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Abstract—How to improve the performance of single failure re-
covery has been an active research topic because of its prevalence
in large-scale storage systems. We argue that when erasure coding
is deployed in a cluster file system (CFS), existing single failure
recovery designs are limited in different aspects: neglecting the
bandwidth diversity property in a CFS architecture, targeting
specific erasure code constructions, and no special treatment on
load balancing during recovery. In this paper, we reconsider the
single failure recovery problem in a CFS setting, and propose
CAR, a cross-rack-aware recovery algorithm. For each stripe,
CAR finds a recovery solution that retrieves data from the
minimum number of racks. It also reduces the amount of cross-
rack repair traffic by performing intra-rack data aggregation
prior to cross-rack transmission. Furthermore, by considering
multi-stripe recovery, CAR balances the amount of cross-rack
repair traffic across multiple racks. Evaluation results show that
CAR can effectively reduce the amount of cross-rack repair
traffic and the resulting recovery time.

I. INTRODUCTION

Distributed computing applications often build on a clus-

tered file system (CFS), which provides a unified storage

service constructed over a number of physically independent

storage servers (referred to as nodes in this paper). Examples

of CFSes include Google File System [12], Hadoop Dis-

tributed File System [32], and Windows Azure Storage [4].

Failures are commonplace in large-scale CFSes [10], [12],

[28], [29]. In particular, most failures found in CFSes are

single node failures (or single failures in short), which can

account for over 90% of all failure events in real deployment

[10]. To maintain data availability in the presence of failures, a

common approach is to store data with redundancy. Compared

with traditional replication, erasure coding is shown to achieve

higher fault tolerance with less redundancy [33], and hence

is increasingly used in today’s CFSes for improved storage

efficiency. Mainstream erasure codes work by taking original

pieces of information (termed data chunks) as inputs and

produce additional redundant pieces of information (termed

parity chunks), such that if any data or parity chunk is

lost, we can retrieve other available data and parity chunks

to reconstruct the lost chunk. The collection of data and

parity chunks that are encoded together is called a stripe. A

CFS stores multiple stripes of information, each of which is

independently encoded/decoded according to the erasure code

constructions.

Given the prevalence of single failures, there have been

a spate of solutions (e.g., [11], [16], [24], [25], [31], [36],

[38], [39]) on improving the performance of single failure

recovery in erasure-coded storage systems. The main idea

of such solutions is to selectively retrieve different portions

of data and parity chunks within a stripe, with a common

objective of minimizing the amount of repair traffic (i.e.,

the amount of information retrieved from surviving nodes for

data reconstruction). On the other hand, when we examine

existing single failure recovery solutions, there remain three

limitations.

First, existing studies on single failure recovery neglect the

bandwidth diversity property in a CFS architecture. Typical

CFS architectures organize nodes in multiple racks, in which

intra-rack and cross-rack connections have different bandwidth

capacities. In practice, intra-rack bandwidth is considered to be

sufficient, while cross-rack bandwidth is often over-subscribed

and considered to be a scarce resource [6], [8], [18]. The

lack of considerations on bandwidth diversity may lead to

inefficient recovery solutions that trigger massive cross-rack

data transmissions, thereby degrading the overall recovery

performance.

Second, many single failure recovery solutions (e.g., [11],

[36], [38], [39]) focus on XOR-based erasure codes, which

are not commonly used for maintaining fault tolerance in a

CFS. XOR-based erasure codes (e.g., [2], [7], [14], [15], [30],

[34], [37]) are special classes of erasure codes that perform en-

coding/decoding via XOR operations only, thereby achieving

high encoding/decoding performance. However, XOR-based

erasure codes often target specific fault tolerance settings

(e.g., RDP codes [7] are RAID-6 codes that are double-

fault-tolerant). In view of generality and flexibility, today’s

CFSes (e.g., [1], [10], [21]) usually employ Reed-Solomon

(RS) codes [26] for general fault tolerance. RS codes perform

encoding/decoding operations over finite fields [23], and have

inherently different constructions from XOR-based erasure

codes. It is non-trivial to apply existing single failure recovery

solutions that are designed for XOR-based erasure codes

directly to RS codes.

Third, existing single failure recovery solutions focus on

minimizing the amount of repair traffic, but most of them

do not consider the load balancing issue during the recovery

operation. It is possible that the recovery performance is

bottlenecked by one or few nodes that send more repair traffic

than others.

To address the above limitations, we reconsider the single

failure recovery problem in a CFS setting. First, we should

specifically minimize the amount of cross-rack repair traffic
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(i.e., the amount of data to be retrieved across racks for data

reconstruction), which plays an important role in improving

the single failure recovery performance with regard to the

scarce cross-rack bandwidth in a CFS. Second, our single

failure recovery design should address general fault tolerance

(e.g., based on RS codes). Finally, we should balance the

amount of cross-rack repair traffic at the rack level (i.e., across

multiple racks) while keeping the total amount of cross-rack

repair traffic minimum, so as to ensure that the single failure

recovery performance is not bottlenecked by a single rack.

To this end, we propose cross-rack-aware recovery (CAR),

a new single failure recovery algorithm that aims to reduce

and balance the amount of cross-rack repair traffic for a

single failure recovery in a CFS that deploys RS codes for

general fault tolerance. CAR has three key techniques. First,

for each stripe, CAR examines the data layout and finds a

recovery solution in which the resulting repair traffic comes

from the minimum number of racks. Second, CAR performs

intra-rack aggregation for the retrieved chunks in each rack

before transmitting them across racks in order to minimize

the amount of cross-rack repair traffic. Third, CAR examines

the per-stripe recovery solutions across multiple stripes, and

constructs a multi-stripe recovery solution that balances the

amount of cross-rack repair traffic across multiple racks.

Our contributions are summarized as follows.

• We reconsider the single failure recovery problem in the

CFS setting, and identify the open issues that are not

addressed by existing studies on single failure recovery.

• We propose CAR, a new cross-rack-aware single failure

recovery algorithm for a CFS setting. CAR is designed

based on RS codes. It reduces the amount of cross-rack

repair traffic for each stripe, and additionally searches for

a multi-stripe recovery solution that balances the amount

of cross-rack repair traffic across racks.

• We implement CAR and conduct extensive testbed ex-

periments based on different CFS settings with up to 20

nodes. We show that CAR can reduce 66.9% of cross-

rack repair traffic and 53.8% of recovery time when

compared to a baseline single failure recovery design that

does not consider the bandwidth diversity property of a

CFS. Also, we show that CAR effectively balances the

amount cross-rack repair traffic across racks.

The rest of this paper proceeds as follows. Section II

presents the background details of erasure coding and reviews

related work on single failure recovery. Section III formulates

and motivates the problem in the CFS setting. Section IV

presents the design of CAR. Section V presents our evalu-

ation results on CAR based on testbed experiments. Finally,

Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we provide the background details on erasure

coding in the context of a CFS. We also present the open issues

to be addressed in this paper.
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Fig. 1. Illustration of a CFS architecture that is composed of five racks with
four nodes each. The CFS contains four stripes of 14 chunks encoded by a
(k = 8,m = 6) code, in which the chunks with the same color and fill
pattern belong to the same stripe. Note that the number of chunks in each
node may be different.

A. Basics

This paper considers a special type of distributed storage

system architecture called a clustered file system (CFS), which

arranges storage nodes into racks, such that all nodes within

the same rack are connected by a top-of-rack switch, while

all racks are connected by a network core. Figure 1 illustrates

a CFS composed of five racks with four nodes each (i.e., 20

nodes in total). Some well-known distributed storage systems,

such as Google File System [12], Hadoop Distributed File

System [32], and Windows Azure Storage [4], realize the CFS

architecture.

We use erasure coding to maintain data availability for a

CFS. We consider a popular family of erasure codes that

are: (1) Maximum Distance Separable (MDS) codes, meaning

that fault tolerance is achievable with the minimum storage

redundancy (i.e., the optimal storage efficiency), and (2)

systematic, meaning that the original data is retained after

encoding. Specifically, we construct a (k,m) code (which is

MDS and systematic) with two configurable parameters k and

m. A (k,m) code takes k original (uncoded) data chunks of

the same size as inputs and produces m (coded) parity chunks

that are also of the same size, such that any k out of the

k + m chunks can sufficiently reconstruct all original data

chunks. The k+m chunks collectively form a stripe, and are

distributed over k+m different nodes. Note that the placement

of chunks should also ensure rack-level fault tolerance [18],

such that there are at least k chunks for data reconstruction

in other surviving racks in the presence of rack failures. We

address this issue when we design CAR (see Section IV).

For an erasure-coded CFS that stores a large amount of

data, it contains multiple independent stripes of data/parity

chunks. In this case, each node stores a different number of

chunks that belong to multiple stripes. For example, referring

to the CFS in Figure 1, there are four stripes spanning over 20

nodes, in which the leftmost node stores four chunks, while

the rightmost node stores only two chunks.

B. Erasure Code Constructions

There have been various proposals on erasure code con-

struction in the literature. Practical erasure codes often realize
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Fig. 2. Encoding of the (k = 6,m = 3) RS codes for a stripe, in which
there are six data chunks and three parity chunks. If one of the chunks (either
a data chunk or a parity chunk) fails, any six surviving chunks within the
stripe can be retrieved for data reconstruction.

encoding/decoding operations based on the arithmetic over

the Galois field [23]. Reed Solomon (RS) codes [26] are

one representative example. RS codes are MDS, and support

any pair of (k,m) in general. For example, Figure 2 shows

a stripe of the (k = 6, m = 3) RS code, which contains

six data chunks and three parity chunks (i.e., m = 3). RS

codes have been intensively used for erasure-coded storage in

today’s commercial storage systems for fault tolerance, such

as Google’s ColossusFS [1] and Facebook’s HDFS [3]. In this

paper, we design our CAR based on RS codes.

XOR-based erasure codes are a special family of erasure

codes that perform encoding/decoding with XOR operations

only. Examples of XOR-based erasure codes include RDP

Code [7], X-Code [37], STAR Code [14], P-Code [15], HDP

Code [34], and HV Code [30]. XOR-based erasure codes are

generally MDS, but they often have specific restrictions on

the parameters k and m. For example, RDP Code [7] requires

(k = p−1,m = 2), X-Code [37] requires (k = p−2,m = 2),
and STAR Code [14] requires (k = p,m = 3), where p is

a prime number. Thus, XOR-based erasure codes are mainly

used in local disk arrays.

Single failures (e.g., a single node failure or a single lost

chunk within a stripe) are known to be the most common

failure events in a CFS [10], [13]. In RS codes, k chunks

are needed to be retrieved to recover a single lost chunk.

Some erasure codes are specially designed for improving the

performance of recovering a single failure. Regenerating codes

[9] minimize the amount of repair traffic by allowing other

surviving nodes to send computed data for data reconstruction,

and achieve the optimal tradeoff between the level of storage

redundancy and the amount of repair traffic. In particular,

minimum-storage regenerating (MSR) codes [9] are MDS,

and they minimize the amount of repair traffic subject to the

minimum storage redundancy. Rashmi et al. [24] propose a

new MSR code construction that also minimizes the amount

of I/Os. Huang et al. [13] and Sathiamoorthy et al. [27] develop

local reconstruction codes to reduce the amount of repair

traffic, while incurring slightly more storage redundancy (and

hence the codes are non-MDS).

Recent erasure codes address mixed failures (e.g., a combi-

nation of disk failures and sector errors) in a storage efficient

way. Examples are SD codes [22] and STAIR Codes [17].

They are non-MDS, and perform encoding/decoding opera-

tions over the Galois field. They are mainly designed for local

disk arrays.

C. Single Failure Recovery

There have been extensive studies in the literature that

focus on improving the performance of single failure re-

covery. In addition to new erasure code constructions such

as regenerating codes and local reconstruction codes (see

Section II-B), previous studies (e.g., [11], [16], [20], [36],

[39]) pay close attention to XOR-based erasure codes. To

reconstruct a lost chunk, the core idea of their proposals is to

examine the relationship between the data and parity chunks

of a stripe and then read different portions of a stripe, so as to

minimize the amount of I/Os to access the storage nodes, and

hence the amount of repair traffic, in single failure recovery.

Some previous studies target specific XOR-based erasure code

constructions. For example, Xiang et al. [36] and Xu et al.

[38] prove the theoretical lower bound on the amount of

I/Os for a single failure recovery for RDP Code and X-Code,

respectively, both of which tolerate two node failures.

Some previous studies focus on minimizing the amount of

I/Os for single failure recovery for general XOR-based erasure

codes. Khan et al. [16] propose to enumerate all possible single

failure recovery solutions and select the one that minimizes the

amount of I/Os. Luo et al. [20] and Fu et al. [11] extend the

enumeration approach of Khan et al. [16] to load-balance the

amount of I/Os to be read from surviving disks. Note that

the enumeration approach is generally NP-hard. Thus, Zhu

et al. [39] and Shen et al. [31] propose a greedy algorithm

search for the single failure recovery solution with the near-

minimum amount of I/Os, while still supporting general XOR-

based erasure codes.

D. Other Problems

Some studies also study the performance issues when de-

ploying erasure coding in a CFS. Chan et al. [5] propose a new

CFS called CodFS that mitigates the parity update overhead

under update-intensive workloads through an enhanced parity

logging approach.

Li et al. [18] propose an efficient replica placement algo-

rithm in a CFS to reduce the amount of cross-rack traffic when

transforming replicated data to erasure-coded data. Li et al.

[19] focus on improving MapReduce performance on erasure-

coded storage, and propose to give degraded MapReduce tasks

(i.e., the tasks that need to reconstruct and process unavailable

data chunks) a higher execution priority so as to mitigate

network resource competitions. Xia et al. [35] present a new

approach to switch between two erasure codes to balance the

storage overhead and recovery performance.

E. Open Issues

In summary, there have been extensive studies on improving

the performance of single failure recovery when deploying

erasure coding in disk arrays or CFSes. On the other hand, we

identify three open issues that are still unexplored when re-

considering the single failure recovery problem a CFS setting.
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We have provided an overview of the open issues in Section I,

and following discussion provides more detailed explanations.

Lack of considerations on cross-rack repair traffic. Existing

single failure recovery optimizations [11], [16], [20], [31],

[36], [38], [40], while significantly reducing the amount repair

traffic, do not differentiate intra-rack and cross-rack data

transmissions during recovery. In particular, a CFS architecture

exhibits the property of bandwidth diversity, in which cross-

rack bandwidth is often much more limited than intra-rack

bandwidth, and it is considered as an over-subscribed, scarce

resource in a CFS [6], [8], [18]. A recovery solution that trig-

gers a large amount of cross-rack traffic will unavoidably delay

data reconstruction. How to minimize the amount of cross-rack

repair traffic (i.e., the amount of data traffic triggered during

recovery) should be carefully studied in a CFS setting.

Ineffectiveness for RS codes. Most existing studies [11],

[16], [20], [31], [36], [38], [40] on single failure recovery

mainly focus on XOR-based erasure codes. However, their

approaches cannot be easily generalized for RS codes, which

are commonly deployed in today’s CFSes for general fault

tolerance [1], [10]. In general, RS codes reconstruct a lost

chunk by retrieving any k surviving chunks within the same

stripe. This strategies imply that there are a maximum of

C(k+m−1, k) possible single failure recovery solutions (i.e.,

the number of combinations of selecting k out of (k+m−1)
surviving chunks). Furthermore, how to select the one with

the minimum cross-rack repair traffic remains unexplored.

Load balancing of cross-rack repair traffic in a multi-

stripe setting. Recall that a CFS often organizes data in

multiple stripes, each of which is independently encoded (see

Section II-A). Existing single failure recovery solutions mainly

focus on a single stripe. It is possible to further improve

load balancing of a single failure recovery if we can consider

a multi-stripe setting [11], [31], [38]. However, the load

balancing schemes [11], [31], [38] only target XOR-based

erasure codes, and also do not address the bandwidth diversity

issue in a CFS.

In a CFS, we are interested in balancing the amount

of cross-rack repair traffic across multiple racks. However,

solving single failure recovery problem for RS codes in a

multi-stripe setting is non-trivial. As discussed above, a single

failure recovery solution for a single stripe has a maximum

of C(k + m − 1, k) possible options. If we consider s > 1
stripes, then the total number of possible options will increase

to C(k+m−1, k)s. How to efficiently search for a multi-stripe

single failure recovery solution will be critical.

III. PROBLEM FORMULATION

This paper aims to address the following problem: Given a

CFS that deploys RS codes, can we simultaneously minimize

and balance the amount of cross-rack repair traffic when we

perform single failure recovery in the CFS? In this section, we

formulate the single failure recovery problem in a CFS setting.

Table I summarizes the major notation used in this paper.

TABLE I
MAJOR NOTATION USED IN THIS PAPER.

Notation Description

k number of data chunks in a stripe

m number of parity chunks in a stripe

r number of racks in a CFS

s number of stripes associated with the lost chunks

Ai the i-th (1 ≤ i ≤ r) rack

Af the rack where the failed node resides (1 ≤ f ≤ r)

λ load balancing rate

ti,f cross-rack traffic on Ai to repair a failed node in Af

ci,j number of chunks of the j-th stripe in rack Ai

Hi the i-th chunk

H′

i the i-th retrieved chunk for data reconstruction

e number of iterations in the greedy algorithm for load
balancing

Consider a CFS that deploys a (k,m) RS code over r racks

denoted by {A1, A2, · · · , Ar}. Suppose that a node fails, and

we need to reconstruct the lost chunks in the failed node. Each

stripe contains exactly one lost chunk. To make our analysis

general, we assume that the lost chunks to be reconstructed

in the failed node span s ≥ 1 stripes. We denote the rack that

contains the failed node as Af (1 ≤ f ≤ r); also, we call

the remaining racks (aside Af ) to be intact racks since the

data stored in all their nodes remains intact. To repair the lost

chunks in the failed node, suppose the cross-rack repair traffic

triggered from rack Ai is ti,f (1 ≤ i �= f ≤ r). We define the

load balancing rate λ as the ratio of the maximum amount of

cross-rack repair traffic across each rack to the average amount

of cross-rack repair traffic over the (r − 1) intact racks.

λ =
max{ti,f |1 ≤ i �= f ≤ r}

∑
1≤i�=f≤r

ti,f
r−1

.

Obviously, if there exists cross-rack repair traffic, then λ ≥
1. Also, we say that the recovery solution is more balanced

if its load balancing rate is closer to 1. Therefore, we can

formulate the following optimization problem:

Minimize λ

subject to

∑

1≤i�=f≤r

ti,f is minimized.

Our optimization goal is to minimize the load balancing rate,

subject to the condition that the total amount of cross-rack

repair traffic is minimized.

IV. CROSS-RACK-AWARE RECOVERY

We present CAR, a cross-rack-aware recovery algorithm

that aims to solve the optimization problem in Section III. We

focus on single failure recovery, in which there is a single

failed node and each stripe contains exactly one lost chunk.
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(a) Recovery that retrieves chunks from five racks.
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(b) Recovery that retrieves chunks from three racks.

Fig. 3. Two recovery solutions that retrieve data from different sets of racks. Suppose that intra-rack chunk aggregation is performed. To reconstruct the lost
chunk of a stripe, for (a), four chunks are transmitted across racks, while for (b), only two chunks are transmitted across racks.

A. Overview

CAR has three design objectives.

• For each stripe, finding a recovery solution that retrieves

chunks from the minimum number of racks.

• Exploiting intra-rack chunk aggregation.

• Exploiting a greedy approach to search for a load-

balanced multi-stripe recovery solution.

We justify the design objectives as follows. For each stripe

constructed by a (k,m) RS code, any k chunks are sufficient

to reconstruct the lost chunk in the stripe. Here, we examine

the placement of chunks across racks and choose a recovery

solution identify a recovery solution that retrieves chunks from

the minimum number of racks. To repair the lost chunk,

instead of directly retrieving and sending individual chunks

from a rack, we perform intra-rack chunk aggregation on the

retrieved chunks in the same rack and send one aggregated

chunk (which has the same size as each data/parity chunk) to

the replacement node for data reconstruction. Intra-rack chunk

aggregation can be realized by separating the reconstruction

process of RS codes. By retrieving chunks from the minimum

number of racks and performing intra-rack chunk aggregation,

we minimize the amount of cross-rack repair traffic to recon-

struct the lost chunk for each stripe.

For example, suppose that the first node fails in the CFS

shown in Figure 1, which adopts the (k = 8,m = 6)
RS code for fault tolerance. Figure 3 presents two possible

recovery solutions, both of which retrieve k = 8 chunks yet

from a different set of racks to reconstruct the lost chunk

of a stripe. By performing intra-rack chunk aggregation, the

requested chunks within the same rack will be aggregated into

a single chunk. Therefore, the recovery solution in Figure 3(a)

transmits four chunks across racks (i.e., from A2, A3, A4,

and A5), while the one in Figure 3(b) only needs to transmit

two chunks across racks (i.e., from A2 and A5). Note that

the retrieval of chunks in A1 only triggers intra-rack data

transmissions, and we assume that it brings limited overhead

to the overall recovery performance in a CFS.

In addition, we examine the per-stripe recovery solutions

across multiple stripes so as to minimize the load balancing

rate. We propose a greedy algorithm that can search for a

near-optimal solution with low computational complexity.

B. Minimizing the Number of Accessed Racks

We first study how to find a recovery solution that retrieves

chunks from the minimum number of racks. Suppose that the

lost chunks span s stripes. For the j-th stripe (1 ≤ j ≤ s),

let ci,j be the number of chunks stored in the i-th rack Ai

(1 ≤ i ≤ r). Note that we also ensure that the placement

of chunks provides rack-level fault tolerance [18]. Here, we

assume that we provide single-rack fault tolerance. For the

(k,m) RS code, we require that ci,j ≤ m, so as to tolerate any

single-rack failure; in other words, each stripe should contain

at least k chunks in other intact racks of the CFS for data

reconstruction.

Suppose that a node fails in rack Af (1 ≤ f ≤ r). We

use c′f,j to denote the number of surviving chunks of the j-th

stripe (1 ≤ j ≤ s) in Af in the presence of the node failure.

Since every node keeps at most one chunk for a given stripe,

we have the following equation:

c
′

f,j =

{
cf,j , if cf,j = 0

cf,j − 1, if cf,j �= 0
(1)

Meanwhile, for the remaining r − 1 intact racks

(i.e., {A1, · · · , Af−1, Af+1, · · · , Ar}), they still have

the same numbers of chunks in the j-th stripe (i.e.,

{c1,j , · · · , cf−1,j , cf+1,j , · · · , cr,j}). Given this new setting,

Theorem 1 states how to determine the minimum number of

intact racks to be accessed when recovering the lost chunk in

the j-th stripe (1 ≤ j ≤ s).

Theorem 1. For the j-th stripe (1 ≤ j ≤ s), suppose that

the numbers of chunks in the r − 1 intact racks are ranked

in descending order denoted by {cj1 , cj2 , · · · , cjr−1
}, where

cj1 ≥ cj2 ≥ · · · ≥ cjr−1
. We find the smallest number dj that

satisfies:

cj1 + · · ·+ cjdj + c′f,j ≥ k. (2)

Then dj is the minimum number of intact racks to be contacted

to recover the lost chunk in the j-th stripe.

Proof (Sketch): We prove by contradiction. Suppose that dj
is not the minimum number of intact racks. Let d′j < dj be

the minimum number of intact racks to be accessed. Then we

must have cj1 + · · · + cjd′
j

+ c′f,j ≥ k so that the lost chunk
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Fig. 4. Example of determining the minimum number of intact racks to be
accessed when recovering the lost chunk in the first stripe. Suppose that the
CFS employs the (k = 8,m = 6) RS code, and that the first node in A1 fails.
The replacement node can retrieve chunks from the intact racks A3 and A5,
as well as from the nodes within the same rack A1, for data reconstruction.

in the j-th stripe can be reconstructed. However, this violates

our condition that dj is the minimum value for Equation (2)

to be satisfied. �

We elaborate Theorem 1 via an example. Consider the

recovery for the first stripe in the CFS in Figure 4. The

CFS has five racks and employs the (k = 8,m = 6) RS

code. For the first stripe, the first rack A1 originally keeps

c1,1 = 4 chunks. Suppose that the first node in A1 fails.

Then there are c′1,1 = c1,1 − 1 = 3 surviving chunks in A1.

The numbers of surviving chunks in other four intact racks

A2, A3, A4 and A5 are c2,1 = 1, c3,1 = 3, c4,1 = 2, and

c5,1 = 4, respectively. To reconstruct the lost chunk, we need

k = 8 surviving chunks for the reconstruction in RS codes. To

determine the minimum number of intact racks to be accessed,

we first sort the numbers of surviving chunks in the four intact

racks, and obtain (4, 3, 2, 1). We can then find d1 = 2, since

4 + 3 + c′1,1 = 10 > k = 8. Thus, we should retrieve the

surviving chunks from A5 and A3, as well as the surviving

chunks in A1, to reconstruct the lost chunk.

We say that a recovery solution is valid if it can recover

the lost chunk for the j-th stripe (1 ≤ j ≤ s) by accessing dj
intact racks only. A valid solution of the j-th stripe (1 ≤ j ≤ s)

should satisfy the condition that the number of retrieved

chunks from dj intact racks plus the number of surviving

chunks in Af should be no less than k.

We emphasize that a stripe may contain more than one valid

recovery solution. We again consider the example of Figure 4.

In addition to the recovery solution that retrieves surviving

chunks from A3 and A5, we can also find another recovery

solution that retrieves chunks from A3 and A4 instead, since

c3,1 + c4,1 + c′1,1 = k = 8. The latter recovery solution is

also valid, since it can also repair the lost chunk by accessing

d1 = 2 intact racks only.

C. Intra-rack Chunk Aggregation

After finding the minimum number of intact racks to be

accessed for recovery, we perform intra-rack chunk aggrega-

tion for the retrieved chunks in the same rack. We call the

aggregation operation partial decoding, since it performs part

of the decoding steps to reconstruct the lost chunk of a stripe.

To describe how partial decoding works, we first review

the encoding and decoding procedures of the (k,m) RS code.

Suppose there are k data chunks {H1, H2, · · · , Hk}. Note that

most practical storage systems deploy systematic erasure codes

(see Section II-A), meaning that the original data chunks are

kept in uncoded form after encoding and hence read requests

can directly access the original data. To generate the m

parity chunks (denoted by {Hk+1, · · · , Hk+m}), the encoding

operation can be realized by multiplying a (k+m)×k matrix

G =
(
g1 · · ·gk+m

)T
with the k data chunks, i.e.,⎛

⎜⎜⎜⎜⎜⎜⎝

g1

...
gk

...
gk+m

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎝
H1

...
Hk

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

H1

...
Hk

...
Hk+m

⎞
⎟⎟⎟⎟⎟⎟⎠

(3)

Here, gi (1 ≤ i ≤ k+m) is a row vector and its size is 1×k.

To make the original data kept in uncoded form,
(
g1 · · ·gk

)T

should be a k × k identity matrix, where T denotes a matrix

or vector transpose operation.

In the decoding operation, RS codes can always use any k

surviving chunks (denoted by {H ′
1, · · · , H

′
k}) to reconstruct

the original data chunks. This implies that there always exists

a k × k invertible matrix X , such that

X ·

⎛
⎜⎝
H ′

1

...
H ′

k

⎞
⎟⎠ =

⎛
⎜⎝
H1

...
Hk

⎞
⎟⎠ (4)

Therefore, to reconstruct a chunk Hi (1 ≤ i ≤ k +m), we

can derive the following equation based on Equations (3) and

(4).

Hi = gi ·

⎛
⎜⎝
H1

...
Hk

⎞
⎟⎠ = gi · X ·

⎛
⎜⎝
H ′

1

...
H ′

k

⎞
⎟⎠ (5)

Let y = gi · X . As the sizes of gi and X are 1 × k and

k×k, respectively, y =
(
y1 · · · yk

)
is a 1×k vector. Then we

can derive the following equation based on Equation (5).

Hi = yi ·

⎛
⎜⎝
H ′

1

...
H ′

k

⎞
⎟⎠ =

(
y1 · · · yk

)
·

⎛
⎜⎝
H ′

1

...
H ′

k

⎞
⎟⎠ (6)

Equation (6) implies that the reconstruction of Hi is actually

realized by the linear operations performed on the k retrieved

chunks. Therefore, to mitigate the cross-rack data transmis-

sions for recovery, we can “aggregate” the retrieved chunks in

the same rack before performing cross-rack data transmissions.

For example, without loss of generality, suppose that the first

j requested chunks {H ′
1, · · · , H

′
j} are stored in the same rack.

Then we can specify a node in that rack to perform the linear

operations based on Equation (6) and obtain the following

result:
j∑

i=1

yiH
′
i (7)
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Algorithm 1: Reconstruction for a stripe.

Input: The set of requested chunks {H ′
1, · · · , H

′
k} for

recovering the lost chunk of a stripe.

1 for each rack do

2 if this rack stores requested chunks then

3 Specify a node in this rack to retrieve the

requested chunks

4 Perform partial decoding on the requested chunks

5 Send the partially decoded chunk to the

replacement node

6 Add the received partially decoded chunks at the

replacement node to recover the lost chunk.

������������

����	
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����

!� !� !� !� !�

Fig. 5. Example of reconstructing the lost chunk in the first stripe via partial
decoding. For example, four chunks in rack A5 are selected for reconstruction.
One node in A5 performs partial decoding on the four selected chunks and
sends the partially decoded chunk to the replacement node.

The aggregation in Equation (7) is called partial decoding

and the output is referred to as the partially decoded chunk,

which has the identical size as each data/parity chunk. The

partially decoded chunk will then be sent to the replacement

node to complete the reconstruction of the lost chunk. The

replacement node simply adds all the partially decoded chunks

received from Af and other intact racks that are accessed,

in order to reconstruct the lost chunk. We can observe that

after applying partial decoding, the amount of cross-rack repair

traffic per stripe in CAR is equal to the number of partially

decoded chunks transmitted from the accessed intact racks,

or equivalently, the number of intact racks to be accessed for

recovery. Algorithm 1 summarizes the details of recovering

the lost chunk of a stripe.

Figure 5 shows an example of how we reconstruct the lost

chunk of a stripe via partial decoding. Suppose that we need to

retrieve k = 8 chunks, and the requested chunks are denoted

by {H ′
1, H

′
2, · · · , H

′
8} (from left to right). To recover the lost

chunk in rack A1, we first perform the partial decoding by

aggregating the requested chunks in A1, A4, and A5 to be∑2
i=1 y

′
iH

′
i ,

∑4
i=3 y

′
iH

′
i , and

∑8
i=5 yiH

′
i , respectively. After

that, the replacement node reads the three partially decoded

chunks to reconstruct the lost chunk. In this example, there

are only two chunks transmitted across racks.

Algorithm 2: Greedy algorithm for load balancing.

Input: Number of iterations e; number of stripes s

Output: A multi-stripe recovery solution R.

1 for j = 1 to s do

2 Select a valid recovery solution Rj for the j-th stripe

3 Initialize R = {R1, R2, · · · , Rs}
4 for iteration 1 to e do

5 Find intact rack Al (1 ≤ l �= f ≤ r) with the highest

tl,f
6 for each intact rack Ai (1 ≤ i �= f ≤ r) do

7 if Ai �= Al and tl,f − ti,f ≥ 2 then

8 Find Rj and another valid recovery solution

R′
j that retrieves no data from Al but from

Ai instead

9 if both Rj and R′
j exist then

10 Set

R = {R1, · · · , Rj−1, R
′
j , Rj+1, · · · , Rs}

11 Jump to the next iteration of the for-loop

in step 4

12 Exit the for-loop in step 4 if there is no substitution

in R

D. Load Balancing

As stated in Section IV-B, each stripe can have multiple

valid per-stripe recovery solutions. Here, we examine the valid

per-stripe recovery solutions across multiple stripes, so as

to balance the amount of cross-rack repair traffic across the

racks (i.e., minimizing the load balancing rate in Section III).

However, enumerating all possible valid per-stripe recovery

solutions can be expensive. To elaborate, suppose that we

consider the recovery of s stripes, and there are nj valid

recovery solutions for recovering the lost chunk in the j-th

stripe (1 ≤ j ≤ s). Then the enumeration approach would

require n1 × n2 × · · · × ns trials. Depending on the number

of valid recovery solutions in each stripe, the enumeration

approach can involve a significantly large number of trials.

To mitigate the computation complexity into smaller, we

propose a greedy algorithm to search for a near-optimal multi-

stripe recovery solution for balancing the amount of cross-rack

repair traffic across racks. Having a greedy recovery algorithm

enables us to identify recovery solutions on the fly, especially

under a dynamic environment with constant changing network

conditions (e.g., the changing available network bandwidth)

[39], [40]. The main idea is to iteratively replace the currently

selected multi-stripe recovery solution with another one that

introduces a smaller load balancing rate.

Algorithm 2 shows the details of our greedy algorithm.

Suppose that a node in Af fails (1 ≤ f ≤ r). We first

select a valid recovery solution to repair the lost chunk in each

stripe, and construct an initial multi-stripe recovery solution R

(steps 1-3). Here, for each stripe, we can follow Theorem 1 to

choose the valid recovery solution whose intact racks have
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(a) Initial recovery solution: the load balancing rate is 16

9
.
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(b) Recovery solution after a replacement: the load balancing rate is 12

9
.

Fig. 6. Example of how to substitute a per-stripe recovery solution in Algorithm 2. The chunks with the same color and fill patterns denote the retrieved
chunks for recovery of the same stripe. Compared with the initial multi-stripe recovery solution, the updated multi-stripe recovery solution has a lower load
balancing rate, by substituting the per-stripe recovery solution for the third stripe.

the most chunks for the stripe. We then replace the per-

stripe recovery solutions in R over a configurable number of

iterations (denoted by e), so as to reduce the load balancing

rate. Specifically, in each iteration, we locate the rack Al

(1 ≤ l �= f ≤ r) with the highest tl,f (i.e., generating the

most cross-rack recovery traffic) (steps 4-5). To find a more

balanced recovery solution, we scan the remaining intact racks

except Al and select one of the intact racks Ai (i ≤ l and

1 ≤ i �= f ≤ r) that satisfies the following condition:

tl,f − ti,f ≥ 2. (8)

Once identifying Al and Ai, the algorithm scans the current

per-stripe recovery solutions in R. If the per-stripe recovery

solution Rj for the j-th stripe (1 ≤ j ≤ s) reads chunks

from rack Al, then we check if there exists another valid

recovery solution R′
j that can read chunks in Ai, meaning

that it can substitute the retrieval from Al (step 8). If both

Rj and R′
j exist, we can substitute Rj with R′

j (steps 9-11).

With partial decoding (see Section IV-C), we ensure that we

retrieve one less partially decoded chunk from Al while one

more from Ai. Thus, Equation (8) ensures that tl,f ≥ ti,f
after the substitution, and that the rack with the maximum

amount of cross-rack repair traffic generated by a rack is

monotonically decreasing. After the substitution, the algorithm

resumes another iteration of the for-loop in Step 4 (step 11). If

there is no substitution in R, the algorithm exits the for-loop

(step 12). As Algorithm 2 proceeds, the load balancing rate λ

of R iteratively decreases.

Figure 6 shows an example of how our load balancing

scheme works. We consider a CFS that has the same archi-

tecture and data layout as in Figure 1. The CFS also employs

the (k = 8,m = 6) RS code for fault tolerance. For brevity,

we only illustrate the chunks retrieved for recovery. Suppose

that the first node fails, Figure 6(a) first gives an initial multi-

stripe recovery solution that recovers the lost chunks of four

stripes. With partial decoding, the amount of cross-rack repair

traffic can be represented by the number of partially decoded

chunks transmitted from each intact rack. For example, A2

sends four partially decoded chunks (i.e., t2,1 = 4) to recover

the four lost chunks. Thus, the load balancing rate of the

initial recovery solution is λ =
t2,1

(t2,1+t3,1+t4,1+t5,1)/4
= 16

9 .

Obviously, in Figure 6(a), A2 (i.e., Al in Algorithm 2) is the

rack with the most cross-rack traffic t2,1 = 4 (i.e., tl,f ). To find

a more balanced solution, Algorithm 2 locates A3 that satisfies

the condition t2,1 − t3,1 = 3 ≥ 2. The algorithm selects the

per-stripe recovery solution for the third stripe, such that it

retrieves a partially decoded chunk from A3 instead of A2.

Figure 6(b) shows the new multi-stripe recovery solution. We

can see that after the substitution, the load balancing rate of the

updated recovery solution is λ =
t2,1

(t2,1+t3,1+t4,1+t5,1)/4
= 12

9 ,

which is smaller than that in Figure 6(a).

Complexity analysis: We now analyze the complexity of

Algorithm 2. In each iteration, the algorithm finds the intact

rack with the most cross-rack repair traffic, and search for

another intact rack and per-stripe recovery solution for substi-

tution (steps 6-11). The whole iteration needs no more than

r×s trials. Since the algorithm repeats e iterations, its overall

complexity is O(e× r × s), which is in polynomial time.

V. PERFORMANCE EVALUATION

We conduct extensive testbed experiments to evaluate the

performance of CAR. We would like to answer the following

four questions:

1) How much cross-rack traffic and recovery time can be

reduced by CAR?

2) How do the iteration steps affect the load balancing rate?

3) Will CAR sustain its effect when deployed over different

CFS configurations?

4) Will CAR increase the computation time for recovery?

Evaluation environment: We conduct our evaluation on

three CFS settings with different architectures and RS code

parameters. Table II shows the configurations of the CFS

settings for our evaluation, including the selected RS codes

and the number of nodes in each rack. For example, CFS1

is deployed over three racks with 10 nodes and it selects

the (k = 4,m = 3) RS code. Note that practical storage

systems often prefer a small number of nodes of a stripe

(i.e., k + m) to avoid generating huge repair traffic. Thus,

we configure the parameter k + m to range from 7 to 14,

such that this range covers typical system configurations of
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TABLE II
CONFIGURATIONS OF THREE CFS SETTINGS.

CFSes A1 A2 A3 A4 A5 RS code

CFS1 4 3 3 k = 4,m = 3

CFS2 4 3 3 3 k = 6,m = 3

CFS3 6 4 5 3 2 k = 10,m = 4

TABLE III
CONFIGURATIONS OF NODES IN EACH RACK.

Servers CPU Memory OS Disk

Nodes
in A1

AMD Opteron(tm)
800MHz 2378

Quad-Core
processors

16GB Fedora 11 1TB

Nodes
in A2

an Intel Xeon
X5472 3.00GHz
Quad-Core CPU

8GB SUSE Linux
Enterprise
Server 11

4TB

Nodes
in A3

an Intel Xeon
E5506 2.13GHz
Quad-Core CPU

8GB Fedora 10 1TB

Nodes
in A4

an Intel Xeon
E5420 2.50GHz
Quad-Core CPU

4GB Fedora 10 300GB

Nodes
in A5

an Intel Xeon
X5472 3GHz

Quad-Core CPU

8GB Ubuntu
10.04.3 LTS

4TB

existing storage systems [1], [3]. For example, CFS2 selects

the (k = 6,m = 3) RS code, which is consistent with Google

Colossus FS [1]; CFS3 chooses the (k = 10,m = 4) RS code,

which is the same as in Facebook’s HDFS-RAID [3].

Table III also lists the hardware configurations of the nodes

in different racks. We configure the nodes in the same rack

to have the same hardware configurations. The racks are

connected by the TP-LINK TL-SG1016D 16-Port Gigabit

Ethernet switches. We also implement RS codes with the open-

source erasure coding library Jerasure 1.2 [23].

Methodology: We construct 100 stripes and randomly dis-

tribute the data and parity chunks of each stripe across all

nodes in each CFS, while ensuring single-rack fault tolerance

(see Section IV-B). To evaluate the recovery performance, we

randomly select a node to erase its stored chunks. We use the

same node as the replacement node, and trigger the recovery

operation. We apply CAR to find the recovery solution and

recover the lost chunk of each stripe. For comparisons, we

also consider a baseline approach called random recovery

(RR), which finds the recovery solution by randomly choosing

k surviving chunks of a stripe and sending them to the

replacement node for recovery. To start recovery, the replace-

ment node first contacts k surviving nodes for each stripe to

simultaneously launch the transmissions of the chunks. For

CAR, the replacement node also selects a node in each rack

to perform partial decoding, such that the surviving nodes first

send their chunks to the selected node in each rack for partial

decoding, and then the selected node in each rack sends the

aggregated chunk to the replacement node. On the other hand,

for RR, the k surviving nodes directly send the chunks to

the replacement node. Each of our results is averaged over 50

runs.

A. Cross-Rack Repair Traffic

We first evaluate the amounts of cross-rack repair traffic

due to CAR and RR when recovering a single lost chunk.

We conduct the evaluation in the three CFS settings. Figure 7

shows the results versus the chunk size. We make the following

observations.

In all cases, CAR significantly reduces the amount of cross-

rack repair traffic when compared to RR. For example, when

the chunk size is 4MB, CAR can reduce 52.4% of cross-

rack repair traffic in CFS1 (see Figure 7(a)). The reason is

that CAR not only finds the recovery solution that involves

the minimum number of racks, but also performs partial

decoding in each rack before cross-rack data transmissions.

Both techniques guarantee the minimum amount of cross-

rack data transmissions when reconstructing the lost chunk in

each stripe. As a comparison, RR simply retrieves the chunks

from other surviving nodes to the replacement node, thereby

triggering a considerable amount of cross-rack repair traffic.

In addition, the performance gain of CAR is influenced

by the parameter k used in RS codes. In general, when the

number of racks is fixed, CAR can reduce more cross-rack data

transmissions when k increases. The reason is that in RR, the

number of retrieved chunks increases when k becomes larger.

On the other hand, CAR ensures that each rack only needs

to send one chunk across racks under partial decoding. For

example, when the chunk size is 16MB, the saving of cross-

rack repair traffic due to CAR increases to 66.9% in CFS3

(see Figure 7(c)).

B. Load Balancing

In this evaluation, we measure the capability of CAR to

balance the amount of cross-rack repair traffic across multiple

racks. We configure the number of iterations (i.e., e) to be 50

and the number of stripes (i.e., s) to be 100 in Algorithm 2.

In each CFS setting, we measure the load balancing rate (i.e.,

λ) of CAR after each number of iterations.

Figure 8 presents the average results and the standard devi-

ations for CAR with and without performing load balancing

(the latter means that we do not execute Algorithm 2). In all

cases, CAR can effectively balance the amount of cross-rack

repair traffic. For example, in CFS1 (see Figure 8(a)), if we

do not perform load balancing, the load balancing rate is 1.22

even though CAR retrieves chunks from the minimum number

of racks and performs partial decoding. With load balancing

enabled, the load balancing rate of the optimized solution can

reduce to 1.02. In addition, as we increase the number of

iterations, the load balancing rate first decreases significantly

and then becomes stable, mainly because the reduction in the

load balancing rate in each iteration becomes smaller when

the resulting solution is closer to the minimum.
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(a) CFS1 (10nodes, k = 4,m = 3) (b) CFS2 (13nodes, k = 6,m = 3) (c) CFS3 (20nodes, k = 10,m = 4)

Fig. 7. Comparisons of the amounts of cross-rack traffic between CAR and RR.
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(a) CFS1 (10nodes, k = 4,m = 3) (b) CFS2 (13nodes, k = 6,m = 3) (c) CFS3 (20nodes, k = 10,m = 4)

Fig. 8. Load balancing rate (and the standard deviation) versus the number of iteration steps in CAR. For brevity, we only show the standard deviations in
the positive direction.
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(a) CFS1 (10nodes, k = 4,m = 3) (b) CFS2 (13nodes, k = 6,m = 3) (c) CFS3 (20nodes, k = 10,m = 4)

Fig. 9. Comparisons of recovery times between CAR and RR.

C. Recovery Time

We now compare CAR and RR in terms of the recovery

time per lost chunk in different CFS settings. We measure

the overall duration starting from the time when all surviving

nodes send the chunks until the time when all lost chunks are

completely reconstructed. We divide the overall duration by

the number of lost chunks being reconstructed to obtain the

recovery time per lost chunk.

Figure 9 shows the recovery time per lost chunk versus the

chunk size. It indicates that CAR greatly reduces the recovery

time when compared to RR. For example, when the chunk size

is 8MB, to recover a lost chunk in CFS2, CAR reduces 53.8%

of recovery time (see Figure 9(b)). The reasons are three-fold.

First, CAR reduces the amount of cross-rack repair traffic.

Second, CAR balances the amount of cross-rack repair traffic

across multiple racks, while RR randomly selects k surviving

chunks to recover a lost chunk and hence leads to an uneven

distribution of cross-rack repair traffic in general. Third, CAR

offloads the recovery process to a node in each rack due to

partial decoding, while RR requires the replacement node to
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(b) Computation time (normalized with respect to that of RR)

Fig. 10. Evaluation of transmission time and computation time for recovering
a lost chunk.

perform the whole recovery process for all lost chunks. Finally,

we observe that a larger k in RS codes will increase the

recovery time, mainly because it introduces more repair traffic

for recovering each lost chunk.

D. Computation Time and Transmission Time

We further provide a breakdown on the recovery time,

in terms of the transmission time and the computation time

to recover a lost chunk. The transmission time records the

duration of data transmissions over the CFS, while the compu-

tation time records the duration to perform required decoding

operations over finite fields for reconstructing the lost chunk

at the replacement node. We fix the chunk size as 8MB.

Figure 10 presents the results. Figure 10(a) shows that the

transmission time dominates the overall recovery time, justify-

ing the need of reducing the transmission overhead in CAR.

Also, the ratio of computation time in both RR and CAR

decreases when the parameter k in RS codes increases. For

example, for CAR in CFS1 (where k = 4), the computation

time occupies 11.3% of recovery time, while in CFS3, the

ratio decreases to 7.1% (where k = 10).

Figure 10(b) shows that the computation time of CAR

normalized over that of RR. In general, the computation times

of both CAR and RR are similar (e.g., with up to around

10% of difference). Note that CAR does not change the

decoding operations in RS codes, but instead only breaks down

a decoding operation into multiple intra-rack partial decoding

operations.

VI. CONCLUSIONS

Erasure coding is increasingly used to maintain data avail-

ability with low redundancy overhead in practical storage

systems. This paper reconsiders the single failure recovery

problem in a clustered file system (CFS), in which cross-

rack bandwidth is often over-subscribed and considered to

be a scarce resource. We propose CAR, a cross-rack-aware

recovery algorithm that specifically addresses the single failure

recovery problem in a CFS. CAR includes three key tech-

niques. First, CAR examines the data layout in a CFS and

determines the recovery solution that accesses the minimum

number of racks for each stripe. Second, CAR performs partial

decoding by aggregating the requested chunks in the same

rack before cross-rack data transmissions. Third, CAR uses a

greedy algorithm to find the recovery solution that balances

the amount of cross-rack repair traffic across racks. Results

from our testbed experiments show that CAR can reduce both

cross-rack data transmissions and the overall recovery time.
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