stores the repaired chunk in C4. By relying on the linearity

of the repair (decoding) operation, a cluster that has chunks

requested can aggregate these chunks into an aggregated

chunk (whose size is the same as the original data chunk

[32]) and therefore only needs to send one chunk to C4 [32].

Consequently, Figure 2(a) transmits three chunks across clusters

for repair. As a comparison, the repair solution in Figure 2(b)

reads six surviving chunks from {C1, C2, C4}. As the chunk

requested in C4 can be directly transmitted within the same

cluster, Figure 2(b) merely needs to send two chunks across

cluster to accomplish the repair.

Observation 2: We also identify that when repairing multiple

chunks, the unbalanced repair solutions easily prolong the

repair procedure. Figure 3 presents an example that illustrates

the cross-cluster upload and download traffics of repairing

two chunks. For example, the repair solution of the first

chunk in Figure 3 is based on Figure 2(b), where the two

clusters {C1, C2} send (upload) one chunk across clusters,

while the cluster C4 receives (download) two chunks. We

can also notice that for a repair solution, the induced cross-

cluster upload traffic is equal to the cross-cluster download

traffic. Figure 3(a) and Figure 3(b) have two different options

in repairing the second chunk, and hence result in different

distributions of cross-cluster upload and download traffics. For

example, C4 is the most loaded cluster in Figure 3(a) and needs

to download four chunks from other clusters. By contrast, each

of the four clusters in Figure 3(b) has to send or receive two

chunks across clusters. As NICs and network cables extensively

support full duplex technology (i.e., a node can send and

receive data independently at the same transmission rate), the

repair procedure is bottlenecked by the cluster that affords

the most cross-cluster upload or download traffic. Therefore, a

repair solution with balanced cross-cluster upload and download

traffics can well shorten the repair process.

B. Modeling

We further formulate the repair problem based on the

following assumptions. First, the computation time in repair is

often trivial [17], [32] and can be negligible. Second, as each

node can be attached with multiple disks, the cumulative disk

I/O bandwidth of a node is much larger than its NIC speed

[6], making the network transmission be the true bottleneck

in repair. Third, because of the scarcity of the cross-cluster

bandwidth [4], [6], [11], we assume that the cross-cluster

transmission dominates the network transmission. Fourth, we

focus on single failure, which accounts for more than 90% of

all the failure events in practical storage deployment [17], [27].

Suppose that the clustered storage system consists of l
clusters termed {C1, C2, · · · , Cl} and the capacity of the cross-

cluster bandwidth assigned for repair is b. Let ui and di be

the amounts of the cross-cluster upload and download traffics

for repair over the i-th cluster (where 1 ≤ i ≤ l), respectively.

Then the most cross-cluster upload and download traffics can

be denoted by u and d, where u = max{ui|1 ≤ i ≤ l} and

d = max{di|1 ≤ i ≤ l}, respectively. Obviously, the repair

time is determined by m = max{u, d} and can be given by

T = m
b . As the cross-cluster upload and download traffics

have equal size (i.e.,
∑l

i=1 ui =
∑l

i=1 di), then the average

cross-cluster upload and download traffics loaded on a cluster

are equal and can both be calculated by a = 1
l

∑l
i=1 ui. Hence,

we can have:

T =
m

b
≥ a

b
. (1)
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The equation holds if m = a = 1
l

∑l
i=1 ui, implying that

the cross-cluster upload and download traffics are both evenly

distributed across the l clusters.

We can further derive the lower bound of the repair time.

Suppose that a∗ is the lower bound of a. Finally, based on

Equation (1), we can have

T =
m

b
≥ a

b
≥ a∗

b
(2)

Equation (2) indicates that the minimum repair time can be

achieved when the cross-cluster upload and download repair

traffics are both balanced (i.e., m = a) and minimized (i.e.,

a = a∗).

C. Objective Formulation

To attain the minimum repair time, our objective is to make

the cross-cluster upload and download traffics most balanced,

with the constraint that their amounts have been minimized.

This objective can be formulated as follows.

minimize
m

a
subject to a = a∗.

We call the objective function m
a the load balancing rate.

Therefore, the minimum load balancing rate is one (i.e., when

m = a), when the cross-cluster upload and download traffics

for repair are both evenly distributed across the l clusters.

IV. CLUSTER-AWARE SCATTERED REPAIR

We now present ClusterSR, a cluster-aware scattered repair

approach. ClusterSR is composed of two components. The

first is to find the repair solutions (which specify the nodes

for reading data and performing repair) with the minimum

cross-cluster repair traffic for each stripe (Section IV-A). The

second is a greedy algorithm that seeks to schedule the repair

of multiple chunks and searches their repair solutions, such

that the cross-cluster upload and download traffics are both

balanced across clusters (Section IV-B).

A. Minimizing Cross-Cluster Repair Traffic

We first consider the minimization of the cross-cluster repair

traffic in scattered repair. The main idea behind ClusterSR is

to access the fewest clusters for collecting sufficient surviving

chunks, and choose a destination node without violating the

cluster-level fault tolerance. ClusterSR then performs the intra-

cluster aggregation on the requested chunks within the same

cluster, such that each accessed cluster can merely send one

aggregated chunk to the destination node for repair. Algorithm 1

elaborates the detail procedures.

Algorithm Details: Once identifying a failed stripe with a

chunk loss, ClusterSR first sorts the clusters based on the

number of surviving chunks of the failed stripe in descending

order, and get the sorted clusters {C ′
1, C

′
2, · · · , C ′

l}, where hi

is the surviving chunks of C ′
i (1 ≤ i ≤ l). It then establishes

a smallest value v (where 1 ≤ v ≤ l), such that the first v
clusters after sorting have at least k surviving chunks for repair

(Lines 2-3).

Algorithm 1 Minimizing Cross-Cluster Repair Traffic

Input: A failed stripe
Output: A valid repair solution for the failed stripe

1: // Find the fewest clusters for retrieving data
2: Get {C′

1, C
′
2, · · · , C′

l}, where h1 ≥ h2 ≥ · · · ≥ hl

3: Establish a smallest value v, such that
∑

1≤i≤v hi ≥ k
4: // Find a destination cluster
5: for 1 ≤ i ≤ l do
6: if hi < n− k then
7: C∗ = C′

i

8: break
9: end if

10: end for
11: // Perform repair
12: Select k surviving chunks from {C′

i|1 ≤ i ≤ v} ∪ C∗

13: Select a destination node from C∗

14: for 1 ≤ i ≤ v do
15: Aggregate the selected chunks in C′

i

16: Send the aggregated chunk to the destination node
17: end for
18: Perform repair and restore the failed chunk

To select the cluster for storing the repaired chunk, Clus-
terSR scans the sorted clusters and finds the first one (denoted

by C∗) that has less than n− k surviving chunks of the failed

stripe (Lines 4-10). We call C∗ the destination cluster. The

selection of C∗ ensures that the cluster-level fault tolerance

can still be guaranteed even after repair (i.e., C∗ still stores

no more than n − k chunks of the failed stripe after repair).

ClusterSR then chooses k surviving chunks from the union of

the first v sorted clusters and C∗ (Line 12). It also picks a node

from C∗ to serve as the destination node, with the requirement

that the destination node should not store any chunk of the

failed stripe before repair (Line 13). Finally, for each of the

v clusters, ClusterSR aggregates the requested chunks and

transmits the aggregated chunk to C∗ for repair (Lines 14-18).

Example: We show an example via Figure 4 to clarify the

repair process of Algorithm 1. Suppose that the system deploys

RS(9,6) (i.e., n = 9 and k = 6) and a node in C4 fails at this

time. Then we can obtain the sorted clusters {C1, C2, C3, C4}
based on the number of surviving chunks they have. We can

deduce that v = 3, as the first three clusters have seven chunks,

whose number is no smaller than k. We then find that C2

can serve as the destination cluster, as it is the first cluster

among the sorted ones that have less than n− k = 3 chunks.

We choose a destination node in C2 that does not store any

chunk of the failed stripe before repair. Finally, we select six

chunks (marked in dashed lines) from the first three clusters,

aggregate the selected chunks for each cluster, and transmit

the aggregated chunks to the destination node in C2. Thus, we

only transmit two chunks across clusters for repair.

Discussion: Algorithm 1 is designed to capture one of the

repair solutions that can attain the least cross-cluster repair

traffic for a failed stripe. For example, in Figure 4, we can

change the destination cluster to be C3, and selectively read

six chunks from {C1, C2, C3}. This repair solution also only

needs to transmit two chunks across clusters after aggregation
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Fig. 4. A repair solution with the least repair traffic for RS(9, 6).

(from C1 and C2 to C3). Therefore, we say a repair solution

is valid for a failed stripe if it can repair the failed chunk

with the least cross-cluster repair traffic [32]. All valid repair

solutions of a stripe will be considered when trying to balance

the cross-cluster repair traffic (Section IV-B).

Optimality: We now prove that the repair solution found by

Algorithm 1 incurs the least cross-cluster repair traffic for

RS(n, k), without violating the cluster-level fault tolerance.

We first show that the repair must access at least v clusters

for reading sufficient data (as proved in CAR [32]). Therefore,

the selection of C∗ directly determines the cross-cluster repair

traffic. There are two possibilities in selecting C∗. If each C ′
i

in {C ′
1, C

′
2, · · · , C ′

v} has exactly n−k surviving chunks of the

failed stripe, then C∗ /∈ {C ′
1, C

′
2, · · · , C ′

v} and the minimum

number of chunks transmitted across clusters is v. Otherwise,

C∗ will store more than n− k chunks of the failed stripe after

repair, thereby breaking the cluster-level fault tolerance.

On the other hand, if some cluster Ci in {C ′
1, C

′
2, · · · , C ′

v}
stores less than n−k surviving chunks of the failed stripe, then

we have C∗ ∈ {C ′
1, C

′
2, · · · , C ′

v}. In this case, each Ci (where

1 ≤ i �= d ≤ v) will send an aggregated chunk to C∗ and hence

the number of chunks transmitted across clusters is v − 1. We

can prove that v − 1 is the minimum value via contradiction.

We assume that C∗ can repair the failed chunk by reading

chunks from another v′ clusters (where v′ < v − 1). That is

to say, we can find v′ + 1 < v clusters (i.e., the v′ clusters

plus C∗) for retrieving k surviving chunks. This violates the

condition that v is the smallest number of clusters that have

sufficient surviving chunks for repair.

Extension: Though Algorithm 1 mainly focuses on RS codes,

it can be effortlessly tuned for LRCs and regenerating codes

(Section II-C). Due to page limits, we only use LRCs as

an instance. For LRCs, to repair a chunk by using the

corresponding local parity chunk, we can sort the clusters

based on the number of surviving chunks of the local group

where the failed chunk resides, and choose the fewest v clusters

that have enough surviving chunks for repair. When selecting

the destination cluster C∗ in LRCs, one should ensure that C∗’s

failure is still an information-theoretically decodable pattern

[15] after repair (i.e., the remaining parity chunks that can take

effect in repair are no less than the failed chunks), such that

the cluster-level fault tolerance is still preserved after repair.

B. Balancing Cross-Cluster Repair Traffic

After establishing the repair solution with minimized cross-

cluster repair traffic for each failed stripe, we next consider the

balancing of cross-cluster upload and download traffics in the

Algorithm 2 Balancing Cross-Cluster Repair Traffic

Input: U (The residual chunks ), r (number of chunks repaired in a
repair round), and t (number of steps)

Output: Chunks to be repaired in each repair round

1: function REPAIR(U )
2: // Initialize a set of chunks to be repaired
3: Set R ⊂ U
4: Construct S = {S1,S2, · · · ,S|R|} for R
5: // Balance the cross-cluster repair traffic
6: while true do
7: if SUBSTITUTE(R, S) equals False then
8: SWAP(R, S, U )
9: end if

10: Set t = t− 1
11: if t = 0 then
12: break
13: end if
14: end while
15: Set U = U −R
16: return (R, S, U )
17: end function
18: procedure MAIN(U )
19: Initialize e = 0
20: while U �= φ do
21: Set e = e+ 1
22: (Re, Se, U ) = REPAIR(U )
23: end while
24: return {(R1, S1), · · · , (Re, Se)}
25: end procedure

repair of multiple chunks. For easy manipulation, we propose

to partition the repair into multiple repair rounds that are

iteratively performed, where each repair round will selectively

repair a constant number of chunks (denoted by r). We then

design Algorithm 2, Algorithm 3, and Algorithm 4, whose

objectives are to seek a combination of r failed chunks as well

as their repair solutions, such that the induced cross-cluster

upload and download traffics in this repair round are balanced

across clusters. Algorithm 2 is the main algorithm, whose main

idea is to iteratively mitigate the cross-cluster traffic on the

most loaded cluster via substituting the selected repair solutions

with its alternatives and swapping the chunks to be repaired

in a repair round. Algorithm 3 and Algorithm 4 elaborate the

substitution and swapping procedures, respectively.

Details of Algorithms 2: Algorithm 2 presents the main idea

of balancing the cross-cluster upload and download traffics.

Let U denote the residual chunks to be repaired and R be the

chunks selected to be repaired in a repair round.

Algorithm 2 finds the chunks to be repaired in a repair round

via calling the REPAIR procedure (Lines 1-17). In each repair

round, we first randomly select chunks from U and construct

an initial set of chunks (denoted by R) to be repaired (Line 3).

We use the symbol |R| to represent the number of chunks in

R. Therefore, |R| is always equal to r except the final repair

round. For each chunk Hi ∈ R, we then generate a valid

repair solution Si to repair Hi (where 1 ≤ i ≤ |R|) and get a

multi-stripe repair solution S (Line 4). To balance the repair

traffic, we give priority to calling the SUBSTITUTE function
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Algorithm 3 Substitute Function

1: function SUBSTITUTE(R, S)
2: Derive u and d from S

3: if d > u then
4: Get Cx, where dx = d
5: for each solution Si ∈ S do
6: if Si performs repair in Cx then
7: Find S ′

i by substituting Cx in Si with another
destination cluster

8: Set Si = S− Si ∪ S ′
i , and get di from Si

9: end if
10: end for
11: Set i∗ = argmini{di}
12: if di∗ < d then
13: Set S = S− Si∗ ∪ S ′

i∗
14: return True
15: else
16: return False
17: end if
18: else
19: Get Cx, where ux = u
20: for each solution Si ∈ S do
21: if Si reads data from Cx then
22: Find S ′

i by substituting Cx in Si with another
cluster for reading data

23: Set Si = Si − Si ∪ S ′
i , and get ui from Si

24: end if
25: end for
26: Set i∗ = argmini{ui}
27: if ui∗ < u then
28: Set S = S− Si∗ ∪ S ′

i∗
29: return True
30: else
31: return False
32: end if
33: end if
34: end function

(Algorithm 3), which seeks to mitigate the traffic on the most

loaded cluster through substituting a repair solution in S with

another valid one. If the SUBSTITUTE function cannot take

effect, then we resort to the SWAP function (Algorithm 4),

which tries to swap a chunk in R with another chunk in U to

look for traffic reduction on the most loaded cluster (Lines 7-9).

We repeat the balancing trial for t times (Lines 10-13), and

finally obtain a set of chunks selected to be repaired in this

repair round as well as their repair solutions. We then update

U by evicting the chunks that are selected in R (Line 15).

In the MAIN procedure (Lines 18-25), we repeatedly call

the REPAIR function until all the chunks in U have been

successfully scheduled for being repaired (Lines 19-23). Finally,

we return the chunks to be repaired as well as the corresponding

valid repair solutions in each repair round, where e is the

number of repair rounds to be performed (Line 24).

Details of Algorithms 3: Algorithm 3 presents the detailed

procedures of the SUBSTITUTE function. Given the multi-

stripe repair solution S, we can get the cross-cluster upload

traffics loaded over the l clusters, denoted by {u1, u2, · · · , ul}.
Therefore, the most cross-cluster upload traffic among the l
cluster is u = max{ui|1 ≤ i ≤ l}. Similarly, we can derive

(a) Before substitution. (b) After substitution.

Fig. 5. Example of substitution. By substituting the repair solution of H2,
we can reduce the most cross-cluster download traffic.

the most cross-cluster download traffic over the l clusters,

denoted by d (Line 2). If d > u, then the repair procedure is

bottlenecked by the cross-cluster download traffic, which should

be given priority in traffic balancing. We first pinpoint the

cluster Cx that affords the most cross-cluster download traffic

(Line 4), and locate every repair solution Si ∈ S, satisfying that

Si chooses Cx as the destination cluster. We then seek to find

another valid repair solution S ′
i by substituting Cx in Si with

another destination cluster (Line 7). By substituting Si with

S ′
i, we can generate a new multi-stripe repair solution Si, and

get its most cross-cluster download traffic (termed di) (Line 8).

Because S ′
i is also a valid repair solution, Si introduces the

least cross-cluster repair traffic as well, implying that a smaller

di results in more balanced cross-cluster download traffic. We

finally select the substitution that can produce the most balanced

cross-cluster download traffic (Lines 11-14). If the substitution

cannot further balance the cross-cluster download traffic, then

the function returns false (Lines 15-16).

Balancing the cross-cluster upload traffic is similar (Lines 18-

33), except that we will substitute the cluster that affords

the most cross-cluster upload traffic with another cluster for

reading data (Line 22). Finally, we will perform the substitution

that introduces the most balanced cross-cluster upload traffic

(Lines 26-29).

Example: Figure 5 depicts a substitution example. Figure 5(a)

first shows the initial repair solutions of two chunks (namely

H1 and H2). We can observe that C1 and C2 both afford the

most cross-cluster upload traffic and need to send two chunks

across clusters (i.e., u = 2), while C4 receives the most chunks

across clusters (i.e., d = 5). Therefore, the repair procedure

is bottlenecked by the cross-cluster download traffic over C4.

To balance the cross-cluster download traffic, we select C1 to

serve as the destination cluster of H2 in Figure 5(b), and hence

the most cross-cluster download traffic of the new multi-stripe

repair solution is reduced to three chunks after substitution.

Details of Algorithms 4: Algorithm 4 further elaborates the

procedures of the SWAP function. Given a multi-stripe repair

solution S, we use u and d to denote the most cross-cluster

upload and download traffics over the l clusters, respectively

(Line 2). If the repair is bottlenecked by the cross-cluster

download traffic, then we can pinpoint the cluster Cx, which

affords the most cross-cluster download traffic. We randomly

choose a chunk Hi ∈ R for being swapped, satisfying that

the repair solution of Hi chooses Cx as the destination cluster

(Lines 4-6). Similarly, if the repair is bottlenecked by the cross-
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Algorithm 4 Swap Function

1: function SWAP(R, S, U )
2: Derive u and d from S

3: // Find a chunk to be swapped
4: if d > u then
5: Get Cx, where dx = d
6: Find Si ∈ S where Si selects Cx as the destination cluster
7: else
8: Get Cx, where ux = u
9: Find Si ∈ S where Si reads data from Cx for repair

10: end if
11: // Find a chunk from U and its repair solution
12: for each chunk Hj ∈ U do
13: Find Sj for Hj

14: Set Sj = S− Si ∪ Sj

15: Get uj and dj from Sj

16: if uj ≥ u then
17: continue
18: end if
19: end for
20: Set j∗ = argminj{dj}
21: Set R = R−Hi ∪Hj∗
22: Set U = U −Hj∗ ∪Hi

23: Set S = S− Si ∪ Sj∗
24: end function

(a) Before swapping. (b) After swapping.

Fig. 6. Example of swapping. By swapping H2 with H3, we can further
balance the cross-cluster download traffic in this repair round.

cluster upload traffic, then we turn to select the chunk that reads

data from Cx for repair (Lines 8-9). We then consider each

chunk Hj ∈ U for being swapped and measure the resulting

cross-cluster upload and download traffics when temporarily

swapping Hi ∈ R with Hj . We select the chunk Hj∗ ∈ U ,

such that swapping Hi ∈ R with Hj∗ can reach the most

balanced cross-cluster download traffic among all possible trials,

while also producing more balanced cross-cluster upload traffic

(Lines 12-20). We swap Hi ∈ R and Hj∗ ∈ U and update the

corresponding multi-stripe repair solution S (Lines 21-23).

Example: Figure 6 gives a swap example based on Figure 5.

To further balance the cross-cluster download traffic, we swap

H2 with another chunk H3 ∈ U , such that the most cross-

cluster download traffic among the four clusters reduces from

three chunks (Figure 6(a)) to two chunks (Figure 6(b)). The

chunk H2 will be re-organized in U and scheduled in next

repair rounds.

C. Complexity Analysis

Suppose that l is the number of clusters and r is the number

of chunks repaired in a repair round. The complexity of

Algorithm 1 is O(l log l). The complexity of Algorithm 3

is O(rl). Let f be the total number of chunks to be repaired,

Fig. 7. System architecture of ClusterSR.

then the complexity of Algorithm 4 is O(fl log l). Algorithm 2

calls the SUBSTITUTE and SWAP functions for at most t times

in each repair round, therefore the complexity of Algorithm 2

is O(etfl log l), where e is the number of repair rounds.

V. IMPLEMENTATION

We have implemented a ClusterSR prototype in C++ with

around 2,700 lines of code. We use Jerasure v.1.2 [26] to

realize the encoding and decoding functionalities.

System architecture: Figure 7 presents the system architecture

of the ClusterSR prototype. In particular, the ClusterSR
prototype comprises a global coordinator, a proxy for every

cluster, and an agent per storage node. The coordinator keeps

track of the metadata information for each chunk, including

the storage node that each chunk resides and the stripe identity

that each chunk is organized into. When detecting a node

failure, the coordinator first identifies the stripes that have the

failed chunks and constructs repair solutions. It then issues

the commands to the proxies and agents for instructing the

repair procedure (step � in Figure 7). Upon receiving the

commands, the agent will read the requested chunk from local

storage and send it to the corresponding proxy within the same

cluster (step �). For each stripe, the proxy will aggregate the

chunks received from the storage nodes within the same cluster,

and send the resulting chunk to the destination node that is

responsible for repairing the failed chunk (step �). After all

the chunks have been successfully repaired, the agents return

acknowledgements to the coordinator.

Multi-threading: To improve the repair efficacy, we partition

a chunk into many small fixed-size packets and use multi-

threading to realize the repair pipelining as follows. For the

agent that is to send data for repair, we create two threads,

with one thread continually reads packets from the local

storage and the other sends the packets. The proxy also creates

multiple threads to receive packets, aggregate them, and send

the resulting packets to the agent for final repair. If an agent

is responsible for repairing the failed chunk, it will generate

multiple threads to receive packets from the proxies, perform

repair, and write each repaired packet to the local storage.

Integration with HDFS: Our ClusterSR prototype can be

effortlessly integrated into state-of-the-art distributed storage

systems. Here, we show how ClusterSR can assist the data
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repair in HDFS 1. Specially, HDFS comprises a NameNode

(for metadata management) and multiple DataNodes (for data

storage). Therefore, we can deploy the coordinator in the

NameNode, and run the agents in the DataNodes. Besides,

we deploy a proxy in a DataNode for each cluster. The coor-

dinator executes the command “hdfs fsck / -files -blocks

-locations” in the NameNode to learn the location and stripe

identity of each chunk. It then establishes the repair solutions

for the failed chunks and guides the repair procedure by

sending the commands to the involved proxies and agents.

The integration needs no modification to the HDFS codebase.

VI. PERFORMANCE EVALUATION

We carry out extensive performance evaluation, in terms

of large-scale simulation and testbed experiments on Alibaba

Cloud ECS. We expect to answer the following questions.

• Is ClusterSR effective on balancing the cross-cluster

upload and download traffics for repair? (Experiment A.1)

• How sensitive ClusterSR is when any configuration

varies? (Experiment A.2 & Experiment B.1-B.3)

• How much cross-cluster repair traffic can be reduced by

ClusterSR? (Experiment A.2)

• How much computation time ClusterSR needs to establish

the repair solution? (Experiment B.4)

A. Large-Scale Simulation

We first conduct simulations to unveil the performance of

ClusterSR in large-scale storage clusters. We remove the

storage and network I/O operations in our prototype, and

evaluate the load balancing rate and the cross-cluster repair

traffic.

We compare ClusterSR with another two repair approaches,

namely random repair (RR) and cross-rack-aware repair (CAR)

[32]. RR randomly retrieves k out of the (n − 1) surviving

chunks for repair without concerning the clusters they reside.

Therefore, RR can be treated as a baseline repair approach

as it considers neither the reduction nor the balancing of the

cross-cluster repair traffic. For fair comparison, we also allow

RR to aggregate the requested chunks within the same cluster

before cross-cluster transmission. CAR is originally designed

to minimize the cross-cluster repair traffic in dedicated repair

(i.e., storing all the repaired chunks in a dedicated node),

but it only balances cross-cluster upload traffic. To compare

ClusterSR with CAR fairly, we extend CAR to scattered repair

by randomly choosing a node to store the repaired chunk.

We adopt the following default configurations. We set the

chunk size as 64 MB and generate 10,000 stripes that are

encoded via RS(9,6) (also deployed in Quantcast File System

[24]). These encoded stripes are then dispersed across five

clusters with 100 nodes (i.e., 20 nodes per cluster), while

promising the cluster-level fault tolerance. We repair 5 × l
chunks in each repair round, where l is the number of clusters.

For both CAR and ClusterSR, we set the iteration steps as

1In HDFS each data chunk is stored along with its metadata chunk. In this
integration, we mainly focus on the repair of the data chunk.
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Fig. 8. Experiment A.1: load balancing test. The smaller value is better.

50 to balance the cross-cluster repair traffic. We repeat each

test for 10 runs and show the average values, as well as the

maximum and minimum values in the figures (some may be

invisible as the values are small).

Experiment A.1 (Load balancing test): We first evaluate

the load balancing rate (defined in Section III-C) in this test.

Figure 8 shows the results when the numbers of nodes and

clusters vary. We can derive two observations. First, ClusterSR
has significant effect on balancing the cross-cluster upload and

download traffics. In particular, the average load balancing

rate of ClusterSR across all the test is 1.04, which closely

approaches to the optimum value (i.e., 1). As a comparison, the

average load balancing rates of RR and CAR are 1.63 and 1.62,

respectively. We can observe that because of the negligence

on the cross-cluster download traffic, even though CAR can

well balance the cross-cluster upload traffic, it still has almost

the same load balancing rate as RR, a repair approach that

does not perform any load balancing operation at all. Second,

the load balancing rate of ClusterSR is much more stable

than the other two approaches, implying that ClusterSR can

still work well under different chunk distributions and system

architectures.

Experiment A.2 (Sensitivity test): In the sensitivity test, we

vary one configuration while keeping other default configura-

tions unchanged. We measure the average repair traffic (in unit

of MBs) to be transferred across clusters for repairing a lost

chunk. Figure 9 shows the results. First, ClusterSR incurs the

least cross-cluster repair among the three repair approaches

when the number of nodes (Figure 9(a)), the number of clusters

(Figure 9(b)), the deployed erasure code (Figure 9(c)), and the

number of chunks repaired in each round (Figure 9(d)) change.

Specifically, ClusterSR can reduce 6.7%-12.8% and 28.0%-

52.7% of the cross-cluster repair traffic when compared to CAR
and RR, respectively. Second, we can notice that the cross-

cluster repair traffic significantly increases with the number of

clusters (Figure 9(b)). This is because when a clustered storage

system has more clusters, each cluster will store fewer chunks

of a stripe, such that the system has to access more clusters to

collect enough surviving chunks for repair.

B. Testbed Experiments

We further evaluate ClusterSR on Alibaba Cloud ECS [1]

to study its performance in real-world cloud environment. We

set up 21 virtual machine instances of type ecs.g6.large

in East China region (Hangzhou Zone H). Each instance is

equipped with 2 vCPUs (2.5 GHz Intel Xeon Platinum), 8GB
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Fig. 9. Experiment A.2: sensitivity test. The smaller value is better.

memory, and 40 GB ultra-disk space. The operating system is

Ubuntu 14.04 and the network bandwidth that each instance

can achieve is around 3 Gb/s (measured by iperf).

Among the 21 instances, we deploy the ClusterSR coordi-

nator on one instance and organize the remaining 20 instances

into four clusters (i.e., five instances per cluster). For each

cluster, we run the ClusterSR agents on four instances and

deploy the ClusterSR proxy on the last instance. To mimic the

network bandwidth diversity, we use the Linux traffic control

tool tc to throttle the network bandwidth among proxies.

We use the following default configurations. We use RS(9, 6)

as the default erasure code, and set the chunk size and

packet size as 64 MB and 4 MB, respectively. The cross-cluster

bandwidth is set as 0.15 Gb/s. We then generate the stripes and

randomly distribute their chunks across the cluster. We repair

100 chunks in total by performing five repair rounds, where

each repair round repairs 20 chunks. We measure the overall

duration starting from the time when the coordinator detects

a node failure until the time when all the lost chunks are all

repaired. We then calculate the repair throughput (i.e., the size

of data that can be repaired per second) via dividing the size

of the repaired data by the duration time. We repeat each test

for five runs and plot the average result as well as the error

bars showing the maximum and the minimum in the test.

Experiment B.1 (Impact of the cross-cluster bandwidth):
We first measure the repair throughput when the cross-cluster

bandwidth is varied as 0.1 Gb/s, 0.15 Gb/s, and 0.3 Gb/s.

Figure 10(a) shows the results. We can derive the following

findings. First, ClusterSR can improve the repair throughput by

15.2-34.3% and 35.4-48.6% when compared with CAR and RR,

respectively. This is because ClusterSR can both minimize

and balance the cross-cluster upload and download traffics

for repair. Second, the repair throughput increases with the

cross-cluster bandwidth, demonstrating that the repair process

is seriously restricted by the scarce cross-cluster bandwidth.

This observation reveals the necessity of minimizing the cross-

cluster repair traffic.

Experiment B.2 (Impact of different erasure codes): We

next study how erasure coding affects the repair throughput. We
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Fig. 10. Experiments on Alibaba Cloud ECS.

select RS(6, 4), RS(9, 6), and RS(11, 8), and measure the repair

throughput for different erasure codes. Figure 10(b) shows

the results. The repair throughput of all the three approaches

decreases when the value k becomes large. For example, the

repair throughput of ClusterSR decreases from 19.6 MB/s

(when k = 4) to 14.7 MB/s (when k = 8). This is generally

because when k increases, we have to retrieve more chunks

for repair, thereby adding more computation and network

transmission latencies. Second, ClusterSR can accelerate the

repair process by 26.6-42.1% and 47.8-68.8% when compared

with CAR and RR, respectively.

Experiment B.3 (Impact of the chunk size): We further

evaluate the repair throughput under different chunk sizes,

which are varied from 32 MB to 128 MB. Figure 10(c) shows

the results. We can observe that the repair throughput is stable

when the chunk size changes. Overall, ClusterSR improves

the repair throughput by 14.4-18.7% and 31.8-47.9% when

compared with CAR and RR, respectively.

Experiment B.4 (Computation time): We finally use one

instance to measure the computation time for ClusterSR to

establish the repair solutions. We generate 200,000 stripes

encoded by RS(9, 6) and randomly distribute them in a cluster

constructed by 100 nodes with five clusters. We suppose to

repair 50 chunks in a repair round and vary the total number

of chunks to be repaired. Figure 10(d) shows the results.

ClusterSR is extremely efficient to derive the repair so-

lutions for repairing a large number of failed chunks. For

example, it merely needs about 0.65 seconds to obtain the

repair solutions for repairing 5,000 chunks. As ClusterSR
only incurs extremely lightweight computation overhead, it is

qualified to be deployed in the online repair scenario.

VII. RELATED WORK

Repair-efficient codes. Some repair-efficient codes are de-

signed to suppress the repair traffic. LRCs [15], [29] associate

a subset of data chunks of a stripe with a local parity chunk,

thereby trading additional storage for reduced repair traffic.

Regenerating codes [8], [25] employ the subpacketization

technique and allow surviving nodes to send the subchunks
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calculated from the locally stored data. As an independent study,

ClusterSR can work for different erasure codes to achieve

fast repair in clustered storage.

Repair scheduling. Some studies propose to schedule the

repair by fully utilizing the available bandwidth. PPR [20]

decomposes a repair operation into partial repair sub-operations

that are parallelized across multiple nodes. CAR [32] minimizes

the cross-cluster repair traffic in data centers by accessing the

minimum number of clusters in each chunk’s repair. ECPipe

[18] partitions a chunk into small-size slices and pipelines

the repair of slices across nodes to achieve O(1) repair

time. DoubleR [14] performs both intra-cluster and cross-

cluster regenerations to minimize the cross-cluster repair traffic

in hierarchical data centers. These studies mainly focus on

dedicated repair, while ClusterSR aims to balance the cross-

cluster upload and download traffics in scattered repair.

Parity declustering. Parity declustering [12], [21] distributes

stripes across different nodes, with the aim of exploiting the

available resources of the entire system in repair. One similar

approach is applied in RAMCloud [23], a replication-based

storage system that scatters the replicas across the system

for fast repair. FastPR [31] couples migration and repair to

fully leverage the I/O of the soon-to-fail node and parallelize

the repair across the whole storage cluster. As a comparison,

ClusterSR focuses on the scattered repair in the cluster storage

with bandwidth diversity phenomenon.

VIII. CONCLUSION

We consider the scattered repair in clustered storage and

propose ClusterSR, a cluster-aware scattered repair approach.

By carefully examining the data distribution, ClusterSR first

finds the valid repair solutions that achieve the least cross-

cluster repair traffic for each failed chunk. ClusterSR then

constructs multi-stripe repair solutions to further balance the

cross-cluster upload and download traffics for repair. We

evaluate ClusterSR via both large-scale simulation and Alibaba

Cloud ECS experiments, and demonstrate that ClusterSR can

well suppress and balance the induced cross-cluster repair

traffic, and hence improve the repair throughput.
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