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Abstract—Erasure coding has been extensively employed for
data availability protection in production storage systems by
maintaining a low degree of data redundancy. However, how
to mitigate the parity update overhead of partial stripe writes in
erasure-coded storage systems is still a critical concern. In this
paper, we reconsider this problem from two new perspectives:
data correlation and stripe organization, and propose CASO, a
correlation-aware stripe organization algorithm. CASO captures
data correlation of a data access stream. It packs correlated data
into a small number of stripes to reduce the incurred I/Os in
partial stripe writes, and further organizes uncorrelated data
into stripes to leverage the spatial locality in later accesses.
By differentiating correlated and uncorrelated data in stripe
organization, we show via extensive trace-driven evaluation that
CASO reduces up to 25.1% of parity updates and accelerates
the write speed by up to 28.4%.

I. INTRODUCTION

Today’s distributed storage systems continuously expand in

scale to cope with the ever-increasing volume of data storage.

In the meantime, failures also become more prevalent due to

various reasons, such as disk crashes, sector errors, or server

outages [7], [20], [25]. To achieve data availability, keeping

additional redundancy in data storage is a commonly used

approach to enable data recovery once failures occur. Two

representatives of redundancy mechanisms are replication and

erasure coding. Replication distributes identical replicas of

each data copy across storage devices, yet it significantly

incurs substantial storage overhead, especially in the face

of massive amounts of data being handled nowadays. On

the other hand, erasure coding introduces much less storage

redundancy via encoding computations, while reaching the

same degree of fault tolerance as replication [32]. At a high

level, erasure coding performs encoding by taking a group of

original pieces of information (called data chunks) as input and

generating a small number of redundant pieces of information
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(called parity chunks), such that if any data or parity chunk

fails, we can still use a subset of available chunks to recover

the lost chunk. The collection of data and parity chunks that

are encoded together forms a stripe, and a storage system

stores multiple stripes of data and parity chunks for large-scale

storage. Because of the high storage efficiency and reliability,

erasure coding has been widely deployed in current production

storage systems, such as Windows Azure Storage [9] and

Facebook’s Hadoop Distributed File System [24].

However, while providing fault tolerance with low re-

dundancy, erasure coding introduces additional performance

overhead as it needs to maintain the consistency of parity

chunks to ensure the correctness of data reconstruction. One

typical operation is partial stripe writes [4], in which a subset

of data chunks of a stripe are updated. In this case, the parity

chunks of the same stripe also need to be renewed accordingly

for consistency. In storage workloads that are dominated by

small writes [3], [28], partial stripe writes will trigger frequent

accesses and updates to parity chunks, thereby amplifying I/O

overhead and extending the time of write operation. Partial

stripe writes also raise concerns for system reliability, as

different kinds of failures (e.g., system crashes and network

failures) may occur during the parity renewal and finally result

in the incorrectness of data recovery. Thus, accelerating partial

stripe writes is critical for improving not only performance, but

also reliability, in erasure-coded storage systems.

Our insight is that we can exploit data correlation [14]

to improve the performance of partial stripe writes. Data

chunks in a storage system are said to be correlated if they

have similar semantic or access characteristics. In particular,

correlated data chunks tend to be accessed within a short

period of time with large probability [14]. By extracting data

correlations from an accessed stream of data chunks, we

can organize correlated data chunks (which are likely to be

accessed simultaneously) into the same stripe, so as to reduce

the number of parity chunks that need to be updated.

To this end, we propose CASO, a correlation-aware stripe

organization algorithm. CASO carefully identifies correlated

data chunks by examining the access characteristics of an

access stream of data chunks. It then accordingly classifies

data chunks into either correlated or uncorrelated data chunks.
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For correlated data chunks, CASO constructs a correlation

graph to evaluate their degrees of correlation and formulates

the stripe organization as a graph partition problem. For

uncorrelated data chunks, CASO arranges them into stripes

by leveraging the spatial locality in further accesses.
CASO is applicable for general erasure codes, such as

the classical Reed-Solomon (RS) codes [23] and XOR-based

erasure codes [5], [10], [27], [33]–[35]. In addition, CASO
is orthogonal and complementary to previous approaches that

optimize the performance of partial stripe writes at coding

level [27], [28], [34] or system level [3], [11], and can be

deployed on top of these approaches for further performance

gains. To the best of our knowledge, CASO is the first work
to exploit data correlation in stripe organization to mitigate the

parity update overhead of partial stripe writes.
In summary, we make the following contributions.

• We carefully examine existing studies on optimizing partial

stripe writes and identify the remaining open issues.

• We propose CASO to leverage data correlation in stripe

organization for erasure-coded storage systems.

• We implement CASO and conduct extensive trace-driven

testbed experiments. We show that CASO decreases up to

25.1% of parity updates and accelerates the average write

speed by up to 28.4% compared to the baseline stripe

organization technique. Furthermore, we show that CASO
preserves the performance of degraded reads [12], which are

critical recovery operations in erasure-coded storage.

The rest of this paper proceeds as follows. Section II

presents the basics of erasure coding and reviews related work.

Section III formulates and motivates our problem. Section IV

presents the detailed design of CASO. Section V evaluates

CASO using trace-driven testbed experiments. Finally, Sec-

tion VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Basics of Erasure Coding
We first elaborate the background details of erasure coding

following our discussion in Section I. An erasure code is

typically constructed by two configurable parameters, namely

k and m. A (k,m) erasure code transforms the original data

into k equal-size pieces of data information called data chunks
and produces additional m equal-size pieces of redundant

information called parity chunks, such that these k +m data

and parity chunks collectively form a stripe. A storage system

comprises multiple stripes, each of which is independently

encoded and distributed across k + m storage devices (e.g.,

nodes or disks). We focus on erasure codes that are Maximum
Distance Separable (MDS), meaning that any k out of k+m
chunks of a stripe can sufficiently reconstruct the original

k data chunks, while the amount of storage redundancy to

achieve the fault tolerance is minimum among all possible

erasure code constructions. In other words, MDS codes can

tolerate any loss of at most m chunks with optimal storage

efficiency.
Reed-Solomon (RS) codes [23] are one well-known family

of MDS erasure codes, and they perform encoding operations

Data Chunks Parity Chunks

1 2 3 4 5 6 1 2 3

Fig. 1. Encoding of the (6, 3) RS code for a stripe, in which there are six
data chunks and three parity chunks. If one of the data or parity chunks is
lost, any six surviving chunks within the stripe can be used to reconstruct the
lost chunk.

based on Galois Field arithmetic [22]. RS codes support

general parameters of k and m, and have been widely deployed

in production storage systems, such as Google’s ColossusFS

[1] and Facebook’s HDFS-RAID [2]. Figure 1 illustrates a

stripe of the (6, 3) RS code, in which there are six data

chunks (i.e., k = 6) and three parity chunks (i.e., m = 3).

XOR-based MDS erasure codes are another special family of

MDS erasure codes that perform encoding using only XOR

operations. Examples of XOR-based erasure codes include

RDP Code [5], X-Code [35], STAR Code [10], HDP Code

[33], H-Code [34], and HV-Code [27]. XOR-based erasure

codes have higher computational efficiency than RS codes,

but they often put restrictions on the parameters k and m. For

example, RDP Code and X-Code require m = 2 and can only

tolerate double chunk failures. XOR-based erasure codes are

usually used in local storage systems, such as EMC Symmetrix

DMX [18] and NetApp RAID-DP [16]. Our work is applicable

for both RS codes and XOR-based erasure codes.

B. Partial Stripe Writes

Maintaining consistency between data and parity chunks

is necessary during writes. Writes in erasure-coded storage

systems can be classified into full stripe writes and partial
stripe writes according to the write size. A full stripe write

updates all data chunks of a stripe, so it generates all parity

chunks from the new data chunks and overwrites the entire

stripe in a single write operation. In contrast, a partial stripe

write only updates a subset of data chunks of a stripe, and

it must read existing chunks of a stripe from storage to

compute the new parity chunks. Depending on the write

size, partial stripe writes can be further classified into read-
modify-writes for small writes and reconstruct-writes for large

writes [31]. Since small writes dominate in real-world storage

workloads [3], [28], we focus on read-modify-write mode,

which performs the following steps when new data chunks are

written: (i) reads both existing data chunks and existing parity

chunks to be updated, (ii) computes the new parity chunks

from the existing data chunks, new data chunks, and existing

parity chunks via the linear algebra of erasure codes [3], and

(iii) writes all the new data chunks and new parity chunks to

storage. Clearly, the parity updates incur extra I/O overhead.

Extensive studies in the literature propose to mitigate parity

update overhead. For example, H-Code [34] and HV Code [27]

are new erasure code constructions that associate sequential

data with the same parity information, so as to favor sequential

access. Shen et al. [28] develop a new data placement that
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attempts to arrange sequential data with the same parity

information for any given XOR-based erasure code. Some

approaches are based on parity logging [3], [11], which store

parity deltas instead of updating parity chunks in place, so as

to avoid reading existing parity chunks as in original read-

modify-write mode.

C. Open Issues

When we examine existing studies on optimizing partial

stripe writes, there remain two limitations.

Negligence of data correlation. Data correlation exists in

real-world storage workloads [14]. Existing studies do not

consider data correlation in erasure-coded storage systems, so

they cannot fully mitigate parity update overhead. Specifically,

if correlated data chunks are dispersed across many different

stripes, then a write operation to those chunks will update all

the parity chunks in multiple stripes. Note that some studies

[27], [28], [34] favor sequential access, yet correlated data

chunks may not necessarily be sequentially placed. Previous

studies [6], [14], [30] exploit data correlation mainly to im-

prove pre-fetching performance, but how to use this property

to mitigate parity update overhead remains an open issue.

Absence of an optimization technique for RS codes.
Existing studies mainly focus on optimizing partial stripe

writes for XOR-based erasure codes [27], [28], [34]. Neverthe-

less, XOR-based erasure codes often put specific restrictions

on the coding parameters, while today’s production storage

systems often deploy RS codes for general fault tolerance (see

Section II-A). Thus, optimizing partial stripe writes for RS

codes is still an imperative need.

III. MOTIVATION

This paper aims to address the following problem: Given
an access stream, how can we organize the data chunks into
stripes based on data correlation, so as to optimize partial
stripe writes? In this section, we motivate our problem via

trace analysis and an example.

A. Trace Analysis

We infer data correlation by a “black-box” approach, which

finds correlated data chunks through analyzing a data access

stream without requiring any modification to the underlying

storage system [14]. We use two parameters to identify data

correlation: time distance and access threshold. We say that

two data chunks are correlated if the number of times when
they are accessed within a specific time distance reaches a
given access threshold.

To validate the significant impact of correlated data chunks

in data accesses, we select several real-world block-level work-

loads from the MSR Cambridge traces [17] (see Section V for

details about the traces). Each workload in the traces includes

a sequence of access requests, each of which describes the

timestamp of a request (in terms of Windows filetime), the

access type (i.e., read or write), the start address of the request,

and the size of the accessed data.

Fig. 2. An analysis on the real workloads about data correlation.

In this paper, we assume that two data chunks are said

to be correlated if both of them are accessed by requests

with the same timestamp value at least twice. Note that the

timestamp is represented in units of ticks that correspond

to 100-nanosecond intervals, yet the timestamp values are

rounded to the nearest 1,000. In other words, we set the time

distance as 100 microseconds and the access threshold as two.

Let nc denote the number of correlated data chunks that

we infer in a workload and let fc be the number of times

accessed to these nc correlated data chunks over the entire

workload. Suppose na denotes the number of distinct data

chunks requested in a workload, and fa represents the number

of times accessed to these na chunks in total. We consider

the ratio of the correlated data chunks (denoted by nc

na
) and

the access frequency ratio of correlated data chunks (denoted

by fc
fa

). We measure these two metrics in several selected

workloads of the MSR Cambridge traces, and the results are

shown in Figure 2. We make two observations.

• The ratios of correlated data chunks vary significantly
across workloads. For example, the ratio of correlated data

chunks in wdev_2 is 98.2% and the ratio in wdev_1 is

only 3.3%.

• Correlated data chunks receive a considerable number
of data accesses. For example, 70.0% of data accesses

are issued for correlated data chunks in wdev_1, while

in wdev_2 the access frequency ratio of correlated data

chunks reaches 98.0%.

In addition, previous work [13] reveals that most read

(resp. write) requests will access read-only (resp. write-only)

data chunks. As correlated data chunks exhibit similar access

characteristics, a read-only (resp. write-only) data chunk is

expected to be more correlated to another data chunk that is

also read-only (resp. write-only).

B. Motivating Examples

Our trace analysis suggests that correlated data chunks

receive a significant number of data accesses, and they tend

to be accessed together. Thus, we propose to group correlated

data chunks into the same stripes, so as to mitigate parity

update overhead in partial stripe writes. We illustrate this idea

via a motivating example. Figure 3 shows two different stripe

organization methods with the (4, 2) RS code. Note that the

placement of parity chunks is rotated across stripes to evenly

distribute parity updates across the whole storage space, as

9696136136136



D1 D2 D3 D4 P1 P2

D5 D6 D7 P4P3 D8

Stripe 1Stripe 1

Stripe 2Stripe 2

Data ChunkData Chunk Parity ChunkParity Chunk Correlated Data ChunkCorrelated Data Chunk

Original StripesOriginal Stripes 

(a) Baseline stripe organization.

D1

D2

D3 D4 P1 P2D5

D6 D7 P4P3 D8

Stripe 1Stripe 1

Stripe 2Stripe 2

Data ChunkData Chunk Parity ChunkParity Chunk Correlated Data ChunkCorrelated Data Chunk

New StripesNew Stripes 

(b) New stripe organization.

Fig. 3. Motivation: Two different stripe organization methods.

commonly used in practical storage systems [21]. Thus, in

Stripe 1, the last two chunks are parity chunks, while in

Stripe 2, the parity chunks will be placed at the first and last

column. Now, suppose that D1 and D5 are write-only data

chunks and they are correlated. Figure 3(a) shows a baseline
stripe organization (BSO) methodology, which is considered

for RS codes in the plugins of HDFS [36]. Specifically, BSO
places sequential data chunks across k+m storage devices in

a round-robin fashion [19]. As shown in Figure 3(a), BSO
places D1 and D5 in two different stripes. When D1 and

D5 are updated, the associated four parity chunks P1, P2,

P3, and P4 also need to be updated. On the other hand,

by leveraging data correlation, the new stripe organization

method can arrange D1 and D5 in the same stripe (shown

in Figure 3(b)). In this case, updating both chunks only needs

to renew two associated parity chunks P1 and P2 in Stripe 1.

Besides, correlated data chunks in a stripe are dispersed

onto different disks and the access parallelism to them will be

improved.

IV. CORRELATION-AWARE STRIPE ORGANIZATION

We now present CASO, a correlation-aware stripe
organization algorithm. The main idea of CASO is to capture

data correlations by first carefully analyzing a short period of

an access stream and then separating the stripe organization for

correlated and uncorrelated data chunks. Table I summarizes

the major notations used in this paper and their descriptions.

A. Stripe Organization for Correlated Data Chunks

Organizing correlated data chunks is a non-trivial task and is

subject to two key problems: how to identify data correlation,

and how to organize identified correlated data chunks into

stripes. How to capture data correlation has been extensively

studied, yet organizing the correlated data chunks into stripes

is not equivalent to simply finding the longest frequent chunk

sequence as in prior approaches such as C-Miner [14] and CP-

Miner [15]. In stripe organization, we should select correlated

data chunks that are predicted to receive the most write

operations within a stripe, and the longest chunk sequence

may not be the solution we expect.

TABLE I
MAJOR NOTATIONS.

Notation Description

k number of data chunks in a stripe

m number of parity chunks in a stripe

nc number of correlated data chunks

nu number of uncorrelated data chunks

D set of correlated data chunks {D1, D2, · · · , Dnc}
E set of connections among correlated data chunks D
C correlation function maps E to non-negative numbers

G, Gi correlation graph over D, the i-th correlation subgraph

λ �nc
k
�, i.e., the number of correlation subgraphs

Di the i-th data chunk

E(Di, Dj) connection between Di and Dj

C(Di, Dj) correlation degree between Di and Dj

Si set of data and parity chunks in the i-th stripe

Di set of data chunks in Gi, set of data chunks in Si

R(·) function to calculate correlation degrees of data chunks

O all possible stripe organization methods

D1

D2 D8D5

D9D6

D4

3

2

2

2

22

D7

D3

3

2

2 3

Analyzed access stream:

Period 1:  (D1, D2, D3)
Period 2:  (D1, D4, D5)
Period 3:  (D1, D2, D3, D4, D5)
Period 4:  (D1, D2, D3)
Period 5:  (D1, D3, D6, D9)
Period 6:  (D5, D7, D8, D9)
Period 7:  (D5, D6, D7)
Period 8:  (D5, D8, D11, D12)
Period 9:  (D5, D6, D9, D13)
Period 10:  (D5, D7, D14, D15)

4

2

Fig. 4. An example of correlation graph constructed from an access stream.

1) Correlation Graph: To theoretically evaluate the cor-

relation among data chunks, CASO constructs an undirected

graph G(D, E , C) over correlated data chunks, which we call

the correlation graph.

In the correlation graph G(D, E , C), suppose that D =
{D1, D2, · · · , Dnc

} denotes the set of correlated data chunks

that are identified, where nc is the number of correlated data

chunks, and E is a set of connections. If data chunks Di

and Dj are correlated (see Section III-A for the definition of

correlation), then there exists a connection E(Di, Dj) ∈ E . C
is a correlation function that maps E to a set of non-negative

numbers. For the connection E(Di, Dj) ∈ E , C(Di, Dj)
is called the correlation degree between Di and Dj , which

represents the number of times that both of Di and Dj are

requested within the same time distance in an access stream.

Figure 4 presents an access stream which is partitioned into

10 non-overlapped periods according to a given time distance.

If the access threshold is set as 2, then we can derive a set of

correlated data chunks D = {D1, D2, · · · , D9} (i.e., nc = 9)

and accordingly construct a correlation graph. For example, as

the number of periods when both of D1 and D3 are requested

is 4, then we set C(D1, D3) = 4 in the figure.

After establishing the correlation graph, the next step is to

organize the correlated chunks into stripes. Suppose that there

are nc correlated data chunks and the system selects the (k,m)
RS code. Then the correlated data chunks will be organized
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D1

D2 D8D5

D9D6

D4

3

2

2

D7

D3 2

3

2

Correlation subgraph 
in Stripe 1 Correlation subgraph 

in Stripe 2

Correlation subgraph 
in Stripe 3

Fig. 5. An example of three correlation subgraphs (suppose k = 3). There
are three stripes, where D1 = {D1, D2, D4}, D2 = {D5, D7, D8}, and
D3 = {D3, D6, D9}. Then the correlation degrees of the data chunks in the
three subgraphs are R(D1) = 5, R(D2) = 5, and R(D3) = 4, respectively.

into λ = �nc

k � stripes, namely {S1,S2, · · · ,Sλ}. Note that

the last stripe Sλ may include fewer than k correlated data

chunks, and it can be padded with dummy data chunks with

all zeros.

Grouping the correlated data chunks will accordingly de-

compose the correlation graph G into λ subgraphs termed

Gi(Di, Ei, C) for 1 ≤ i ≤ λ, where Di (1 ≤ i ≤ λ) denotes

the set of data chunks in Gi. After the graph partition, the

correlated data chunks in a subgraph will be organized into

the same stripe. Suppose that Di = {Di1 , Di2 , · · · , Dik}, and

let R(·) be a function to calculate the sum of the correlation

degrees of data chunks in a set. Then the sum of the correlation

degrees of the data chunks in Di can be given by

R(Di) =
∑

Dix ,Diy∈Di,E(Dix ,Diy )∈E
C(Dix , Diy ). (1)

Let O be the set of all possible stripe organization methods.

Then our objective is to find an organization method that
maximizes the sum of correlation degrees for the λ correlation
subgraphs, so that the most writes are predicted to be issued

to the data chunks within the same stripe. We formulate this

objective function as follows:

Max

λ∑

i=1

R(Di), for all possible methods in O. (2)

For example, we configure k = 3 in erasure coding and

group the nine correlated data chunks in Figure 4 into three

subgraphs as shown in Figure 5. The data chunks grouped in

the same subgraph will be organized into the same stripe. We

can see that the sum of correlation degrees of the data chunks

in these three subgraphs is
3∑

i=1

R(Di) = 14.

2) Correlation-Aware Stripe Organization Algorithm:
Finding the organization method that maximizes the sum of

correlation degrees through enumeration is extremely time

consuming. It requires to iteratively choose k correlated data

chunks to construct a stripe from those that are unorganized

yet. Suppose that there are nc correlated data chunks. Then the

enumeration of all possible stripe organization methods will

Algorithm 1: Stripe organization for correlate data chunks.

Input: A correlation graph G(D, E , C).
Output: The λ stripes that are organized.

1 Set D = {D1, D2, · · · , Dnc}
2 Set Di = ∅ for 1 ≤ i ≤ λ
3 for i = 1 to λ− 1 do
4 Select Di1 and Di2 with the maximum correlation degree

in G(D, E , C)
5 Update D = D − {Di1 , Di2}, Di = Di ∪ {Di1 , Di2}
6 for each data chunk Dx ∈ D do
7 Calculate R(Di ∪ {Dx})
8 Find the data chunk Dy , where

R(Di ∪ {Dy}) = Max{R(Di ∪ {Dx})|Dx ∈ D}
9 Set D = D − {Dy}, Di = Di ∪ {Dy}

10 Repeat step 6∼step 9 until Di includes k data chunks
11 Remove the connections between the data chunks in Di

and those in D over G(D, E , C)

12 Organize the remaining correlated data chunks into Dλ

13 For each stripe, generate the corresponding parity chunks

need
(
nc

k

) · (nc−k
k

) · · · (nc−(λ−1)k
k

)
tests1, where λ = �nc

k �. To

improve the search efficiency, we propose a greedy algorithm

(see Algorithm 1) to organize the correlated data chunks. The

main idea is that for each stripe, it first selects a pair of data

chunks with the maximum correlation degree among those that

are unorganized yet, and then iteratively chooses a data chunk

that has the maximum sum of correlation degrees with those

that have already been selected for the stripe.

In the initialization of Algorithm 1, D includes all the

correlated data chunks. The set Di (1 ≤ i ≤ λ), which is used

to include the data chunks in the stripe Si, is set as empty

(step 1∼step 2). For the stripe Si (1 ≤ i ≤ λ − 1), we first

choose two data chunks that have the maximum correlation

degree in G(D, E , C) from those that have not been organized

yet (step 4). These two data chunks will be excluded from D
and added into Di (step 5). After that, we scan every remaining

data chunk Dx in D and calculate its sum of correlation

degrees with the data chunks in Di (step 6∼step 7). We then

choose the one Dy that has the maximum sum of correlation

degrees with the data chunks in Di, exclude it from D, and

append it to Di (step 8∼step 9). We repeat the selection of data

chunks in Di until Di has included k data chunks (step 10).

Once these k data chunks in Di have been determined, the

algorithm then removes the connections of the data chunks

in Di with those in D, and turns to the organization of the

next stripe (step 11). Finally, the storage system organizes

the remaining data chunks (step 12), and encodes the k data

chunks in Di (1 ≤ i ≤ λ) by generating m parity chunks

(step 13).

An example: We show an example in Figure 6 based on

the correlation graph in Figure 4. In this example, we set

k = 3 and thus λ = �nc

k � = 3. At the beginning, D =
{D1, D2, · · · , D9} and Di = ∅ for 1 ≤ i ≤ 3.

1
(i
j

)
denotes the number of combinations of selecting j chunks from i

chunks, where j ≤ i.

9898138138138
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D2 D8D5

D9D6

D4
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2
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D7
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(a) D1 and D3 are selected in Stripe 1.
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D2
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D9D6

D4
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4

2

Correlation subgraph 
in Stripe 1

(b) D2 is selected in Stripe 1.
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Correlation subgraph 
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(c) D5 and D7 are selected in Stripe 2.
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(d) D4 is selected in Stripe 2.
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(e) D6 and D9 are selected in Stripe 3.
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(f) D8 is selected in Stripe 3.

Fig. 6. An example of organizing correlated data chunks in CASO.

To determine the three data chunks in D1, we first select the

two data chunks D1 and D3, which we find have the maximum

correlation degree of C(D1, D3) = 4 in G(D, E , C). Then we

update D = {D2, D4, D5, · · · , D9} and set D1 = {D1, D3}
(see Figure 6(a)). The algorithm then scans the remaining

data chunks in D. We first consider D2, which connects

both D1 and D3 and has the sum of correlation degrees

C(D1, D2) + C(D2, D3) = 6. We next turn to D4 in D,

which only connects D1 and has the correlation degree of

C(D1, D4) = 2. We repeat the test for all the remaining data

chunks in D, and finally select D2 that has the maximum sum

of correlation degrees with the data chunks in D1. We update

D = {D4, D5, · · · , D9} and D1 = {D1, D2, D3}. Once the

number of data chunks in D1 equals k (i.e., 3 in this example),

we delete the edges connecting the data chunks in D and

those in D1 (i.e., E(D1, D4), E(D1, D5), and E(D3, D6)),
as shown in Figure 6(b).

Following this principle, we obtain D2 = {D4, D5, D7}
(see Figure 6(d)) and D3 = {D6, D8, D9} (see Figure 6(f)).

We can see that
3∑

i=1

R(Di) = 17.

Algorithm 2: Stripe organization for uncorrelated data

chunks.

1 for each uncorrelated data chunk Di do
2 Organize it into the (λ+ � i−nc

k
�)-th stripe

3 For each organized stripe, calculate the m parity chunks
4 Store the chunks of each stripe on k +m storage devices with

only one chunk being kept on one device

D10, D11, D12, D13, D14, …D10, D11,  D12, D13, D14, …

Uncorrelated Data Chunks

D10, D11, D12 D13, D14, D15

Analyzed access stream:

Period 1:  (D1, D2, D3)
Period 2:  (D1, D4, D5)
Period 3:  (D1, D2, D3, D4, D5)
Period 4:  (D1, D2, D3)
Period 5:  (D1, D3, D6, D9)
Period 6:  (D5, D7, D8, D9)
Period 7:  (D5, D6, D7)
Period 8:  (D5, D8, D11, D12)
Period 9:  (D5, D6, D9, D13)
Period 10:  (D5, D7, D14, D15)

......

Fig. 7. An example of stripe organization for uncorrelated data chunks.

B. Stripe Organization for Uncorrelated Data Chunks

We also consider the organization of uncorrelated data

chunks to optimize partial stripe writes. We have two obser-

vations.

1) Spatial locality can be utilized in stripe organization to

reduce the parity updates in partial stripe writes. For

example, if two sequential data chunks in the same stripe

are written, then we only need to update their common

parity chunks.

2) Uncorrelated data chunks still account for a large propor-

tion of all the accessed data chunks in many workloads

(e.g., wdev_1, wdev_3, rsrch_1, rsrch_2, and

web_1 in Figure 2).

Therefore, we propose to organize the uncorrelated da-

ta chunks in a round-robin fashion [19]. Suppose that

{Dnc+1, Dnc+2, · · · , Dnc+nu
} denotes the set of uncorrelated

data chunks, where nc and nu are the numbers of correlated

and uncorrelated data chunks, respectively. For the data chunk

Di, we say i is the chunk identity of Di. In addition, we

can configure the number of uncorrelated data chunks that

satisfy spatial locality based on the deployment environment.

For example, for the data chunks with sequential logical chunk

addresses in the direct-attached storage [8] or the data chunks

that belong to the same file in distributed storage systems [36],

we can make their chunk identities contiguous.

Algorithm 2 gives the main steps to organize uncorrelated

data chunks. It scans the uncorrelated data chunks. For the

uncorrelated data chunk Di (nc+1 ≤ i ≤ nc+nu), it will be

organized into the (λ + � i−nc

k �)-th stripe. After determining

the stripe identity that every uncorrelated data chunk belongs

to, the algorithm then calculates the m parity chunks for each

stripe and stores the k+m chunks (including the k data chunks

and m parity chunks) of each stripe on k+m storage devices

with only one chunk being assigned to one device.
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TABLE II
CHARACTERISTICS OF SELECTED WORKLOADS.

Workloads wdev 1 wdev 2 wdev 3 web 1 web 3 rsrch 0 rsrch 1 rsrch 2 src2 1

Number of read operations 0 189 11 87,057 10,049 99,779 42 136,364 643,669

Average read size (KB) 0 6.12 63.27 45.90 74.89 11.47 6.72 4 60.31

Number of write operations 1,055 181,076 670 73,833 21,330 948,796 13,737 71,222 14,104

Average write size (KB) 5.13 8.16 2.03 9.22 20.83 8.74 6.19 4.25 13.34

An example: We set k = 3 in erasure coding. Figure 7 shows

an example based on the access stream in Figure 4. From

Figure 4, the correlated data chunks are {D1, D2, · · · , D9}
and are organized into λ = 3 stripes. We then identify the

uncorrelated ones {D10, D11, · · · , D9+nu}, where nu is the

number of uncorrelated data chunks for being encoded. To

organize D10, it will be organized in the 4-th stripe. Following

this method, we can obtain the stripes that preserve a high

degree of data sequentiality as shown in Figure 7.

C. Complexity Analysis

Complexity of Algorithm 1. Algorithm 1 has to construct λ
stripes. Suppose that there are nc correlated data chunks. For

each stripe, to select the first two correlated data chunks with

the maximum correlation degree, the algorithm needs no more

than n2
c trials (step 4 in Algorithm 1). To select the remaining

k − 2 correlated data chunks for each stripe, the algorithm

should repeat the following steps.

• Scan no more than nc data chunks in D (step 6).

• For each data chunk, calculate the sum of correlation

degrees with no more than k data chunks that have been

chosen in the candidate stripe (step 7).

Therefore, the complexity of determining the stripe iden-

tity for each correlated data chunks (i.e., step 1∼ step 12)

is O(λn2
c + λnck

2). In step 13, as the number of stripes

organized by correlated data chunks is λ and each stripe will

calculate m parity chunks, the complexity of calculating parity

chunks is O(λm). Finally, the complexity of Algorithm 1 is

O(λn2
c + λnck

2 + λm).

Complexity of Algorithm 2. We then analyze the complexity

of Algorithm 2. Suppose that nu denotes the number of uncor-

related data chunks. The algorithm needs to scan every uncor-

related data chunk, so the complexity of determining the stripe

identities for uncorrelated data chunks (i.e., step 1∼step 2)

is O(nu). The number of stripes organized by uncorrelated

data chunks is O(�nu

k �) and each stripe will calculate m
parity chunks, so the complexity of calculating parity chunks

is O(�nu

k � · m). Finally, the complexity of Algorithm 2 is

O(nu + �nu

k � ·m).

V. PERFORMANCE EVALUATION

In this section, we carry out extensive testbed experiments to

evaluate the performance of CASO. We would like to answer

the following questions:

• How many parity updates can be reduced by CASO for

different erasure codes?

• How many parity updates can be reduced by CASO
when the number of access requests analyzed for data

correlation changes?

• How much write speed can be accelerated by CASO?

• Will CASO affect the performance of degraded reads
(i.e., read operations that include temporarily unavailable

data chunks)?

A. Experiment Preparation

In this evaluation, the parameter k+m is configured in the

range from 6 to 12, which covers typical system configura-

tions of existing storage systems [1]. Specifically, we mainly

consider three erasure codes: the (4, 2) RS code, the (6, 3)
RS code that is employed in Google Colossus FS [1], and the

(8, 4) RS code.

Our evaluation is driven by real-world block-level work-

loads from MSR Cambridge Traces [17], which describe

various access characteristics of enterprise storage servers. The

workloads are collected from 36 volumes that span 179 disks

of 13 servers for one week. Each workload records the start

position of the I/O request and the request size. Here, we select

9 volumes, most of which have small write size (i.e., smaller

than 10KB). Therefore, this selection can better evaluate the

performance of partial stripe writes with small write size.

Table II lists the characteristics of the selected workloads.

Evaluation Methods. In the evaluation, the chunk size is

set as 4KB, which is consistent with the deployment of erasure

codes in real storage systems [3], [29].

For each workload, we only select a small portion of access

requests for correlation analysis. To describe the ratio of access

requests of a workload that are analyzed in CASO, we first

define the concept of “analysis ratio” as follows.

analysis ratio =
num. of analyzed access requests in CASO

num. of access requests of a workload
.

After correlation identification, we group the correlated data

chunks that are inferred in the analysis (see Algorithm 1),

and organize the remaining data chunks by the logical chunk

addresses (see Algorithm 2). To fairly evaluate CASO, we

replay the access requests that are not used in the correlation

analysis for each workload. We compare CASO with baseline
stripe organization (BSO) in the evaluation.

Evaluation Environment: The evaluation is run on a Linux

server with an X5472 processor and 8GB memory. The

operating system is SUSE Linux Enterprise Server and the

filesystem is EXT3. The deployed disk array consists of 15

Seagate/Savvio 10K.3 SAS disks, each of which has 300GB

storage capability and 10,000 rmp. The machine and the disk
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(a) wdev 1. (b) wdev 2. (c) wdev 3. (d) src2 1.

(e) rsrch 0. (f) rsrch 1. (g) rsrch 2. (h) web 1.

Fig. 8. Experiment 1 (Impact of different erasure codes on parity updates). Smaller values means less parity updates are incurred.

(a) wdev 1. (b) wdev 2. (c) wdev 3. (d) src2 1.

(e) rsrch 0. (f) rsrch 1. (g) rsrch 2. (h) web 1.

Fig. 9. Experiment 2 (Impact of different analysis ratios on parity updates). Smaller values means less parity updates are incurred.

array are connected by a Fiber cable with the bandwidth of

800MB/sec. The selected erasure codes are realized based on

Jerasure 1.2 [22].

B. Experiment Results

Experiment 1 (Impact of different erasure codes on parity
updates). We first measure the number of parity updates

incurred in partial stripe writes for different erasure codes. We

set the analysis ratio as 0.5 and select three erasure codes with

different parameters: the (4, 2) RS code, the (6, 3) RS code,

and the (8, 4) RS code. The results are shown in Figure 8. We

make two observations.

First, CASO can reduce 10.4% of parity updates on average

for different erasure codes under different real workloads. In

particular, when using the (4, 2) RS code in the workload

wdev_1, CASO reduces 25.1% of parity updates compared

to BSO. The reason is that CASO arranges the correlated

data chunks together in a small number of stripes, such that

the partial stripe writes to them are centralized and the number

of parity chunks to be updated is reduced.

Second, the larger value of m will generally cause more

parity updates. The reason is that in addition to the data chunks

being updated, a partial stripe write operation should also

renew the m parity chunks in a stripe so as to promise the

correctness of data recovery.

Experiment 2 (Impact of different analysis ratios on parity
updates). To study the impact of analysis ratios on parity

updates, we vary the analysis ratio from 0.1 to 0.5, and
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Fig. 10. Experiment 3 (Average write speed). Larger values enable faster write operations.

(a) wdev 2. (b) wdev 3. (c) rsrch 0. (d) src2 1.

(e) rsrch 1. (f) rsrch 2. (g) web 1. (h) web 3.

Fig. 11. Experiment 4 (Normalized ratio of additional data read in degraded reads.) Smaller values indicate less data are retrieved in degraded reads.

measure the number of resulting parity updates incurred in

the (4, 2) RS code for CASO and BSO. Figure 9 illustrates

the results.

We observe that CASO generally reduces more parity

updates when taking more access requests into correlation

analysis. Take the workload wdev_1 as an example. CASO
cuts down about 21.5% of parity updates when the analysis

ratio is 0.1, and this reduction increases to 25.1% when the

analysis ratio reaches 0.5.

In addition, as referred above, the evaluation measures the

parity updates by using the remaining access requests that are

not used in correlation analysis for each workload. Therefore,

fewer access requests can be replayed when the analysis ratio

is larger, and hence the number of parity updates in both

CASO and BSO drops when the analysis ratio increases.

Experiment 3 (Average write speed). We further measure the

average speed for our testbed to complete a write operation in

different workloads. We set the analysis ratio as 0.5 and run

the tests for different erasure codes. Each test is repeated for

five runs and the results are averaged in Figure 10.

We can see that even for different erasure codes, CASO
can effectively accelerate the write speed for most of the

workloads. For example, when issuing the write operations

in wdev_1 to the system deployed with the (4, 2) RS code,

CASO can accelerate the write speed by 28.4% compared to

BSO. In addition, CASO can improve the write speed by

21.2% when replaying the write operations in src2_1 to

the system deployed with the (4, 2) RS code. This is because

CASO can significantly decrease the number of parity updates

in partial stripe writes. Note that the average write sizes

of most workloads are smaller than 10KB. Thus, the write

throughput in our test is only several megabytes per second,

which is reasonable in real storage systems.

Experiment 4 (Additional I/Os in degraded reads). In

this test, we evaluate the performance of degraded reads in

CASO. Degraded reads [9], [12], [26] usually appear when the

storage system suffers from transient failure (i.e., the stored

data chunks are temporarily unavailable). To serve degraded

reads, the storage system will retrieve additional data or parity

chunks to recover the lost chunk, and finally, the number of

I/Os increases. To evaluate degraded reads, we erase the data

on a disk, replay the read requests that are not used in the

correlation analysis for each workload, and record the average

amount of data to be additionally read in one disk’s failure.

We repeat this procedure for all k + m disks. The average

results are shown in Figure 11, which normalize the number
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of chunks that are additionally read in CASO as 1.

We can see that CASO will not downgrade the overall

performance of degraded reads to the workloads. It can even

decrease 4.2% of additional chunks on average that are re-

trieved in degraded reads. Specifically, CASO can decrease

7.5% of additional data on average in degraded reads for the

workloads wdev_2, rsrch_0, web_1, and web_3. The

reason is that Algorithm 1 in CASO can differentiate and

separate read-only data chunks with write-only data chunks in

stripe organization, which will help to improve the degraded

read performance. Suppose that some data chunks in a read

request fail. Then the storage system can reuse its correlated

data chunks in the request for data reconstruction. Finally, the

extra number of I/Os in degraded reads can be decreased. We

expect that CASO can reach better degraded read performance

when being deployed in the scenario in which the correlated

data chunks are read-only and non-sequential.

VI. CONCLUSION

In this paper, we reconsider the optimization of partial stripe

writes in erasure-coded storage systems from the perspectives

of data correlation and stripe organization. We then propose

CASO, a correlation-aware stripe organization algorithm.

CASO identifies data correlations from a small portion of data

accesses. It groups the correlated data chunks into stripes to

centralize partial stripe writes, and organizes the uncorrelated

data chunks into stripes to make use of spatial locality.

Experimental results show that CASO can reduce up to 25.1%

of parity updates in partial stripe writes and accelerate the

write speed by up to 28.4% for the traces with small write

size, while still preserving the performance of degraded reads.
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