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Correlation-Aware Stripe Organization for
Efficient Writes in Erasure-Coded Storage:

Algorithms and Evaluation
Zhirong Shen, Patrick P. C. Lee, Jiwu Shu, and Wenzhong Guo

Abstract—Erasure coding has been extensively employed for data availability protection in production storage systems by maintaining a
low degree of data redundancy. However, how to mitigate the parity update overhead of partial stripe writes in erasure-coded storage
systems is still a critical concern. In this paper, we study this problem from two new perspectives: data correlation and stripe organization.
We propose CASO, a correlation-aware stripe organization algorithm, which captures data correlation of a data access stream and uses
the data correlation characteristics for stripe organization. It packs correlated data into a small number of stripes to reduce the incurred
I/Os in partial stripe writes, and further organizes uncorrelated data into stripes to leverage the spatial locality in later access. We
implement CASO over Reed-Solomon codes and Azure’s Local Reconstruction Codes, and show via extensive trace-driven evaluation
that CASO reduces up to 29.8% of parity updates and reduces the write time by up to 46.7%.

F

1 INTRODUCTION

Today’s distributed storage systems continuously expand in
scale to cope with the ever-increasing volume of data storage.
In the meantime, failures also become more prevalent due to
various reasons, such as disk crashes, sector errors, or server
outages [7], [22], [27]. To achieve data availability, keeping
additional redundancy in data storage is a commonly used
approach to enable data recovery once failures occur. Two
representatives of redundancy mechanisms are replication
and erasure coding. Replication distributes identical replicas
of each data copy across storage devices, yet it significantly
incurs substantial storage overhead, especially in the face
of massive amounts of data being handled nowadays. On
the other hand, erasure coding introduces much less storage
redundancy via encoding computations, while reaching the
same degree of fault tolerance as replication [36]. At a high
level, erasure coding performs encoding by taking a group
of original pieces of information (called data chunks) as
input and generating a small number of redundant pieces
of information (called parity chunks), such that if any data
or parity chunk fails, we can still use a subset of available
chunks to recover the lost chunk. The collection of data
and parity chunks that are encoded together forms a stripe,
and a storage system stores multiple stripes of data and
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parity chunks for large-scale storage. Because of the high
storage efficiency and reliability, erasure coding has been
widely deployed in current production storage systems,
such as Windows Azure Storage [8] and Facebook’s Hadoop
Distributed File System [26].

However, while providing fault tolerance with low re-
dundancy, erasure coding introduces additional performance
overhead as it needs to maintain the consistency of parity
chunks to ensure the correctness of data reconstruction.
One typical operation is partial stripe writes [4], in which
a subset of data chunks of a stripe are updated. In this
case, the parity chunks of the same stripe also need to be
renewed accordingly for consistency. In storage workloads
that are dominated by small writes [3], [32], partial stripe
writes will trigger frequent accesses and updates to parity
chunks, thereby amplifying I/O overhead and extending
the time of write operation. Partial stripe writes also raise
concerns for system reliability, as different kinds of failures
(e.g., system crashes and network failures) may occur during
parity renewals and finally result in the incorrectness of data
recovery. Thus, making partial stripe writes efficient is critical
for improving not only performance, but also reliability, in
erasure-coded storage systems.

Our insight is that we can exploit data correlation [14]
to improve the performance of partial stripe writes. Data
chunks in a storage system are said to be correlated if they
have similar semantic or access characteristics. In particular,
correlated data chunks tend to be accessed within a short
period of time with large probability [14]. By extracting data
correlations from an accessed stream of data chunks, we
can organize correlated data chunks (which are likely to be
accessed simultaneously) into the same stripe, so as to reduce
the number of parity chunks that need to be updated.

To this end, we propose CASO, a correlation-aware stripe
organization algorithm. CASO carefully identifies correlated
data chunks by examining the access characteristics of an
access stream. It then accordingly classifies data chunks
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into either correlated or uncorrelated data chunks. For
correlated data chunks, CASO constructs a correlation graph
to evaluate their degrees of correlation and formulates
the stripe organization as a graph partition problem. For
uncorrelated data chunks, CASO arranges them into stripes
by leveraging the spatial locality in future access.

CASO is applicable for general erasure codes, such as the
classical Reed-Solomon (RS) codes [25], XOR-based codes [5],
[9], [30], [37], [38], [40], and Azure’s Local Reconstruction
Codes (LRC) [8]. In addition, CASO complements previous
approaches that optimize the performance of partial stripe
writes at coding level [30], [32], [38] or system level [3], [10],
and can be deployed on top of these approaches for further
performance gains. To the best of our knowledge, CASO is
the first work to exploit data correlation from real system
workloads to facilitate stripe organization in erasure-coded
storage, so as to mitigate the parity update overhead of
partial stripe writes.

In summary, we make the following contributions.
• We carefully examine existing studies on optimizing partial

stripe writes and identify the remaining open issues.
• We propose CASO to leverage data correlation in stripe

organization for erasure-coded storage systems.
• We implement CASO over RS codes and Azure’s LRC

with different configurations and conduct extensive trace-
driven testbed experiments. We show that CASO reduces
up to 29.8% of parity updates and up to 46.7% of the
average write time compared to the baseline stripe orga-
nization technique. Also, we show that CASO preserves
the performance of degraded reads [11], which are critical
recovery operations in erasure-coded storage. Furthermore,
we show that CASO introduces only slight additional time
overhead in stripe organization.

The source code of CASO is now available at
http://adslab.cse.cuhk.edu.hk/software/caso.

The rest of this paper proceeds as follows. Section 2
presents the basics of erasure coding and reviews related
work. Section 3 motivates our problem. Section 4 presents
the detailed design of CASO. Section 5 evaluates CASO using
trace-driven testbed experiments. Section 6 concludes the
paper. In the digital supplementary file, we also present the
complexity analysis, the addressing issue of the trace replay
in our experiments, and the future work.

2 BACKGROUND AND RELATED WORK

2.1 Basics of Erasure Coding

We first elaborate the background details of erasure coding
following our discussion in Section 1. An erasure code
is typically constructed by two configurable parameters,
namely k and m. A (k,m) erasure code transforms the
original data into k equal-size pieces of data information
called data chunks and produces additional m equal-size
pieces of redundant information called parity chunks, such
that these k +m data and parity chunks collectively form
a stripe. A storage system comprises multiple stripes, each
of which is independently encoded and distributed across
k +m storage devices (e.g., nodes or disks). We say that a
(k,m) code is Maximum Distance Separable (MDS) if it ensures
that any k out of k +m chunks of a stripe can sufficiently

Data Chunks Parity Chunks

D1 D2 D3 D4 D5 D6 P1 P2 P3

Fig. 1. Encoding of RS(6, 3) for a stripe, in which there are six data
chunks and three parity chunks. If one of the data or parity chunks is lost,
any six surviving chunks within the stripe can be used to reconstruct the
lost chunk. Each line connects a parity chunk and its dependent data
chunks in the encoding operation. For example, the first line connects
the parity chunk P1 with all six data chunks, meaning that P1 is formed
by the encoding of all the six data chunks.

Data Chunks Global Parity Chunks

D1 D2 D3 D4 D5 D6 P1 P2 P3

L1 L2
Local Parity Chunks

Fig. 2. Encoding of LRC(6, 2, 3) for a stripe, in which there are six data
chunks, two local parity chunks, and three global parity chunks. If one of
the data chunks is corrupted, LRC can read the three surviving chunks
within the same local group for data reconstruction.

reconstruct the original k data chunks, while incurring the
minimum amount of storage redundancy among all possible
erasure code constructions; that is, it can tolerate any loss of
at most m chunks with optimal storage efficiency.

Reed-Solomon (RS) codes [25] are one well-known family
of MDS erasure codes that perform encoding operations
based on Galois Field arithmetic [24]. RS codes support
general parameters of k and m, and have been widely
deployed in production storage systems, such as Google
[7] and Facebook [2]. In this paper, we denote the RS codes
configured by the parameters k and m as RS(k,m). Figure 1
illustrates a stripe of RS(6, 3), in which there are six data
chunks (i.e., D1 ∼ D6) and three parity chunks (i.e., P1, P2,
and P3).

XOR-based codes are a special family of MDS codes that
perform encoding using XOR operations only. Examples of
XOR-based codes include RDP Code [5], X-Code [40], STAR
Code [9], HDP Code [37], H-Code [38], and HV-Code [30].
XOR-based codes have higher computational efficiency than
RS codes, but they often put restrictions on the parameters k
and m. For example, RDP Code and X-Code require m = 2
and can only tolerate double chunk failures. XOR-based
codes are usually used in local storage systems, such as EMC
Symmetrix DMX [20] and NetApp RAID-DP [16].

Some recent studies (e.g., [8], [26]) focus on non-MDS
codes that trade slight additional storage redundancy for
repair efficiency. Local Reconstruction Codes (LRC) [8] are
one representative family of non-MDS codes deployed in
Microsoft Azure. LRC keeps two types of parity chunks.
In addition to the m parity chunks (called the global parity
chunks in LRC) derived from the k data chunks, LRC further
divides the k data chunks of a stripe into l local groups
and maintains a parity chunk (called a local parity chunk) for
each local group. By collectively keeping these two types of
parity chunks, LRC is shown to significantly reduce I/Os in
failure repair operations. In this paper, we denote the LRC
configured by the parameters k, l, and m as LRC(k, l,m).
Figure 2 presents a stripe of LRC(6, 2, 3), in which the six
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data chunks will be partitioned into two local groups (i.e.,
{D1, D2, D3} and {D4, D5, D6}). Each local group generates
a local parity chunk (i.e., L1 and L2 for the first and second
local groups, respectively), and a stripe will maintain another
three global parity chunks (i.e., P1, P2, and P3). Suppose that
the data chunk D1 is corrupted. LRC(6, 2, 3) can simply read
the surviving three chunks (i.e., D2, D3, and L1) from the
first local group to repair D1, thereby causing less repair
traffic than the RS code in Figure 1. Our work is applicable
for RS codes, XOR-based codes, and Azure’s LRC.

2.2 Partial Stripe Writes

Maintaining consistency between data and parity chunks
is necessary during writes. Writes in erasure-coded storage
systems can be classified into full stripe writes and partial
stripe writes according to the write size. A full stripe write
updates all data chunks of a stripe, so it generates all parity
chunks from the new data chunks and overwrites the entire
stripe in a single write operation. In contrast, a partial stripe
write only updates a subset of data chunks of a stripe, and
it must read existing chunks of a stripe from storage to
compute the new parity chunks. Depending on the write
size, partial stripe writes can be further classified into read-
modify-writes for small writes and reconstruct-writes for large
writes [35]. Since small writes dominate in real-world storage
workloads [3], [32], we focus on read-modify-write mode,
which performs the following steps when new data chunks
are written: (i) reads both existing data chunks and existing
parity chunks to be updated, (ii) computes the new parity
chunks from the existing data chunks, new data chunks, and
existing parity chunks via the linear algebra of erasure codes
[3], and (iii) writes all the new data chunks and new parity
chunks to storage. Clearly, the parity updates incur extra I/O
overhead.

Extensive studies in the literature propose to mitigate
parity update overhead. For example, H-Code [38] and HV
Code [30] are new erasure code constructions that associate
sequential data with the same parity information, so as to
favor sequential access. Shen et al. [32] develop a new data
placement that attempts to arrange sequential data with
the same parity information for any given XOR-based code.
Some approaches are based on parity logging [3], [10], which
store parity deltas instead of updating parity chunks in place,
so as to avoid reading existing parity chunks as in original
read-modify-write mode.

2.3 Open Issues

When we examine existing studies on optimizing partial
stripe writes, there remain two limitations.

Negligence of data correlation. Data correlation exists in
real-world storage workloads [14]. Existing studies do not
consider data correlation in erasure-coded storage systems,
so they cannot fully mitigate parity update overhead. Specif-
ically, if correlated data chunks are dispersed across many
different stripes, then a write operation to those chunks
will update all the parity chunks in multiple stripes. Note
that some studies [30], [32], [38] favor sequential access, yet
correlated data chunks may not necessarily be sequentially
placed. Previous studies [6], [14], [34] exploit data correlation

mainly to improve pre-fetching performance, but how to use
this property to mitigate parity update overhead remains an
open issue.

Absence of an optimization technique for RS codes and
LRC. Existing studies mainly focus on optimizing partial
stripe writes for XOR-based codes [30], [32], [38]. Neverthe-
less, XOR-based codes often put specific restrictions on the
coding parameters, while today’s production storage systems
often deploy RS codes or LRC for general fault tolerance (see
Section 2.1). Thus, optimizing partial stripe writes for RS
codes and LRC is still an imperative need.

3 MOTIVATION

Many storage systems [13], [39] first keep new data in
replication form and then encode the data after a period of
time to maintain high storage efficiency. Since the popularity
of the data being accessed tends to be stable in long term
(e.g., hours or days) [17], we propose to capture the access
correlations when the data is stored in replication form and
improve the write efficiency when the data is later encoded
by organizing the correlated data in the same stripe. Thus,
for the applications with stationary access patterns, our
proposed stripe organization remains effective in the long
run. We pose the following question: Given an access stream,
how can we organize the data chunks into stripes based on data
correlation, so as to optimize partial stripe writes? In this section,
we motivate our problem via trace analysis and an example.

3.1 Trace Analysis

We infer data correlation by a black-box approach, which
finds correlated data chunks through analyzing a data access
stream without requiring any modification to the underlying
storage system [14]. We use two parameters to identify data
correlation: time distance and access threshold. We say that
two data chunks are correlated if the number of times when they
are accessed within a specific time distance reaches a given access
threshold.

To validate the significant impact of correlated data
chunks in data accesses, we select several real-world block-
level workloads from the MSR Cambridge Traces [18] (see
Section 5 for details about the traces). Each trace includes
a sequence of access requests, each of which describes the
timestamp of a request (in terms of Windows filetime), the
access type (i.e., read or write), the starting address of the
request, and the size of the accessed data.

In this paper, we focus on improving the write efficiency.
We assume that two data chunks are said to be correlated
if both of them are written by requests with the same timestamp
value at least twice. Note that the timestamp recorded in
MSR Cambridge Traces is represented in units of ticks that
correspond to 100-nanosecond intervals, yet the timestamp
values in this analysis are rounded to the nearest 1,000. In
other words, we set the time distance as 100 microseconds
and the access threshold as two.

Let nc denote the number of correlated data chunks that
we infer in a workload and let fc be the number of times
written to these nc correlated data chunks over the entire
workload. Suppose that na denotes the number of all the
distinct data chunks written in a workload, and fa represents
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Fig. 3. Analysis on the real workloads about data correlation.
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(a) Baseline stripe organization
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Fig. 4. Motivation: Two stripe organization methods.

the number of times written to these na chunks in total. We
consider the ratio of the correlated data chunks (denoted by nc

na
)

and the write frequency ratio of correlated data chunks (denoted
by fc

fa
). We measure these two metrics in several selected

workloads of the MSR Cambridge Traces, and the results are
shown in Figure 3. We make two observations.
• The ratios of correlated data chunks vary across work-

loads. For example, the ratio of correlated data chunks in
wdev_2 is 99.9% and the ratio in wdev_1 is only 3.3%.

• Correlated data chunks receive a number of writes. For
example, 70.5% of data writes are issued for correlated data
chunks in wdev_1, while in wdev_2 the write frequency
ratio of correlated data chunks reaches 99.9%.

In addition, previous work [12] reveals that most write
requests usually access write-only data chunks. As correlated
data chunks exhibit similar access characteristics, a write-
only data chunk is expected to be more correlated to another
data chunk that is also a write-only data chunk.

3.2 Motivating Example
Our trace analysis suggests that correlated data chunks
receive a significant number of data accesses, and they tend
to be accessed together. Thus, we propose to group correlated
data chunks into the same stripes, so as to mitigate parity
update overhead in partial stripe writes. We illustrate this
idea via a motivating example. Figure 4 shows two different
stripe organization methods with RS(4, 2). Note that the
placement of parity chunks is rotated across stripes to evenly
distribute parity updates across the whole storage space, as
commonly used in practical storage systems [23]. Thus, in
Stripe 1, the last two chunks are parity chunks, while in
Stripe 2, the parity chunks will be placed at the first and last
column. Now, suppose that D1 and D5 are write-only data
chunks and they are correlated. Figure 4(a) shows a baseline
stripe organization (BSO) methodology, which is considered
for RS codes in the plugins of HDFS [41]. Specifically, BSO
places sequential data chunks across k+m storage devices in

a round-robin fashion [21]. Suppose that the storage system
caches the updates in the same time distance and flush them
in batch. As D1 and D5 are correlated (i.e., be updated in
a time distance), their updates are performed together. As
shown in Figure 4(a), BSO places D1 and D5 in two different
stripes. When D1 and D5 are updated, the associated four
parity chunks P1, P2, P3, and P4 also need to be updated.
On the other hand, by leveraging data correlation, the new
stripe organization method (named CASO) can arrange D1

and D5 in the same stripe (shown in Figure 4(b)). In this case,
updating both chunks only needs to renew two associated
parity chunks P1 and P2 once in the following ways: (i) read
P1 and P2; (ii) update them based on the deltas of D1 and
D5; and (iii) write back the new parity chunks P ′1 and P ′2.

In the encoding stage, both CASO and BSO need to
retrieve k data chunks of each stripe stripe and calculate the
m parity chunks for the stripe in RS(k,m) (or l+m local and
global parity chunks for the stripe in LRC(k, l,m)). CASO
does not change the number of stripes, and it introduces the
same amount of I/O and computation cost as BSO in the
encoding stage.

The address mapping information for stripe organization
in CASO can be maintained in the RAID controller for RAID-
based storage systems or in the master node that tracks
the metadata of data storage for networked clusters (e.g.,
NameNode in HDFS [33]).

4 CORRELATION-AWARE STRIPE ORGANIZATION

We now present CASO, a correlation-aware stripe organization
algorithm. The main idea of CASO is to capture data
correlations by first carefully analyzing a short period of
an access stream and then separating the stripe organization
for correlated and uncorrelated data chunks.

4.1 Stripe Organization for Correlated Data Chunks

Organizing correlated data chunks is a non-trivial task and
is subject to two key problems: (i) how to identify data
correlation and (ii) how to organize identified correlated data
chunks into stripes. How to capture data correlation has
been extensively studied, yet organizing the correlated data
chunks into stripes is not equivalent to simply finding the
longest frequent chunk sequence as in prior approaches such
as C-Miner [14] and CP-Miner [15]. In stripe organization,
we should select correlated data chunks that are predicted
to receive the most write operations within a stripe, and the
longest chunk sequence may not be the solution we expect.

4.1.1 Correlation Graph
To evaluate the correlation among data chunks, CASO
constructs an undirected graph G(D, E , C) over correlated
data chunks, which we call the correlation graph.

In the correlation graph G(D, E , C), suppose that D
denotes the set of correlated data chunks that are identified,
nc is the number of correlated data chunks, and E is a set
of connections. If data chunks Di and Dj are correlated (see
Section 3.1 for the definition of correlation), then there exists
a connection E(Di, Dj) ∈ E . C is a correlation function that
maps E to a set of non-negative numbers. For the connection
E(Di, Dj) ∈ E , C(Di, Dj) is called the correlation degree
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Fig. 5. An example of correlation graph constructed from an access
stream.
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Fig. 6. An example of three correlation subgraphs (assuming that
k = 3). There are three stripes, where D1 = {D1, D2, D4}, D2 =
{D5, D7, D8}, and D3 = {D3, D6, D9}. Then the correlation degrees
of the data chunks in the three subgraphs are R(D1) = 5, R(D2) = 5,
and R(D3) = 4, respectively.

between Di and Dj , which represents the number of times
that both of Di and Dj are requested within the same time
distance in an access stream.

Figure 5 presents an access stream which is partitioned
into 10 non-overlapped periods according to a given time
distance. If the access threshold is set as 2, then we can derive
a set of correlated data chunks D = {D1, D2, · · · , D9} (i.e.,
nc = 9) and accordingly construct a correlation graph. For
example, as the number of periods when both of D1 and D3

are requested is four, we set C(D1, D3) = 4.
After establishing the correlation graph, the next step

is to organize the correlated chunks into stripes. Suppose
that there are nc correlated data chunks and the system
selects RS(k,m) for data encoding. Then the correlated data
chunks will be organized into λ = dnc

k e stripes, namely
{S1,S2, · · · ,Sλ}. Note that the last stripe Sλ may include
fewer than k correlated data chunks, and it can be padded
with dummy data chunks with all zeros.

Grouping the correlated data chunks will accordingly
partition the correlation graph G into λ subgraphs termed
Gi(Di, Ei, C) for 1 ≤ i ≤ λ, where Di (1 ≤ i ≤ λ) denotes
the set of data chunks in Gi. After graph partitioning, the
correlated data chunks in a subgraph are organized into
the same stripe. Suppose that Di = {Di1 , Di2 , · · · , Dik},
and let R(·) be a function to calculate the sum of the
correlation degrees of data chunks in a set. Then the sum of
the correlation degrees of the data chunks in Di is given by

R(Di) =
∑

Dix ,Diy∈Di,E(Dix ,Diy )∈E

C(Dix , Diy ). (1)

Let O be the set of all possible stripe organization
methods. Then our objective is to find an organization method
that maximizes the sum of correlation degrees for the λ correlation
subgraphs, so that the most writes are predicted to be issued

Algorithm 1: Stripe organization for correlated data
chunks.

Input: A correlation graph G(D, E , C).
Output: The λ subgraphs.

1 Set Di = ∅ for 1 ≤ i ≤ λ
2 for i = 1 to λ− 1 do
3 Select Di1 and Di2 with the maximum correlation

degree in G(D, E , C)
4 Update D = D − {Di1 , Di2}, Di = {Di1 , Di2}
5 repeat
6 for Dx ∈ D do
7 Calculate θx,i = R(Di ∪ {Dx})−R(Di)
8 Find Dy , where θy,i = Max{θx,i|Dx ∈ D}
9 Set D = D − {Dy}, Di = Di ∪ {Dy}

10 until Di includes k data chunks;
11 Remove the connections between the data chunks in

Di and those in D over G(D, E , C)

12 Organize the remaining correlated data chunks into Dλ

to the data chunks within the same stripe. We formulate this
objective function as follows:

Max
λ∑
i=1

R(Di), for all possible methods in O. (2)

For example, we configure k = 3 in erasure coding and
group the nine correlated data chunks in Figure 5 into three
subgraphs as shown in Figure 6. The data chunks grouped
in the same subgraph will be organized into the same stripe.
We can see that the sum of correlation degrees of the data
chunks in these three subgraphs is

∑3
i=1R(Di) = 14.

4.1.2 Correlation-Aware Stripe Organization Algorithm
Finding the organization method that maximizes the sum of
correlation degrees through enumeration is extremely time
consuming. It requires to iteratively choose k correlated data
chunks to construct a stripe from those that are unorganized
yet. Suppose that there are nc correlated data chunks.
Then the enumeration of all possible stripe organization
methods will need

(nc

k

)
·
(nc−k

k

)
· · ·
(nc−(λ−1)k

k

)
tests1, where

λ = dnc

k e. To improve the search efficiency, we propose a
greedy algorithm (see Algorithm 1) to organize the correlated
data chunks. The main idea is that for each stripe, it first
selects a pair of data chunks with the maximum correlation
degree among those that are unorganized yet, and then
iteratively chooses a data chunk that has the maximum sum
of correlation degrees with those that have already been
selected for the stripe.

In the initialization of Algorithm 1, D includes all the
correlated data chunks. The set Di (1 ≤ i ≤ λ), which is used
to include the data chunks in the stripe Si, is set as empty
(step 1). For the stripe Si (1 ≤ i ≤ λ − 1), we first choose
two data chunks that have the maximum correlation degree
in G(D, E , C) from those that have not been organized yet
(step 3). These two data chunks will be excluded from D and
added into Di (step 4). After that, we scan every remaining
data chunk Dx in D and calculate its sum of correlation

1.
(i
j

)
denotes the number of combinations of selecting j chunks from

i chunks, where j ≤ i.
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Fig. 7. Example of organizing correlated data chunks in CASO.

degrees with the data chunks in Di, which is denoted by
θx,i = R(Di ∪ {Dx})−R(Di) (step 6∼step 7). According to
the definition of R(·) (see Equation (1)), we can deduce that

θx,i =
∑

Dj∈Di,E(Dx,Dj)∈E

C(Dx, Dj).

We then choose the one Dy that has the maximum sum
of correlation degrees with the data chunks in Di, exclude it
from D, and append it to Di (step 8∼step 9). We repeat the
selection of data chunks in Di until Di has included k data
chunks (step 10). Once these k data chunks in Di have been
determined, the algorithm then removes the connections of
the data chunks in Di with those in D, and turns to the
organization of the next stripe (step 11). Finally, the storage
system organizes the remaining correlated data chunks into
Dλ (step 12).
Example. We show an example in Figure 7 based on
the correlation graph in Figure 5. In this example, we
set k = 3 and thus λ = dnc

k e = 3. At the beginning,
D = {D1, D2, · · · , D9} and Di = ∅ for 1 ≤ i ≤ 3.

To determine the three data chunks in D1, we first
select the two data chunks D1 and D3, which we find
have the maximum correlation degree of C(D1, D3) = 4
in G(D, E , C). Then we update D = {D2, D4, D5, · · · , D9}
and set D1 = {D1, D3} (see Figure 7(a)). The algorithm then
scans the remaining data chunks in D. We first consider D2,
which connects both D1 and D3 and has the sum of correla-
tion degrees C(D2, D1)+C(D2, D3) = 6. We next turn toD4

in D, which only connects D1 and has the correlation degree
of C(D4, D1) = 2. We repeat the test for all the remaining
data chunks inD, and finally selectD2 that has the maximum
sum of correlation degrees with the data chunks in D1. We

Algorithm 2: Stripe organization for uncorrelated
data chunks.

1 for each uncorrelated data chunk Di do
2 Find the number of correlated data chunks ni whose

chunk identities are smaller than i
3 Organize it into the (λ+ d i−ni

k
e)-th stripe

4 Store the k data and m parity chunks of each stripe on
k +m storage devices with only one chunk per device

D10, D11,  D12, D13, D14, …D10, D11,  D12, D13, D14, …

Uncorrelated Data Chunks

D10, D11, D12 D13, D14, D15

Analyzed access stream:

Period 1:  (D1, D2, D3)

Period 2:  (D1, D4, D5)

Period 3:  (D1, D2, D3, D4, D5)

Period 4:  (D1, D2, D3)

Period 5:  (D1, D3, D6, D9)

Period 6:  (D5, D7, D8, D9)

Period 7:  (D5, D6, D7)

Period 8:  (D5, D8, D11, D12)

Period 9:  (D5, D6, D9, D13)

Period 10:  (D5, D7, D14, D15)

......

Fig. 8. An example of stripe organization for uncorrelated data chunks.

update D = {D4, D5, · · · , D9} and D1 = {D1, D2, D3}.
Once the number of data chunks in D1 equals k (i.e., 3
in this example), we delete the edges connecting the data
chunks in D and those in D1 (i.e., E(D1, D4), E(D1, D5),
and E(D3, D6)), as shown in Figure 7(b). Following this
principle, we obtain D2 = {D4, D5, D7} (see Figure 7(d))
and D3 = {D6, D8, D9} (see Figure 7(f)). We can see that∑3
i=1R(Di) = 17.

4.2 Stripe Organization for Uncorrelated Data Chunks

We also consider the organization of uncorrelated data
chunks. We have two observations.

1) Spatial locality can be utilized in stripe organization to
reduce the parity updates in partial stripe writes. For
example, if two sequential data chunks in the same
stripe are written, then we only need to update their
common parity chunks.

2) Uncorrelated data chunks still account for a large propor-
tion of all the accessed data chunks in many workloads
(e.g., wdev_1, rsrch_1, and web_2 in Figure 3).

Therefore, we propose to organize the uncorrelated data
chunks in a round-robin fashion [21]. Algorithm 2 gives the
main steps to organize uncorrelated data chunks.

Example. We set k = 3 in erasure coding. Figure 8 shows
an example based on the access stream in Figure 5. From
Figure 5, the correlated data chunks are {D1, D2, · · · , D9}
and are organized into λ = 3 stripes. We then identify the
uncorrelated ones. To organize D10, it will be organized in
the 4-th stripe. Following this method, we can obtain the
stripes that preserve a high degree of data sequentiality as
shown in Figure 8.

4.3 Extension for Local Reconstruction Codes

We will elaborate how to deploy CASO on top of Azure’s
LRC (see Section 2.1). As a non-MDS code, LRC keeps
additional local parity chunks and hence suffers from more
parity update overhead. How to reduce the updates to both
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Algorithm 3: Local group organization for corre-
lated data chunks.

Input: (1) The k data chunks Di of the i-th stripe;
(2) The subgraph Gi constructed by Di

Output: l local groups of Di.

1 Set Di = {Di1 , Di2 , · · · , Dik}
2 Set Lj = ∅ for 1 ≤ j ≤ l
3 for 1 ≤ j ≤ l do
4 Select Dj1 and Dj2 from Di with the maximum

correlation degree in Di
5 Update Lj = {Dj1 , Dj2}, Di = Di − {Dj1 , Dj2}
6 repeat
7 for Dix ∈ Di do
8 Calculate θix,j = R(Lj ∪ {Dix})−R(Lj)
9 Find Diy , where θiy,j = Max{θix,j |Dix ∈ Di}

10 Set Lj = Lj ∪ {Diy}, Di = Di − {Diy}
11 until Lj includes k

l
data chunks;

12 Remove the connections between the data chunks in
Lj and those in Di over Gi

global and local parity chunks is critical for improving the
write performance of LRC.

In view of this, we extend CASO to organize the local
groups of LRC, with the objective of utilizing data correla-
tions for reducing updates to both global and local parity
chunks. For LRC(k, l,m), the k data chunks of a stripe will
be organized into l local groups, namely {L1,L2, · · · ,Ll}
with k

l data chunks per local group; for simplicity of
our discussion, we now assume that k is divisible by l.
Algorithm 3 considers the local group organization of a
stripe, and Di denotes the set of k data chunks in the i-
th stripe. For each local group say Lj (where 1 ≤ j ≤ l),
CASO first selects two most correlated data chunks among
the recorded data chunks in Di, which will be included in
the local group Lj and evicted from Di (steps 4∼5). The
algorithm then iteratively chooses the data chunk Diy ∈ Di
that owns the maximum correlation degree with those in Lj ,
and accordingly updates Lj and Di (steps 7∼10). As such
chunk Diy ∈ Di always exists in each round of correlated
chunk selection, we can repeatedly increase the number of
data chunks in Lj . When the number of data chunks in Lj
reaches k

l , the algorithm then removes the connections of the
data chunks selected in Lj with those in Di, and turns to the
organization of next local group (step 12). The algorithm
terminates when all the k data chunks are successfully
organized into l local groups.

4.4 Complexity Analysis

We present the complexity analysis for the three algorithms
in Section 1 of the supplementary file.

5 PERFORMANCE EVALUATION

In this section, we carry out extensive testbed experiments
to evaluate the performance of CASO.

Selection of codes and traces. We mainly consider three RS
codes: RS(4, 2), RS(6, 3), and RS(8, 4); note that RS(6, 3) is
also used in the Quancast File System [19] and HDFS Erasure
Coding [1]. Based on the above three RS codes, we generate

TABLE 1
Characteristics of selected traces.

Trace Write ratio Num. of write requests Write size

High write ratios
wdev_1 1.000 1,055 5.13 KB
wdev_2 0.999 181,077 8.15 KB
rsrch_1 0.997 13,738 12.17 KB
wdev_3 0.984 671 4.35 KB

Medium write ratios
wdev_0 0.799 913,732 8.20 KB
rsrch_2 0.343 71,223 4.25 KB

Low write ratios
hm_1 0.047 28,415 19.96 KB
src2_1 0.021 14,104 13.37 KB

another three LRC variants by creating two local groups in a
stripe of each RS code. The resulting three LRC variants are
LRC(4, 2, 2), LRC(6, 2, 3), and LRC(8, 2, 4), respectively.

Our evaluation is driven by real-world block-level traces
from MSR Cambridge Traces [18], which describe various
access characteristics of enterprise storage servers. The
traces are collected from 36 volumes that span 179 disks
of 13 servers for one week. Each trace records the starting
position of the I/O request and the request size. As CASO
is proposed for optimizing partial stripe writes, our goal
is to systematically study the effect of CASO when being
deployed in the applications with different degrees of write
intensity.

To this end, we select eight traces for evaluation based on
a new metric called write ratio. The write ratio of a volume is
calculated by dividing the number of write requests to the
number of all the access requests to that volume. To select
the eight traces with significantly different write ratios, we
first sort the 36 volumes according to their write ratios and
classify them into three categories: (i) the top 12 volumes with
high write ratios, (ii) the next 12 volumes with medium write
ratios, and (iii) the last 12 volumes with low write ratios.
We then select four volumes with high write ratios (i.e.,
wdev_1, wdev_2, wdev_3, and rsrch_1), two volumes
with medium write ratios (i.e., wdev_0 and rsrch_2),
and another two volumes with low write ratios (i.e., hm_1
and src2_1). These traces are collected from different
applications. For example, the traces with prefixes wdev,
rsrch, src, and hm are collected from web applications,
research projects, source control, and hardware monitoring.
We can thus use these traces to evaluate the effectiveness
of CASO when it is deployed in different applications.
Table 1 summarizes the characteristics of the selected traces,
including their write ratios and average write sizes.

We run our experiments on a machine connected with a
disk array, such that the machine simulates the functionalities
of a RAID controller. Take RS(k,m) as an example. We
manipulate the experiments on k + m disks, where each
disk exclusively stores one chunk of a stripe. Each disk stores
the data sequentially with the increase of the stripe identity
number.

When a block-level write request arrives, we first identify
the chunk identities included in this request by dividing
the access range to the chunk size. Thus, given a chunk
identity, we can pinpoint the stripe identity and the disk
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Fig. 9. Experiment 1 (Impact of different erasure codes on parity updates). The smaller value is better.

identity of the chunk. For each stripe, we read the old data
chunks, calculate the new parity chunks, and finally write
the new data and parity chunks to the disks. The read and
write operations in parity updates are realized by calling
the POSIX asynchronous I/O (AIO) interfaces, with the disk
identities and the logical offset (derived by multiplying the
stripe identities with the chunk size) as parameters. We
elaborate the addressing issue of the trace replay in Section 2
of the supplementary file.
Testbed. Like previous work [11], [30], we use a node with
a number of extended disks to study the performance of
CASO. Our evaluation is run on a Linux server with an
X5472 processor and 8GB memory. The operating system is
SUSE Linux Enterprise Server and the filesystem is EXT3.
The deployed disk array consists of 15 Seagate/Savvio 10K.3
SAS disks, each of which has 300GB storage capability and
10,000 rpm. The machine and the disk array are connected by
a Fiber cable with the bandwidth of 800MB/sec. The selected
erasure codes are realized based on Jerasure 1.2 [24].
Methodology. In the evaluation, the chunk size is set as 4KB,
which is consistent with the deployment of erasure codes in
real storage systems [3], [31]. For each trace, we only select
a small portion of write requests for correlation analysis.
To describe the ratio of write requests of a trace that are
analyzed in CASO, we first define the concept of analysis
ratio as follows. CASO first classifies all the write requests
into w non-overlapped time windows with a constant time
distance. In our test, we set the time distance as 1 millisecond.
Suppose that CASO explores data correlation for the write
requests in the first w∗ time windows (where 0 ≤ w∗ ≤ w).
Then the analysis ratio can be calculated by w∗

w .
After correlation analysis, we first group the correlated

data chunks that are identified into stripes based on Algo-
rithm 1. For LRC, we further organize the correlated data
chunks of a stripe into local groups based on Algorithm 3.
For the remaining data chunks, we organize them based on
their logical chunk addresses (see Algorithm 2). To fairly
evaluate CASO, we replay the access requests (including the
read and write requests) that are not used in the correlation
analysis for each trace. We compare CASO with baseline stripe
organization (BSO) in the evaluation.

For the experiments related to time performance, we
repeat each experiment for five runs. We plot the average
results and the error bars indicating the maximum and the
minimum across the five runs.
Experiment 1 (Impact of different erasure codes on parity
updates). We first measure the number of parity updates
incurred in partial stripe writes for different erasure codes.
We set the analysis ratio as 0.5 and select the six erasure
codes with different parameters: RS(4, 2), RS(6, 3), RS(8, 4),
LRC(4, 2, 2), LRC(6, 2, 3), and LRC(8, 2, 4). The results are
shown in Figure 9. We make two observations.

First, CASO can reduce 13.1% of parity updates on
average for different erasure codes under different real traces.
In particular, when using RS(8, 4) in the trace wdev_3, CASO
reduces 29.8% of parity updates compared to BSO. The
reason is that CASO arranges the correlated data chunks
together in a small number of stripes, such that the partial
stripe writes to them are centralized to a few stripes and the
number of parity chunks to be updated is reduced.

Second, CASO reduces the least parity updates for the
traces with low write ratios. Specifically, CASO reduces
9.0% of parity updates on average for the traces with low
write ratios (i.e., hm_1 and src2_1), while the reduction
for the traces with high and medium write ratios (i.e.,
wdev_0∼wdev_3, rsrch_1∼rsrch_2) is 14.5%. This ob-
servation indicates that with more write requests taken into
account, CASO can capture more correlation and reduce the
parity updates in next partial stripe writes.
Experiment 2 (Impact of different analysis ratios on parity
updates). To study the impact of analysis ratios on parity
updates, we vary the analysis ratio from 0.1 to 0.7, and
measure the number of resulting parity updates incurred in
RS(4, 2) and LRC(4, 2, 2) for CASO and BSO.

Figure 10 illustrates the results. We observe that CASO
generally reduces 13.5% of parity updates on average for
different analysis ratios. Take the trace wdev_1 as an ex-
ample. CASO cuts down about 22.8% of parity updates for
LRC(4, 2, 2) when the analysis ratio is 0.1, and this reduction
increases to 23.0% when the analysis ratio reaches 0.7.

In addition, as described above, the evaluation measures
the parity updates by using the remaining write requests
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Fig. 10. Experiment 2 (Impact of different analysis ratios on parity updates for RS(4,2) and LRC(4,2,2)).
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Fig. 11. Experiment 3 (Average time per write request). The smaller value is better.

that are not used in correlation analysis for validating the
effectiveness of CASO. Therefore, fewer write requests can
be replayed when the analysis ratio is larger, and hence the
number of parity updates in both CASO and BSO drops
when the analysis ratio increases.

Experiment 3 (Average write time). We further measure the
average time for our testbed to complete a write request in
different traces. We set the analysis ratio as 0.5 and run the
tests for different RS codes and LRC. Figure 11 illustrates the
average time to complete a write request. A write request
may update a single chunk or multiple chunks within or
across stripes, depending on the starting address of the write
request and the write size.

CASO reduces the write time by 14.6% on average for
all the traces and erasure codes. In particular, when being
applied to LRC(8, 2, 4), CASO even reduces 46.7% of the
write time for the trace wdev_2. The reason is that CASO
significantly decreases the number of parity updates in
partial stripe writes.

Experiment 4 (Additional I/Os in degraded reads). We
also evaluate the performance of degraded reads in CASO.
Degraded reads [8], [11], [28] usually appear when the
storage system suffers from transient failure (i.e., the stored
data chunks are temporarily unavailable). To serve degraded
reads, the storage system will retrieve additional data and
parity chunks to recover the lost chunk, and finally, the
number of I/Os increases. To evaluate degraded reads when
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Fig. 12. Experiment 4 (Additional I/Os in degraded reads).

CASO and BSO are respectively deployed atop of an erasure
code, we first construct the stripes of an erasure code by using
CASO and BSO, respectively. We then erase the data on a
disk, replay the read requests after the stripe organization is
established for each trace, and record the average amount of
data to be additionally read in one disk’s failure. For each
of RS codes and LRC, we repeat this procedure for every
member disk’s failure in a stripe.

To show the degree of I/O increase introduced by CASO
in degraded reads, we define a new metric termed increase
ratio, which can be calculated by the following equation.

increase ratio =
num. of additional chunks read in CASO
num. of additional chunks read in BSO

As the trace wdev_1 does not have any read request, it
will not cause degraded read operations. Figure 12 depicts
the increase ratios of other seven traces. CASO only increases
marginal I/O in degraded reads. More specifically, compared
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Fig. 13. Experiment 5 (Stripe organization time for RS(4,2) and LRC(4,2,2)).

to BSO, CASO will read 1.1% (resp. 0.2%) of additional
chunks on average in degraded reads for RS codes (resp.
LRC). The reason is that CASO is designed to identify the
correlation of data chunks in write requests and group those
that have higher likelihood to be written within the same
time window in the same stripe. This design may put the
logically sequential data chunks into different stripes. As
a consequence, the sequential data chunks requested in
degraded reads will trigger the recovery across different
stripes, thereby retrieving more additional data and parity
chunks. However, we argue that compared to the write
performance gains brought by CASO, this marginal cost is
acceptable. In summary, it is more appropriate to deploy
CASO in the applications with the access characteristics of
intensive writes and infrequent reads.

In addition, we can observe that the increase ratio has a
significant fluctuation for some traces, such as src2_1 and
hm_1. There is variety of causes of such fluctuation, such
as the read patterns and the number of data chunks in a
stripe (for RS codes) or in a local group (for LRC). Take the
trace hm_1 as an instance. When replaying the read requests
to the stripe of LRC(4, 2, 2), we find that when CASO is
applied, about 43% of the read requests will be issued to
the correlated data chunks with the average read size of
2.3 chunks. In this case, as the average read size of these
requests is larger than the number of disks in a local group of
LRC(4, 2, 2) (i.e., kl = 2), the requested data chunks will fall
in the same local group with a large probability. Therefore,
if a data chunk is temporarily unavailable, the system can
first locate the local group where this unavailable data chunk
belongs to and then reuse the available data chunks in the
same local group that are requested for recovery.

Experiment 5 (Stripe organization time). We select RS(4, 2)
and LRC(4, 2, 2), vary the analysis ratio from 0.1 to 0.7, and
measure the stripe organization time for different traces.
The stripe organization time records the time to identify the
correlated data chunks from given write requests, construct
the correlation graph, partition the graph, and determine the
stripe that each data chunk in a trace belongs to. Figure 13
plots the average results. We can make four observations.

First, the stripe organization time generally increases
with the analysis ratio. This is because CASO will find more

correlated data chunks with a large probability when taking
more write requests into correlation analysis. For example,
when the analysis ratio is 0.1, it merely needs 0.27 seconds
for CASO to organize the data chunks of the trace rsrch_2
for RS(4, 2). The stripe organization time will increase to 5.44
seconds when the analyze ratio is 0.7.

Second, the average stripe organization time of LRC
is merely 0.1% more than that of RS codes. This finding
indicates that the time for local group organization (see
Algorithm 3) is marginal.

Third, the trace with more access requests does not
definitely require more time in the stripe organization. For
example, the trace wdev_2, though includes more access
requests than hm_1 (see Table 1), calls for less time in
the stripe organization. In the stripe organization, CASO
identifies the access correlations and partitions the correlated
graph. For the correlation identification, CASO needs to
analyze the chunks that are written in the same time distance
and capture the correlated data chunks. Thus, the number of
time distances and the number of data chunks written in a
time distance contribute to the correlation identification time.
Also, for the graph partition, the identified correlated data
chunks are organized into stripes by following Algorithm 1
(see Section 4.1.2). Thus, the number of correlated data
chunks, the number of data chunks in a stripe (i.e., k), and
the number of correlated stripes collectively determine the
graph partition time.

Finally, the stripe organization time in CASO is reasonable
and acceptable. For more than half of the traces, CASO
needs less than 10 seconds to organize the stripes. For the
traces wdev_0, the stripe organization time will not exceed
1,326 seconds. Stripe organization is usually triggered before
data is encoded, and rarely changed once being established.
Therefore, it can be treated as the one-time cost in data
storage. It is acceptable when given the performance gains
brought by CASO in future partial stripe writes.

Experiment 6 (Breakdown on the stripe organization). We
also give a further breakdown on the stripe organization
time. We select RS(4, 2) and set the analysis ratio as 0.5. The
stripe organization is partitioned into two stages: correlation
identification (CI) and graph partition (GP). CI will identify the
correlated data chunks and their correlation degrees from
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Fig. 15. Experiment 7 (Impact of chunk sizes on parity updates).

a given batch of write requests. The correlated data chunks
can construct a correlation graph (see Section 4.1.1). GP will
further organize the correlated data chunks into stripes by
partitioning the correlation graph into subgraphs based on
the greedy selection (see Algorithm 1).

Figure 14 plots the ratios of the time in CI and GP during
the stripe organization. The ratio of GP varies across different
traces. For example, the time of GP only occupies 0.5% of
the stripe organization time for the trace wdev_1 that only
has 1,055 write requests. This ratio increases to 93.4% for the
trace wdev_0, which includes 913,732 write requests.

Experiment 7 (Impact of chunk sizes on parity updates).
We further investigate the impact of chunk sizes on parity
updates. We vary the size of a chunk from 4KB to 64KB, and
calculate the reduction ratios of parity updates for RS(4, 2) and
LRC(4, 2, 2). The analysis ratio is set as 0.5. Suppose that the
numbers of parity updates introduced in CASO and BSO are
t∗ and t, respectively. The reduction ratio of parity updates
can be derived as 1− t∗

t .
Figure 15 shows the results. First, CASO reduces 13.7%,

7.0% and 7.3% of parity updates on average when the chunk
size is set as 4KB, 16KB and 64KB, respectively. Second,
the performance gains introduced by CASO drop when the
chunk size increases. Recall that CASO aims to pack the
correlated data chunks in the same stripe to reduce the
parity updates. As the average chunk size of the traces is
no more than 20KB (see Table 1), the number of correlated
chunks decreases when the chunk size increases (e.g., 64KB).
Thus, it is important to configure the appropriate chunk
size, to ensure that CASO can capture enough correlation for
improving the write efficiency.

Experiment 8 (Normal read time). We finally evaluate the
normal read time for both CASO and BSO when all the disks
are healthy. As opposed to degraded reads, all the requested
data in normal reads are available and can be directly
retrieved from the underlying storage. In this experiment, we
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Fig. 16. Experiment 8 (Normal read time). The smaller value is better.

set the size of a chunk as 4KB, and configure the analysis ratio
as 0.5. As the trace wdev_1 does not have any read request,
we replay the remaining seven traces when deploying CASO
and BSO over RS(4, 2) and LRC(4, 2, 2).

Figure 16 shows the average time to complete a normal
read request. First, the normal read time in CASO differs
by no more than 0.5% with that in BSO, indicating that
CASO can significantly improve the write efficiency without
affecting the normal read efficiency. Second, as the traces
have different I/O sizes and read patterns, the average time
to complete a normal read request varies across the traces.

6 CONCLUSION

We study the optimization of partial stripe writes in erasure-
coded storage from the perspectives of data correlation and
stripe organization. CASO is a correlation-aware stripe organiza-
tion algorithm that captures data correlations from a small
portion of data accesses. It groups the correlated data chunks
into stripes to centralize partial stripe writes, and organizes
the uncorrelated data chunks into stripes to make use of
the spatial locality. We show how CASO can be applied to
RS codes and Azure’s LRC. Experimental results show that
CASO can reduce up to 29.8% of parity updates in partial
stripe writes and reduce the write time by up to 46.7%, while
still preserving the read performance.
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