
Redesigning High-Performance LSM-based
Key-Value Stores with Persistent CPU Caches

Yijie Zhong∗, Zhirong Shen∗B, Zixiang Yu∗, Jiwu Shu∗†,
∗Xiamen University, †Tsinghua University

yijiezhong@stu.xmu.edu.cn, shenzr@xmu.edu.cn, yuzixiang23@foxmail.com, jwshu@xmu.edu.cn

Abstract—By providing non-volatility with DRAM-comparable
performance, the emerging persistent memory (PMem) is pro-
pelling new key-value (KV) store designs. The recently released
Intel Optane DC PMem now shifts the persistent boundary from
memory up to CPU caches, which further eliminates the needs of
cacheline flush instructions used in extensive KV stores. However,
we uncover via testbed experiments that this change can even
degrade the performance of existing KV stores once directly
deploying them atop the new generation of the Optane PMem,
stemming mainly from the mismatch of access granularities and
heavy software designs.

In this paper, we present CacheKV, the first KV store built
atop persistent CPU caches. CacheKV allocates per-core sub-
MemTable in CPU caches with a lazy index update mechanism, so
as to fast absorb incoming writes. It then proposes a copy-based
flush mechanism to convert small-sized cacheline evictions into
large-sized flushes to suppress the write amplification. CacheKV
finally accelerates read operations via periodically compacting the
sub-skiplists. Extensive testbed experiments show that CacheKV
improves the write throughput by 19.5× on average in the
write-dominated environment without compromising the read
performance, when compared to the state-of-the-art KV stores
for the PMem.

I. INTRODUCTION

KV stores have been emerging as a backbone of modern
storage infrastructures to support a wide spectrum of data-
intensive applications, ranging from web indexing [1], [2],
social networking [3]–[5], graph databases [6]–[8], stream
processing [9], [10], down to data caching [11]–[13]. Extensive
studies [2], [3], [7], [14]–[20] popularly adopt log-structured
merge tree (LSM-tree) [21] to build KV stores on top of
block storage devices (e.g., HDD [2], [3], [18], [22] and SSD
[14], [23]). At a high level, the LSM-tree comprises several
salient designs: (i) it transforms random small writes into large
sequential writes, so as to fully utilize the storage bandwidth;
and (ii) it organizes the KV pairs resided on storage devices
into multiple levels with gradually increased capacity, so as to
balance the I/O cost of updates and that of lookups.

While most empirical KV stores are designed based on
block-level storage, the emerging PMem 1 (e.g., phase-change

BCorresponding author: Zhirong Shen (shenzr@xmu.edu.cn). This
work was supported by the National Key R&D Program of China
(2021YFF0704001), Natural Science Foundation of China (62072381 and
61832011), Science and Technology Projects of Innovation Laboratory for
Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)
HRTP-[2022]-1, and CCF-Huawei Innovation Research Plan (CCF2021-
admin-270-202102).

1We use PMem to denote the persistent memory technology (e.g., PCM)
and employ Optane PMem to refer to the Optane DC PMem product.

LSM-Tree-based KV stores

PebblesDB
SpanDB
LevelDB
LSM-Trie
MyRocks

PMem + Volatile CPU cachesBlock devices

NoveLSM
SLM-DB
MatrixKV
ChameleonDB

PMem + Persistent CPU caches

CacheKV (Our Work)

Figure 1: How CacheKV compares to representative KV stores.

memory (PCM) [24]–[27], Resistive Memory (ReRAM) [28],
[29], and 3D-XPoint [30]) has exhibited great potential to
revolutionize the designs for LSM-tree-based KV stores (Fig-
ure 1), since it offers DRAM-comparable access performance
and persistent storage with a much larger capacity. The first
commercial product of the PMem, Intel Optane DC persistent
memory module (called “Optane PMem” for brevity), has been
available on the marketplace [31], making the co-designs of
KV stores with the PMem promising and practical. A large
number of studies [15], [32]–[39] have explored the utilization
of the PMem in KV stores, most of which fall in the following
branches: (i) replacing DRAM with the PMem to timely persist
incoming KV pairs without data logging (e.g., SLM-DB [33]);
(ii) designing KV stores for hybrid DRAM-PMem memory
systems to provide fast, reliable, and durable data storage (e.g.,
HiKV [34], Bullet [35], Viper [36] and NoveLSM [32]); (iii)
laying the PMem between DRAM and SSDs for throttling the
storage I/O in compactions (e.g., MatrixKV [15]); and (iv)
aggregating small writes to saturate the write-combining buffer
embedded in the Optane PMem for accelerating the write
performance (e.g., FlatStore [38] and ChameleonDB [37]).

Our observation is that there still remains a huge gap
between the assumptions made for the PMem and the real
characteristics exhibited in the Optane PMem. Such a gap,
if not properly considered in KV store designs, will limit
or even counteract the performance gains made in previous
studies [32]–[35]. First, previous studies [32], [34], [35], [40],
[41] commonly leverage the PMem as a fully byte-addressable
memory device, while the Optane PMem actually has a write
unit of 256 B by default (the size of the access granularity
of the storage media in the Optane PMem), making it more
like a block storage device instead. The write unit creates per-
formance variations between small writes (smaller than 256 B)
and large writes (256 B or larger); for example, the 64-B writes
(aligned with the 256 B unit sizes) only achieve one-fourth of
the write throughput of the 256-B writes [37]. Second, existing
KV stores [32], [33], [37], [38] usually employ the PMem

1

based on the premise that it provides persistent storage and
leaves CPU caches volatile, while the newest Optane PMem
has already shifted the persistent boundary from the memory
up to CPU caches [42]. Apparently, this change eliminates the
usage of expensive data flush instructions (e.g., clflush and
clwb) and favors the overall access performance, yet we un-
cover that the advantages of the persistent CPU caches cannot
be fully leveraged by existing KV store designs, stemming
mainly from the mismatch of the access granularities and the
heavy software designs (see Section II-C for more details).
Hence, how to design a high-performance KV store that fully
leverages both characteristics of the Optane PMem is crucial
yet unfortunately largely overlooked.

We fill in the blank by presenting CacheKV, which in-
corporates the two significant characteristics of the Optane
PMem into the KV store designs. To leverage the persis-
tent nature of CPU caches, CacheKV divides the single
MemTable in conventional LSM-tree to multiple small-sized
sub-MemTables and manages the sub-MemTable pool in CPU
caches, which dynamically assigns a sub-MemTable to each
CPU core for serving concurrent writes. It defers the index
updates and flushes data from the CPU caches to PMem in the
unit of sub-MemTable (with several MBs), thereby mitigating
metadata updates and saturating the write-combining buffer
in the Optane PMem. CacheKV finally accelerates read op-
erations by periodically compacting sub-skiplists. To the best
of our knowledge, CacheKV is the first work that brings the
persistent CPU caches into the KV store designs (Figure 1).
The contributions of this paper are summarized as below.

• We unveil via real-world benchmarks that the persistent
CPU caches cannot naturally expedite the performance
of existing KV stores and capture the root causes (Sec-
tion II-C).

• We design CacheKV, the first KV store that is built
atop the Optane PMem with the persistent CPU caches.
CacheKV carefully aggregates incoming writes in the
CPU caches and defers the updates to the index structures
without compromising consistency. It then periodically
flushes the packed KV pairs to the PMem to improve
the write throughput, and compacts the sub-skiplists to
accelerate read operations (Section III).

• We implement a CacheKV prototype atop LevelDB [2]
by re-designing its storage hierarchy, process flow for KV
requests, and metadata synchronization (Section III).

• We conduct extensive testbed experiments, showing that
CacheKV improves the write throughput by 19.5× on
average without compromising the read performance,
when compared to state-of-the-art KV designs with
the PMem and their variants leveraging persistent CPU
caches (Section IV).

We have released the source code of the CacheKV proto-
type: https://github.com/shenzr/CacheKV-code.

II. BACKGROUND AND OBSERVATIONS

Immutable
MemTable

L0

L1

L2

L3

MemTable

Memory

Storage

Thread 1

Thread 2

Thread 3

Write
Ahead

Log

Skiplist

❸ Update

❷ Append

❹

❺ Flush

❶ Put

Figure 2: Operation flows of the LSM-tree-based KV stores to serve
incoming writes, where there are four levels (i.e., n = 3).

A. LSM-Tree-Based KV Stores

A large body of studies [2], [3], [7], [14]–[20], [43] are
popularly employing log-structured merge tree (LSM-tree)
[21] to build KV stores on traditional block storage devices
(e.g., HDDs and SSDs), whose main idea is to (i) aggregate
random small-sized writes in memory to generate sequential
writes and (ii) keep most of the KV pairs fully sorted in
storage, so as to achieve high-speed writes and fast reads.
Figure 2 summarizes the organization of the LSM-tree-based
KV stores, which comprises a memory component and a
storage component.
Memory component: It comprises a MemTable, an Im-
mutable MemTable, and the index structure (skiplist as an
example in Figure 2) to index the tables. When a new KV
pair reaches (Step ¶ in Figure 2), an LSM-tree-based KV
store first persists it to an on-disk write-ahead log (WAL)
[44] for crash consistency (Step ·). It then appends the KV
pair to a MemTable and updates the index structure of the
MemTable (Step ¸), which is responsible for quickly indexing
the unsorted KV pairs in the MemTable. To regulate concurrent
writes issued to the commonly shared MemTable, the KV store
often employs synchronization mechanisms (e.g., mutex locks)
to enable exclusion [2], [3], [32], [33]. When the MemTable
becomes full (i.e., reaching a pre-configured size), it will be
transformed into an Immutable MemTable (Step ¹), while at
the same time another new MemTable is created to serve the
subsequent writes. The generated Immutable MemTable will
then be sealed and flushed to the storage component (Step º)
in the form of Sorted String Tables (SSTables).
Storage component: The LSM-tree-based KV stores further
organize the data in storage into n + 1 hierarchical levels
(Figure 2). Usually, a level has a storage capacity that is
multiple times (e.g., 10 times in LevelDB [2]) of the lower
level. On the other hand, among the n+1 levels, KV pairs in
the lowest level L0 are partially sorted (for fast persistence),
while those in other n higher levels (i.e., {L1, L2, · · · , Ln})
are all fully sorted by keys (for fast KV lookups).

B. Persistent Memory

The Optane PMem [31] is the first commercial PMem
device implemented based on the 3D-XPoint technology.
Figure 3 presents the architecture overview of the Optane
PMem. By connecting to processors directly through inte-
grated memory controller (iMC), the Optane PMem can persist

2

https://github.com/shenzr/CacheKV-code

PMem

XPBuffer

iMC

Core

iMC

Store

Core

A B C D

A B C D

Flush

PMem

XPBuffer
B D

A B C D

Eviction

WPQ WPQ

XPLine Cacheline

ADR
Domain

B D

Additional Traffic

A B C D ❺

❻

L1, L2, …L1, L2, …

❸

❹

LLC

eADR
Domain

LLC

Store

PMem

XPBuffer

Core

iMC

Store

A B

A B

Flush

WPQ

A B

L1, L2, …

❶

❷

LLC

(a) (b) (c)

Figure 3: Architecture overview of the ADR-enable and eADR-
enabled Optane PMems. (a) The small writes in ADR-enabled Optane
PMem will introduce the write amplification. (b) The large writes in
ADR-enabled Optane PMem can suppress the write amplification. (c)
The large writes in eADR-enabled Optane PMem will reawaken the
write amplification caused by the cacheline eviction algorithms.

data with high write throughput (e.g., 2.3 GB/s with a single
DIMM [45]), low read latency (e.g., merely 2× ∼ 3× higher
than DRAM [45]), and large storage capacity (e.g., up to
512 GB per DIMM [31]). Hence, the Optane PMem is often
considered to complement (or even substitute) DRAM in
memory hierarchy [32], [46] and co-exist with block storage
devices [15], [33] for building highly efficient KV stores.
Moreover, the Optane PMem exhibits two intrinsic features
which may revolutionize the KV store designs.

Feature 1 (Mismatch of access granularities between the
CPU caches and the Optane PMem media): The Optane
PMem embeds an internal write-combining buffer (called
“XPBuffer”) to stage the cachelines (usually in the granularity
of 64 B) coming from CPU caches and has a constant media
access granularity of 256 B (called “XPLine”), making the
Optane PMem much more like a block device, rather than a
fully byte-addressable memory device commonly assumed in
prior studies [32], [34], [35], [40], [41]. The mismatch between
the cacheline access granularity (from the CPU caches) and
the XPLine access granularity (to the Optane PMem media)
induces write amplification for the writes that operate smaller
than 256 B of data, which triggers additional read-modify-
write operations to encapsulate an XPLine and write the
resulting 256 B data to the physical Optane PMem media.
Figure 3(a) depicts the process of a small write operation
in the Optane PMem, which flushes the cachelines A and B
(with 64 B each) from the CPU caches to the Optane PMem
(Step ¶). In this case, the Optane PMem has to complement
an XPLine using additional data (marked in dashed lines,
Step ·), thereby amplifying the write traffic. Figure 3(b)
shows that the large writes (whose sizes are larger than
the XPLine) using the flush instructions can fill an XPLine
(Steps ¸ and ¹) to eliminate the write amplification.

Feature 2 (Persistent boundary is shifted from mem-
ory up to CPU caches): The Optane PMem supports two
kinds of persistent domains (i.e., data paths where stores
are safe against power-failures), namely Asynchronous DRAM

Refresh (ADR) and enhanced Asynchronous DRAM Refresh
(eADR) [47]. Figure 3 compares the differences between the
ADR-enabled and eADR-enabled Optane PMems. The ADR-
enabled Optane PMem ensures that even in the presence of
power failures, the writes currently in the write pending queue
(WPQ) of the iMC can still be persisted onto the PMem. As
the ADR persistent domain only includes the PMem and the
WPQ, it needs to proactively flush data out of the CPU caches
using dedicated cacheline flush instructions (e.g., clflush and
clwb) and memory barrier (Figure 3(a) and (b)), ensuring that
the data can be persisted in the right order.

The eADR-enabled Optane PMem further shifts the per-
sistence boundary up to CPU caches 2. This feature ensures
that data can be directly persisted in the CPU caches without
needing additional expensive flush instructions [48], thereby
favoring the overall performance. It exhibits that the per-
formance doubles without flush instructions [47]. However,
removing flush instruction might reproduce the write ampli-
fication problem, as the cacheline eviction is fully controlled
by the cache eviction algorithms (e.g., Least Recently Used
(LRU)). Figure 3(c) shows an example of a large write
operation in the eADR-enabled Optane PMem, implying that
even for the large writes, the eviction algorithm will be likely
to evict a small number of cachelines (e.g., B and D) to
reproduce the write amplification problem (Steps º and »).
In this paper, we mainly consider the eADR-enabled Optane
PMem and design KV stores based on the persistent last-
level cache (LLC) in non-inclusive cache hierarchy [49], as it
can supply enough cache space (12 MB-60 MB [42]). We also
demonstrate that our design is insensitive to different occupied
cache space, indicating that it can achieve good performance
even given limited cache space (e.g., 3 MB, Section IV-C).
Finally, our work can also be extended to other PMem products
once they have persistent CPU caches and exhibit the same
mismatch problem in access granularity.

C. Analysis and Observations

To examine if existing KV stores can benefit from the
persistent CPU caches, we conduct preliminary experiments
with two state-of-the-art KV stores that are both designed
for the PMem: (i) NoveLSM [32], which places a MemTable
in PMem to leverage its persistent nature and avoid logging
overhead with in-place durability; and (ii) SLM-DB [33],
which maintains a MemTable and a B+-tree index in PMem
to accelerate the key searches. We measure the random write
performance using db_bench with the configurations in Sec-
tion IV-A. We make two observations from this analysis.

Ob1 (The direct utilization of the persistent CPU caches
amplifies the write traffic). We first investigate the efficiency
of NoveLSM and SLM-DB when both of them are directly
deployed with the eADR-enabled Optane PMem (with persis-
tent CPU caches). Note that the raw NoveLSM and SLM-DB
both rely on the store instruction coupled with cacheline flush

2This feature is supported in the third generation of Intelr Xeonr Scalable
Processors, which have entered the marketplace [42].

3

0

25

50

75

100

32 64 128 256
Value Size (B)

W
rit

e
H

it
R

at
io

 (
%

)
NoveLSM
NoveLSM-w/o-flush
NoveLSM-cache

0

25

50

75

100

32 64 128 256
Value Size (B)

W
rit

e
H

it
R

at
io

 (
%

)

SLM-DB
SLM-DB-w/o-flush
SLM-DB-cache

(a) NoveSLM and its variants. (b) SLM-DB and its variants.

Figure 4: Ob1 (The direct utilization of the persistent CPU caches
amplifies the write traffic): removing the flush instructions and lifting
MemTables into CPU caches both deteriorate the write hit ratios.

instructions to persist a cacheline from the volatile CPU caches
to the PMem. Hence, when deploying them atop the eADR-
enabled Optane PMem, we can generate another two variants
of NoveLSM and SLM-DB, which remove the cacheline flush
instructions (as they are no longer needed in the persistent
CPU caches). We call them “NoveLSM-w/o-flush” and “SLM-
DB-w/o-flush”, respectively.

As the persistent CPU caches mainly affect the procedure
of the write operations (especially the write path from the
CPU caches to the Optane PMem), in this experiment we
mainly focus on the write hit ratio (i.e., ratio of writes
that hit the XPBuffer). This metric can be measured by the
hardware counters of the Optane PMem [50] and is also used
in previous studies to characterize the system efficiency with
the Optane PMem 3 [53]. Generally, a higher write hit ratio
indicates the better utilization of PMem bandwidth, as more
write operations can directly update the pre-stored data in
the XPLine without inducing any additional read-modify-write
traffic. Since a large number of values manipulated by KV
stores are often small-sized [54], [55] (e.g., from 57 B to 153 B
[54] at Facebook), we vary the value size from 32 B to 256 B
(with one single thread) and show the results in Figure 4.
We surprisingly find that compared to the raw NoveLSM
and SLM-DB, the NoveLSM-w/o-flush and SLM-DB-w/o-
flush respectively reduce 43.5% and 45.2% of the write hit
ratios on average, implying that directly deploying existing
KV stores with the eADR-enabled Optane PMem amplifies
the write traffic in the underlying PMem media.

Root cause (R1): We further delve into the underlying reasons
and identify that the flush instruction not only forces the
write back of the cachelines, but also maintains the flush
sequence of them, which favors the combination of adjacent
cachelines in XPBuffer and hence suppresses the write ampli-
fication. Without flush instruction, the cacheline eviction will
be controlled by classical cacheline replacement algorithms
(e.g., LRU algorithm). The small-sized (64 B) and randomized
eviction will amplify the internal write traffic (Figure 3(c) in
Section II-B) in the PMem.

3A variant of the write hit ratio is called the write amplification ratio (or
effective write ratio), which is also extensively employed in existing studies
[45], [51], [52] for assessing the system performance with the PMem.

0

50

100

150

200

250

1 2 4 8
of User Threads

W
rit

e
T

hr
pt

 (
K

op
s/

s)

NoveLSM
NoveLSM-w/o-flush
NoveLSM-cache

SLM-DB
SLM-DB-w/o-flush
SLM-DB-cache

0%

25%

50%

75%

100%

1 2 4 8
of User Threads

La
te

nc
y

B
re

ak
do

w
n

Others
Cache Lock

MemTable Lock
Index Update

(a) Write Throughput. (b) Latency Breakdown.

Figure 5: Ob2 (Heavy software designs also compromise the perfor-
mance gains provided by the Optane PMem:). The value size is set
to 64 B. The “others” in (b) includes other necessary operations in
writes, including syscalls, Linux kernel I/O stack, and media write
latencies.

Ob2 (Heavy software designs also compromise the perfor-
mance gains delivered by the Optane PMem). To eliminate
the write traffic caused by the evictions from the persistent
CPU caches, we propose to lift the MemTable (with the size
ranging from 8 MB [16], [56] to 64 MB [32], [33]) into the
CPU caches (i.e., keeping the MemTable in LLC, which has
the size of up to 60 MB [42]), so as to directly absorb the
small-sized write operations in the CPU caches. We implement
this approach 4 for both NoveLSM and SLM-DB, and generate
another two variants of them, named “NoveLSM-cache” and
“SLM-DB-cache”, respectively (see Section IV-A for details
about these two implementations). We find that this approach
takes effect, where the reductions on the write hit ratio shrink
to 5.5% and 15.9% when compared to the vanilla systems (i.e.,
NoveLSM and SLM-DB), respectively (Figure 4).

We further examine the write performance: we start random
write benchmark and dispatch 10 million write requests, each
of which has the value size of 64 B, with different number of
user threads. We find that both NoveLSM-cache and SLM-
DB-cache outperforms its vanilla systems by improving the
write throughput (Figure 5(a)). The write throughput of all
the six systems are all lower than 260 Kops/s with the single
user thread (Figure 5(a)). For instance, even we increase the
number of user threads, the accumulated write throughput still
drops from 257.3 Kops/s (with a single thread) to 37.12 Kops/s
(with eight threads in total) for NoveLSM-cache; other five
systems showcase the similar trend.

Root cause (R2): We further analyze the breakdown of the
average write latency of NoveLSM-cache (from the time when
a newly written KV pair arrives to the time when it is recorded
in the MemTable) and show the results in Figure 5(b). We
identify that the index update and MemTable lock (used for
regulating concurrent writes to the single shared MemTable)
take up 46.3% (with two threads) and 67.0% (with eight
threads) of the overall write latency, indicating that the index
overhead and the synchronization on the shared data structures
emerge to be the new performance bottleneck.

4We can place and control the MemTables in the CPU caches via employing
“Cache Pseudo-Locking” [57] with Intel Cache Allocation Technology (Intel
CAT) [58].

4

Persistent CPU Caches

PMemDRAM

sub-ImmMemTable

sub-skiplist

Copy-based
Flush

Sub-skiplist
Compaction

Lazy Index
Update

Global skiplist

sub-ImmMemTable

sub-skiplist sub-ImmMemTable

sub-MemTable

Core1

Sub-MemTable
Pool

sub-MemTable(Free)

Assign

Core 2 Core N

⋮ ⋮

Write WriteWrite

Figure 6: Overview of CacheKV. The techniques proposed in
CacheKV are marked in colorful boxes.

We also notice that NoveLSM gains a higher write hit ratio
(Figure 4(a)) but lower write throughput (Figure 5(a)) than
NoveLSM-w/o-flush, as NoveLSM comprises the overhead
induced by the flush instruction [59], [60].

Summary: Therefore, directly deploying existing KV stores
(Ob1) or trimming them (Ob2) both cannot achieve expected
write performance for the PMem with the persistent CPU
caches, stemming mainly from the mismatch of the hardware
access granularities (R1) and the heavy software designs (i.e.,
the index update and the synchronization mechanism to the
shared MemTable, see R2).

III. CACHEKV DESIGN

We present CacheKV, a high-performance KV store that
is designed for the Optane PMem with the persistent CPU
caches. Figure 6 shows the architecture of CacheKV.

Overview: To eliminate the synchronization overhead on the
shared MemTable, CacheKV partitions a MemTable into
multiple small-sized sub-MemTables, which are organized into
a sub-MemTable pool in the CPU caches and shared across
CPU cores (Section III-A). CacheKV then assigns a sub-
MemTable as well as the associated sub-skiplist to each CPU
core, such that the incoming KV pairs served by different
CPU cores can be directly appended to the corresponding
sub-MemTables without incurring expensive synchronization
overhead, thereby improving the access parallelism (R2 is
addressed). To avoid frequent updates to the sub-skiplists
when multiple KV pairs are written, CacheKV designs a
lazy index update mechanism (Section III-B), which defers
the updates to the sub-skiplist and performs them in batch
using background threads. For a CPU core, once the assigned
sub-MemTable is filled up, CacheKV transforms it into a sub-
ImmMemTable, which is then flushed to the Optane PMem
using copy-based flush mechanism (Section III-C) without
relying on the classical cacheline replacement algorithms,
so as to resolve the mismatch of the access granularities
between the CPU caches and the Optane PMem (R1 is
addressed). Finally, CacheKV regularly performs the sub-
skiplist compaction (Section III-D), so as to eliminate useless
search efforts and accelerate the search efficiency. We finally
implement a prototype of CacheKV atop LevelDB [2].

sub-MemTable

sub-MemTable

Table Counter Tail Pointer Remaining Space Data RegionState

Core Id Sub-MemTable Index

1 1

2 NULL

N 5

Global Metadata Structure Sub-MemTable Pool

⋮⋮ ⋮

Figure 7: Organization of the sub-MemTable pool and a global
metadata structure.

A. Per-Core Sub-MemTable

Previous KV stores [2], [3], [7], [14]–[16], [32], [33] often
maintain a single MemTable in DRAM (or PMem) to serve
the incoming write requests. Since the CPU caches become
persistent in the eADR-enabled Optane PMem, we can treat
them as a new persistent storage layer (with ultra-low access
latency) to complement existing storage hierarchy. To leverage
this feature, simply lifting the single MemTable from the mem-
ory up to the CPU caches cannot support highly concurrent
accesses due to the expensive synchronization overhead (Ob2
in Section II-C).

In view of this, CacheKV proposes to organize a sub-
MemTable pool in the CPU caches which contains multiple
small-sized sub-MemTables. Each CPU core will be assigned
with a dedicated sub-MemTable on demand (i.e., when a
write request arrives), hence improving the service parallelism
without inducing the synchronization overhead. CacheKV
then fixes the capacity of the sub-MemTable pool, while
allowing the sub-MemTables to have varied sizes, so as to
adapt to the dynamically changing workloads (see Exp#6 in
Section IV-C).

Specifically, CacheKV allocates the space to serve as the
sub-MemTable pool in PMem and specifies it to a dedicated
CPU cache space by using Intel CAT [58], which grants
CacheKV the software-programmable control over the given
amount of cache space, such that no application (except
CacheKV) is allowed to fill this cache space 5. CacheKV
logically breaks the reserved cache space into fixed-size areas,
where each area will be used to store a sub-MemTable. Hence,
the sub-MemTables constructed in the reserved cache space
collectively constitute a sub-MemTable pool.

Structure: Figure 7 presents the organization of a sub-
MemTable pool and the associated global metadata structure.
The global metadata structure establishes the mapping between
the CPU cores and the associated sub-MemTables. For the
cores that have not been assigned with sub-MemTables yet,
CacheKV sets the associated indices as NULL. Besides,
a sub-MemTable comprises five components: (i) a table

counter field (with the size of 38 bits), which records the
number of KV pairs currently stored in the sub-MemTable
and can also be served as a version tag; (ii) a state field

5Although some instructions (e.g., clflush and invd) will still evict the
data in the ”locked” area of the CPU caches, the per-core sub-MemTable is
exclusive to other applications and protected by the memory management of
OS.

5

(with the size of 2 bits), which implies if the sub-MemTable
has been assigned to a CPU core and is initialized to be
“Free” at the very beginning; (iii) a tail pointer field (with
the size of 24 bits), which records the beginning offset of
this sub-MemTable that can be written by the next arrived
KV pair; (iv) a remaining space field (with the size of
64 bits), which stores the residual size of the available area
to accommodate the new KV pairs at present; and (v) a
data region field, which stores the KV pairs that have
been inserted till now. CacheKV further saves the metadata
overhead and promises the consistency via encapsulating the
values of table counter, state, and tail pointer into a
unit of 64 bits, which can be updated together using a 64-bit
atomic compare-and-swap operation [12].

Write process: When a write request arrives, CacheKV first
checks the global metadata structure, which records the index
and the address of the associated sub-MemTable. The global
metadata structure is kept in DRAM to avoid write ampli-
fication to the Optane PMem. If there is no sub-MemTable
assigned to this CPU core at present, CacheKV will pick
out a free one from the pool and set its state as “Allocated”.
Otherwise, it learns the beginning offset of the associated
sub-MemTable for writes (by reading the tail pointer).
If the remaining space is enough to accommodate the newly
inserted KV pair, then it appends the KV pair to the tail of the
associated sub-MemTable. CacheKV finally updates the tail

pointer and the table counter in an atomic operation, so
as to promise the consistency even in the presence of system
crashes during the updates to the metadata structure. When a
sub-MemTable runs out of space, it will be transformed into a
sub-ImmMemTable with the State being set to ”Immutable”.
This sub-ImmMemTable is then flushed to the Optane PMem
using the copy-based flush mechanism (Section III-C); after
that, its State is modified to ”Free”, indicating that it can
be reused and ready to be re-assigned to a CPU core on
demand. We also elaborate on the read process of CacheKV
in Section III-D.

Elasticity: The number of the sub-MemTable (as well as
their sizes) should be carefully adjusted so as to balance
between the write concurrency (improved with more sub-
MemTables) and the background flush overhead (reduced with
larger sub-MemTable sizes). Here, CacheKV elastically tunes
the number of the sub-MemTable in response to the dynami-
cally changing workloads. Specifically, CacheKV maintains
a global variable called miss counter, which records the
times that a CPU core cannot find a free sub-MemTable to
accommodate the newly written KV pairs (e.g., when all the
sub-MemTables have been occupied or become full). Hence,
the value of the miss counter indicates the contention on
the sub-MemTables. When the value of the miss counter

exceeds a pre-configured threshold, CacheKV will seek to
increase the number of the free sub-MemTables by shrinking
their sizes (e.g., halving the size of a free sub-MemTable).
By doing so, CacheKV can ensure that there are enough free
sub-MemTables to supply even in the face of bursty writes.

The value of the miss counter is re-initialized to be zero
after CacheKV adjusts the number of the sub-MemTables.
Conversely, CacheKV can also trim the number of the sub-
MemTables by enlarging their sizes so as to reduce the
background flush overhead.

Discussion: Existing studies [23], [37], [61] also employ
multi-shard memory component to improve the write par-
allelism, which organizes multiple MemTables for multiple
shards and each shard covers an equal range of hashed-
key space. Hence, when a new KV pair arrives, it will
be dispatched to the corresponding MemTable based on the
hash value of its key. Compared to this multi-shard design,
CacheKV has the following advantages. First, when multiple
KV pairs are directed to the same shard simultaneously, it still
has to rely on the synchronization mechanism to regulate the
writes. As a comparison, CacheKV suppresses the synchro-
nization overhead by assigning a sub-MemTable to each CPU
core. Second, the multi-shard design lacks of flexibility, in that
the number of shards is pertinently fixed once the key space is
partitioned, which is hard to adapt to the dynamically changing
workloads; conversely, CacheKV can elastically tune the size
and the number of sub-MemTables in response to the workload
changes. However, the sub-MemTable design in CacheKV
also comes with read amplification, since CacheKV has to
search across multiple sub-MemTables to find the wanted
KV pair. Therefore, the search complexity in the memory
component is O(m · log2

N
m), where N is the number of KV

pairs stored in the memory component and m is the number
of the sub-MemTables used. To mitigate this issue, we reduce
unnecessary search efforts in Section III-D. For the correctness
of multi-key transaction [62], we can bind each transaction
thread to a specified core, ensuring that the inserted KV pairs
in this transaction are stored within the same sub-MemTable.

B. Lazy Index Update

In traditional MemTable designs (Section II-A), the incom-
ing KV pairs are directly appended to the MemTable for fast
writes and hence the KV pairs in the MemTable are often
out-of-order. To enable fast searches over those disordered
KV pairs, existing KV stores usually attach an index structure
(usually skiplist [2], [3], [32], [33]) with the MemTable. Yet
it also comes with additional latency (e.g., around 24.7% of
the write latency observed in Section II-C) to synchronously
update the index structure whenever a new KV pair is written.
In view of this, CacheKV proposes a lazy index update
mechanism, whose main idea is to maintain a skiplist (called
“sub-skiplist”) with each sub-MemTable for fast searches but
postpone the updates to the index structures, which will then
be performed in batch via background threads.

Index of the sub-MemTable: As CacheKV couples a sub-
skiplist with each sub-MemTable, the updates to multiple
independent sub-MemTables can be recorded by the associated
sub-skiplists in parallel without inducing any synchronization
overhead. Instead of keeping the sub-skiplists along with the
sub-MemTable in the CPU caches, CacheKV chooses to

6

maintain them in DRAM, which can bring forth the follow-
ing advantages: (i) the updates to the sub-skiplists can be
performed in parallel to exploit the fast access performance
of DRAM [34], hence greatly shortening the update latency;
(ii) the write amplification problem caused by the mismatch
of the access granularities can be suppressed, especially for
the small updates to the sub-skiplists; and (iii) CacheKV can
save the the cache footprints to absorb more key-value pairs.
Although DRAM is volatile (i.e., the sub-skiplists will be lost
once encountering system crashes), CacheKV can reconstruct
the sub-skiplists based on the KV pairs stored in the persistent
CPU caches (Section III-E).

CacheKV also keeps a list counter and a list tail

pointer for each sub-skiplist, which track the number of
KV pairs currently stored in the sub-skiplist and the offset
of the sub-MemTable ended at last synchronization, respec-
tively; similarly, the list counter can be used to check
the consistency between a sub-skiplist and the associated
sub-MemTable, by simply comparing the values of the list

counter and the table counter.

Lazily updating sub-skiplists in background: CacheKV
then detaches the synchronization of the sub-skiplists from
the critical write path. It proposes to lazily update the sub-
skiplists in the background, with the objective of incurring no
interference to the ongoing write operations. CacheKV also
provides three strategies to trigger the skiplist synchronization,
with different preferences on read consistency, synchronization
overhead, and memory consumption, respectively. First, it
must start the synchronization whenever a read operation
arrives. The rationale is that to serve a read request, CacheKV
has to pinpoint the location of the freshest value across mul-
tiple sub-MemTables. At this time, the consistency between
the sub-skiplist and the corresponding sub-MemTable must
be strictly guaranteed; otherwise, CacheKV may mistakenly
fetch the outdated one for a given key, even though its newest
value is currently stored in a sub-MemTable yet is not recorded
in the corresponding sub-skiplist. This synchronization will
incur low overhead for the workloads that are either write-
dominated or read-dominated. Second, for the write-dominated
workloads, CacheKV can also launch a new synchronization
for a sub-skiplist, when the number of write operations (to
the corresponding sub-MemTable) after last synchronization
reaches a pre-configured threshold (whose value is often
tunable). Third, when the capacity of a sub-MemTable is
exhausted (i.e., it is incapable of storing any new KV pair),
CacheKV can synchronize the newly written KV pairs to the
corresponding sub-skiplist.

We now elaborate on the process of the synchronization.
CacheKV first fetches the table counter from the operated
sub-MemTable and also the list counter from the associ-
ated sub-skiplist, respectively. It then compares the values of
the two counters: if they are unequal (indicating that there
are some KV pairs updated since the last synchronization yet
are not tracked by the sub-skiplist), then CacheKV updates
the sub-skiplist in the following steps: (i) it fetches the KV

DRAM

sub-skiplist sub-skiplist

sub-MemTable

Persistent
CPU Caches

New node Valid node

0x100 0x200

k1 k2 k3 k1 k2 k3 k4 k5

New KV Old KV

Threshold=2

Table Counter=5 k1,v1 k2,v2 k3,v3 k4,v4 k5,v5

List Tail Pointer
=0x100

List Tail Pointer
=0x200

List Counter=3 List Counter=5

Figure 8: Example of the lazy index update mechanism. The valid
nodes here denote the nodes that index the valid KV pairs.

pairs from the sub-MemTable, starting from the offset to
which the list tail pointer points; (ii) it then inserts
the address of the KV pairs into the sub-skiplist; and (iii) it
finally increases the value of the list counter and updates
the list tail pointer accordingly. CacheKV repeats the
synchronization until the values of the list counter and the
table counter are equal. Note that, during the index up-
dates, the sub-MemTables can continue serving the incoming
write requests without being affected by the synchronization.

Figure 8 shows an example of the lazy index update.
CacheKV compares the values of the table counter (i.e., 5)
and the list counter (i.e., 3), learning that two KV pairs
are written in the sub-MemTable without being tracked by
the sub-skiplist. It then updates sub-skiplist based on the sub-
MemTable (i.e., adding k4 and k5) and renews its tail pointer
accordingly.

C. Copy-based Flush

To suppress the write amplification caused by the mismatch
of the access granularities (Ob1 in Section II-C), CacheKV
proposes a copy-based flush mechanism, whose main idea is to
write back the data from the CPU caches to the Optane PMem
in unit of the sub-MemTables (with the size of multiple MBs),
so as to suppress the write amplification induced to the PMem.

When designing the flush mechanism, a native approach is
to keep all the sub-ImmMemTables in the CPU caches and
flush them to the Optane PMem until the sub-MemTable pool
is fully exhausted (i.e., CacheKV cannot dispatch any free
sub-MemTable to a CPU core). However, this approach is
rather inefficient, as no available sub-MemTable can be used to
serve the incoming write requests during the flush operation.
Consequently, CacheKV has to experience write stalls when
flushing all the sub-ImmMemTables to the Optane PMem.

To retain the write parallelism, CacheKV proposes to
launch a flush operation whenever a sub-MemTable becomes
full. Remember that once a sub-MemTable runs out of space,
it will be transformed into a sub-ImmMemTable and not be
updated in the cache again (Section III-A). CacheKV then
employs a modified memory copy operation, which replaces
the originally used store instruction with the non-temporal

store instruction in the memory copy operation. Hence,
when a sub-MemTable is full, CacheKV calls the modified
memory copy operation, which takes the address of sub-
ImmMemTable and the destination address (in the Optane
PMem) as input, such that the sub-ImmMemTable (resided in

7

the CPU caches) can be copied (flushed) to the given address
of the Optane PMem directly without being controlled by
the cacheline eviction, hence favoring the write performance
of the Optane PMem. Once the copy-based flush operation
completes, CacheKV reclaims the space occupied by the
sub-ImmMemTable by re-initializing the metadata information
and setting its state as ”Free” by using an atomic operation
(Section III-A).

D. Compaction of Sub-Skiplists

Till now, CacheKV mainly considers improving the write
performance of the KV stores with the persistent CPU caches.
When a read request comes, CacheKV first goes through
the global metadata structure (Figure 7) to find the sub-
MemTables in used and then scans each sub-MemTable for
key lookups. CacheKV may lengthen the read operation, as a
read operation may trigger the update to the sub-skiplist (Sec-
tion III-B). To further improve the read efficiency, CacheKV
proposes to proactively compact the sub-skiplists.

Sub-skiplist compaction: Remember that when the sub-
MemTable is full, it will be transformed into a sub-
ImmMemTable and flushed to the Optane PMem (Sec-
tion III-C). Hence, the Optane PMem may store sub-
ImmMemTables along with the associated sub-skiplists (in
DRAM), which still host a large number of valid KV pairs.
At this time, if a requested KV pair cannot be found across
the sub-MemTables in the CPU caches, then CacheKV will
turn to look it up across the sub-ImmMemTables. However, di-
rectly searching a given key across these sub-ImmMemTables
is extremely inefficient, since they may comprise a large
number of out-dated (or invalid) KV pairs (either deleted or
invalidated), which inevitably prolongs the search time. To
improve the search efficacy, we propose to merge the sub-
skiplists of the sub-ImmMemTables into a global skiplist,
which removes the useless nodes in the sub-skiplists to reduce
the redundant search trials. When merging the sub-skiplists,
the invalid KV pairs in the corresponding sub-ImmMemTable
are not removed immediately, which is rather different from
the compaction in traditional LSM-tree-based KV stores (Sec-
tion II-A). CacheKV defers the space reclamation until the
sub-ImmMemTables are flushed to the L0 level of the LSM-
tree (this operation is triggered once the total size of sub-
ImmMemTables reaches a pre-configured threshold).

Figure 9 shows an example of the sub-skiplist compaction.
There are two sub-skiplists, where the sub-skiplist-1

has one invalid node (filled in black color) and the
sub-skiplist-2 includes another two invalid nodes. Hence,
when performing the compaction, we can delete the three
invalid nodes and generate a global skiplist comprising all
the valid nodes, so as to reduce the search time in next read
operations.

E. Crash Recovery

CacheKV provides crash consistency guarantee for the data
that have been successfully committed to the sub-MemTable in

W

PMem

DRAM
sub-skiplist-2sub-skiplist-1

k1 k3 k4 k6 k2 k3 k4 k6 k1 k2 k3 k4 k6

sub-ImmMemTablesub-ImmMemTable sub-ImmMemTable

Global skiplist

New node

Compact

Invalid nodeValid node

sub-ImmMemTable

Figure 9: Example of the sub-skiplist compaction.

persistent CPU caches. When a failure occurs, the whole sub-
MemTable pool (resided in the CPU caches) will be written
back to the PMem, while the sub-skiplists and global skiplist
resided in DRAM will be lost.

CacheKV rebuilds the sub-skiplists and the global skiplist
in the background: (i) for each sub-MemTable, it initial-
izes a sub-skiplist and proactively synchronizes it with the
corresponding sub-MemTable; and (ii) it performs the sub-
skiplist compaction to rebuild the global sub-skiplist. After
that, CacheKV can serve the incoming read requests.

To continue serving the write requests, CacheKV restores
the sub-MemTable pool in the CPU caches using Intel CAT.
It also identifies all the allocated sub-MemTables and changes
their states to “Free”, such that they can be re-assigned to the
CPU cores again once the write requests arrive.

IV. EVALUATION

We conduct extensive testbed experiments to evaluate
CacheKV and summarize the major findings as below:

• Compared to NoveLSM [32] and SLM-DB [33],
CacheKV improves the write throughput by 17.2× and
26.1× on average, respectively (Exp#1 and Exp#3 in
Section IV-B). Besides, CacheKV achieves similar read
throughput (Exp#2 in Section IV-B). Hence, we suggest
deploying CacheKV in the write-dominated scenarios.

• The design techniques in CacheKV are mutually com-
plementary (Exp#1 in Section IV-B);

• The numbers of user threads and background flush
threads should be collectively considered to maximize the
performance of CacheKV (Exp#3 in Section IV-B and
Exp#5 in Section IV-C).

• The performance of CacheKV is not definitely im-
proved with the increase of the pool size (Exp#7 in
Section IV-C). Hence, CacheKV is also effective when
given limited cache space.

A. Experimental Setup

Testbed: We conduct experiments on a single machine
equipped with two 2.10 GHz Intel Gold 5318Y CPUs (with
24 cores each), 128 GB of DRAM memory, and four Op-
tane PMem DIMMs of 200 series (128 GB per DIMM and
512 GB in total). The Optane PMem DIMMs are configured
in interleaved App Direct Mode, which are connected to
one processor. Each processor has a shared 36 MB LLC. The
machine runs Ubuntu 20.04 with the kernel version of 5.4.0.
Configurations: Without otherwise specified, we select the
following configurations throughout the evaluation. We set

8

the size of the sub-MemTable pool to 12 MB, ensuring that
its size is smaller than that of the LLC. We then configure
the size of a sub-MemTable as 2 MB, which is observed to
achieve good access performance [45]. We also investigate the
performance under different sub-MemTable sizes in Exp#6.
We use one background thread for the copy-based flush
(Section III-C) and employ another thread to perform the lazy
index update (Section III-B) and the sub-skiplist compaction
(Section III-D). As the values are often small-sized in practical
storage systems, we set the value size to 64 B (also used in
FlatStore [38] and P2KVS [23]). We perform the lazy index
update when a read request arrives or the sub-MemTable is
transformed into a sub-ImmMemTable. The cacheline size
is 64 B in our testbed. When measuring the throughput, we
launch 10 million requests in each test. We then repeat each
test for five runs and average the results.

Comparison systems: We compare CacheKV against an-
other two open-source KV stores that are also designed for
the PMem, namely NoveLSM [32] and SLM-DB [33]. We
summarize their main ideas as below.

• NoveLSM [32]: It is an LSM-based KV store that main-
tains MemTables both in DRAM and PMem. Specifically,
it allocates large MemTables in PMem for reducing the
KV pairs flushed to the storage component of the LSM-
trees. The MemTable in PMem also absorbs KV pairs
once the MemTable in DRAM is full.

• SLM-DB [33]: It employs a persistent MemTable (with
the size of 64 MB by default [33]) to aggregate incom-
ing KV pairs, while storing KV pairs on disks with
a single-level LSM-tree organization, so as to reduce
the write amplification induced from the compactions.
It also maintains a global B+-tree in PMem, which is
used to accelerate the search process for the KV pairs on
SSTables.

Both NoveLSM and SLM-DB are designed under the
volatile CPU caches and hence they heavily employ flush
instructions to persist data. For fair comparison, we generate
another two variants for them (called “NoveLSM-cache” and
“SLM-DB-cache”), both of which can leverage the persistent
CPU caches without changing the main designs. We elaborate
on the main extensions of the generated variants as follows.

• NoveLSM-cache: As the MemTable kept in PMem is
configured as 4 GB in NoveLSM by default [32], which
far exceeds the size of the CPU caches in our testbed
(the size of LLC is 36 MB), we partition the MemTable
into multiple segments with 12 MB each. For each time,
we specify a constant size of the CPU cache space and
pre-load a segment into the cache space to serve access
requests. When a segment is full, it will be flushed to
the PMem by using the clflush instruction and the
successive segment is loaded into the CPU cache. The
MemTable in DRAM is set to 64 MB as its vanilla system.

• SLM-DB-cache: We amend SLM-DB in the similar way.
As it only maintains a single MemTable in PMem, we

60
8.

0

13
7.

6

10
91

.2

94
4.

0

16
51

.2

29
21

.6

27
74

.4

59
2.

6

12
4.

2

10
61

.1

73
2.

2

16
92

.2

28
77

.4

26
56

.0

50
4.

5

88
.5

74
3.

9

38
8.

9

15
49

.2

19
46

.4

18
39

.1

0

1000

2000

3000

16 64 256
Value Size (B)

W
rit

e
T

hr
pt

 (
K

op
s/

s)

NoveLSM
NoveLSM-cache

SLM-DB
SLM-DB-cache

PCSM
PCSM+LIU

CacheKV

(a) Sequential writes.

23
3.

6

89
.628

4.
8

15
3.

6

10
84

.8

17
47

.2

17
44

.0

20
6.

1

76
.825

7.
3

11
9.

0

12
36

.5

18
41

.9

16
52

.5

17
5.

1

62
.121

6.
5

88
.1

12
23

.5 15
31

.5

14
34

.0

0

500

1000

1500

2000

16 64 256
Value Size (B)

W
rit

e
T

hr
pt

 (
K

op
s/

s)

(b) Random writes.

Figure 10: Exp#1 (Write performance).

adjust the MemTable to 4 GB for a fair comparison, which
is the same with the size of the MemTable in NoveLSM.

Besides, we place all the SSTables of the KV stores in the
Optane PMem (as in NoveLSM [32] and ChameleonDB [37]),
so as to maximize the utilization of the fast access and the
large capacity provided by the Optane PMem.

B. Experiments on CacheKV Property

We select two widely used benchmarks, namely db_bench

[2] and YCSB [63], to evaluate the performance of CacheKV.
Breakdown of CacheKV: To demonstrate the efficiency
gained by each design technique of CacheKV, we decompose
CacheKV and abbreviate the techniques as follows: (i) per-
core sub-MemTable (PCSM), which simply creates a sub-
MemTable pool in the CPU caches and diligently updates
the corresponding sub-skiplist whenever a KV pair is written
(Section III-A); (ii) lazy index update (LIU), which defers the
updates to the sub-skiplists and performs them in batch in the
background (Section III-B); and (iii) sub-skiplist compaction
(SC), which periodically compacts the sub-skiplists to reduce
search efforts (Section III-D). Both PCSM and LIU employ
the copy-based flush (CF) (Section III-C) to write back the
sub-ImmMemTable. Hence, CacheKV can be treated as the
combination of the three techniques (i.e., PCSM+LIU+SC).
Exp#1 (Write performance): We first assess the write
throughput of the KV stores. We start a single thread and
dispatch 10 million insert requests. We concern both the
sequential writes and the random writes, where the keys are
generated by following a sequential order and a uniformly
random order, respectively. We vary the value size from 16 B
to 256 B and set the key size to 16 B, as small KV pairs
are predominant in real-world workloads [38], [55], [64].
Figure 10 shows the write throughput in operations per second.
We make three observations.

First, CacheKV can improve 5.1× and 20.2× of the write
throughput on average when compared to NoveLSM and

9

11
06

2.
4

32
80

.0

14
34

8.
0

72
73

.6

36
70

.4

33
05

.6

15
27

0.
4

11
05

1.
5

29
81

.1

14
29

6.
0

68
59

.8

14
78

7.
8

13
18

2.
7

15
29

0.
9

87
83

.1

25
61

.1

80
26

.4

55
85

.1

74
69

.6

72
12

.0

74
75

.6

0

5000

10000

15000

16 64 256
Value Size (B)

R
ea

d
T

hr
pt

 (
K

op
s/

s)
NoveLSM
NoveLSM-cache

SLM-DB
SLM-DB-cache

PCSM
PCSM+LIU

CacheKV

(a) Sequential reads.

28
4.

8

13
6.

3

29
1.

2

14
4.

0

11
2.

0

99
.2

20
1.

6 24
1.

9

12
0.

5

25
2.

8

11
9.

0

96
.0

90
.9

19
7.

1

19
3.

9

82
.9

21
5.

0

76
.8

87
.7

84
.3

19
1.

6

0

100

200

300

16 64 256
Value Size (B)

R
ea

d
T

hr
pt

 (
K

op
s/

s)

(b) Random reads.

Figure 11: Exp#2 (Read performance).

SLM-DB, respectively. The underlying reasons are two-fold.
On one hand, CacheKV utilizes the persistent CPU caches to
aggregate the newly written KV pairs in the sub-MemTables,
while at the same time suppressing the consistency overhead.
On the other hand, CacheKV performs the lazy index update
(Section III-B) which defers the updates to the sub-skiplists
and performs them in batch in the background.

Second, CacheKV can improve 3.4× and 7.8× of the
write throughput on average when compared to NoveLSM-
cache and SLM-DB-cache, respectively. The reason is that
CacheKV employs the sub-MemTables and the copy-based
flush mechanism to concurrently absorb the incoming writes
without introducing the write amplification.

Third, the techniques in CacheKV are mutually comple-
mentary to each other. In particular, compared to NoveLSM,
solely employing the per-core sub-MemTable (i.e., PCSM)
can improve 5.8× of the random write throughput (Fig-
ure 10(b)), while coupling the per-core sub-MemTable together
with the lazy index update (i.e., PCSM+LIU) further gains
8.3× of the improvement on the random write throughput.
This is because PCSM and LIU decouple the write proce-
dures and optimize them independently: PCSM employs the
sub-MemTables to immediately serve the incoming writes,
while LIU mainly optimizes the metadata updates of the
sub-MemTables. The designs of the sub-skiplist compaction
(i.e., SC) only downgrade 8.3% of the write throughput
compared to PCSM+LIU (by comparing CacheKV with
PCSM+LIU), since SC mainly aims for accelerating the reads
(Section III-D and Exp#2) by periodically compacting the sub-
skiplists resided in DRAM.

Exp#2 (Read performance): We compare CacheKV with
other KV stores on the sequential reads and the random reads.
We start one thread and dispatch 10 million read requests. We
vary the value size from 16 B to 256 B and set the key size to
16 B. Figure 11 shows the read throughput.

Figure 11 indicates that CacheKV achieves almost the

42
8.

2

42
2.

7

40
.1

58
9.

1

70
1.

7

65
4.

1

62
5.

4

37
.1

89
9.

0 12
15

.2

90
1.

5

88
7.

3

36
.1

10
88

.4

11
77

.6

10
57

.2

10
34

.4

36
.3

10
27

.6

10
90

.6

0

500

1000

1500

4 8 16 24
of User Threads

R
ea

d
T

hr
pt

 (
K

op
s/

s)

NoveLSM
NoveLSM-cache

SLM-DB
SLM-DB-cache

CacheKV

(a) Random reads with multi-threads.

37
.4

43
.3

43
.3

66
.0

17
28

.0

33
.3

35
.8

41
.0

52
.7

22
77

.1

32
.3

35
.0

38
.5

49
.7

29
15

.8

30
.6

31
.6

37
.1

47
.1

28
16

.0

0

1000

2000

3000

4 8 16 24
of User Threads

W
rit

e
T

hr
pt

 (
K

op
s/

s)

(b) Random writes with multi-threads.

Figure 12: Exp#3 (Multi-threading performance).

same read throughput as both PCSM and PCSM+LIU in
the sequential reads (Figure 11(a)), and outperforms them in
the random reads (Figure 11(b)). This is because CacheKV
incorporates SC (i.e., sub-skiplist compaction), which opti-
mizes reads by saving the search trials, hence shortening
the search time (especially when the keys are randomly
retrieved). The effectiveness of SC decades in the sequential
reads, since db_bench sequentially reads KV pairs from given
sub-skiplists. PCSM+LIU gains lower read throughput than
PCSM, since PCSM+LIU needs to update the sub-skiplists
before serving the reads.

Besides, in random reads (Figure 11(b)), CacheKV gains
lower read throughput compared to NoveLSM, since more
KV pairs are staged in sub-MemTables, which introduce read
amplification. Overall, CacheKV merely decreases 3.7% of
the read throughput when compared to NoveLSM and its
variant (NoveLSM-cache). Conversely, it increases 1.4× of the
read throughput when compared to SLM-DB and its variant
(SLM-DB-cache).

Exp#3 (Multi-threading performance): We also compare
CacheKV against other KV stores on multi-threading perfor-
mance, in which the number of user threads is varied from 4
to 24 (the number of physical cores within one socket). We
set the key size to 16 B and the value size to 64 B.

Figure 12(a) shows that CacheKV outperforms its counter-
parts on the random reads under multiple user threads. The
reason is that CacheKV maintains the index structures in
DRAM while other systems store it along with the MemTable
in the PMem, which introduces longer access latency. With
respect to SLM-DB, it always showcases the lowest read
throughput; this is because its MemTable is usually much
smaller and intensive access requests are prone to competing
for the shared SSTable metadata, hence limiting the access
parallelism [33].

Figure 12(b) indicates that CacheKV gains higher through-
put on the random writes. The write throughput of CacheKV

10

15
7.

0

10
.5

15
7.

1

47
.3

48
9.

5

18
1.

0

14
.1

18
6.

4

25
.4

21
2.

6

20
0.

7

39
.9

20
7.

5

38
.4

22
0.

1

17
5.

8

51
.8

20
5.

8

38
.8

22
1.

4

20
3.

6

56
.3

21
7.

0

46
.0

21
1.

4

13
7.

6

23
.4

14
9.

8

42
.1

15
0.

1

0

200

400

600

LOAD A B C D F
Workload

T
hr

pt
 (

K
op

s/
s)

NoveLSM
SLM-DB

NoveLSM-cache
SLM-DB-cache

CacheKV

Figure 13: Exp#4 (YCSB evaluation).

first climbs with the number of user threads (from 1,728.0
Kops/s to 2,915.8 Kops/s when the number of user threads
increases from 4 to 16) and then slightly drops. This is because
the bottleneck of the write performance shifts from the request
serving to the background flushing. We further investigate the
impact of the number of background flush threads in Exp#5
(Section IV-C). The write performance of the competitor
systems degrades with the increase of the user threads, because
the write contention to the shared data structure induces heavy
synchronization overhead (Section II-C).

Exp#4 (YCSB evaluation): We evaluate the performance
using YCSB [63] by launching five million requests with a
single user thread. Each request comprises a 16-B key and a
64-B value. We select six representative YCSB workloads,
which are briefly summarized as follows: (i) YCSB-Load,
which performs 100% of insert (write) operations in Uni-
form pattern; (ii) YCSB-A, which comprises 50% of read
operations and another 50% of update (write) operations in
Zipfian distribution (α = 0.99); (iii) YCSB-B, which performs
95% of read operations and additional 5% of update (write)
operations in Zipfian distribution (α = 0.99); (iv) YCSB-C,
which purely performs read operations (i.e., with 100% of read
operations) in Zipfian distribution (α = 0.99); and (v) YCSB-D,
which performs 95% of read operations to access the latest
keys and conducts another 5% of insert (write) operations in
Latest pattern; and (vi) YCSB-F, which performs 50% of read
operations and additional 50% of read-modify-write operations
in Zipfian distribution (α = 0.99). We measure the throughput
and show the results in Figure 13.

CacheKV can improve the throughput by 42.9% and 8.9×
on average when compared to NoveLSM (NoveLSM-cache)
and SLM-DB (SLM-DB-cache), respectively. The advantage
of CacheKV is more salient for the write-dominated work-
loads (e.g., YCSB-Load). The rationale is that CacheKV
improves the write concurrency via assigning a sub-MemTable
to each CPU core for serving the incoming write operations.
Meanwhile, CacheKV also employs the copy-based flush
(Section III-C) to suppress the write amplification caused by
the mismatch of the access granularities (Section II-B).

Even for the read-dominated workloads (i.e., YCSB-B,
YCSB-C, and YCSB-D), CacheKV still increases 8.4% and
3.9× of the throughput on average when compared to Nov-
eLSM (NoveLSM-cache) and SLM-DB (SLM-DB-cache),
respectively. The underlying reasons are two-fold. First,
CacheKV proactively compacts the sub-skiplists to remove

0

2000

4000

6000

1 2 4 6
of Background Flush Threads

W
rit

e
T

hr
pt

 (
K

op
s/

s)

UserThread-1 UserThread-2 UserThread-4 UserThread-6

Figure 14: Exp#5 (Impact of number of background flush threads).

the invalid nodes, so as to reduce the search efforts. Second,
CacheKV maintains the sub-skiplists in DRAM and places the
sub-MemTables in caches to exploit fast access performance,
while NoveLSM and SLM-DB both maintain their skiplists
and MemTables in PMem, which takes longer access latency.

C. Experiments on Sensitivity

We finally study the impact of the configured parameters on
the access performance, via varying the number of background
flush threads (Exp#5), the sub-MemTable size (Exp#6), and
the sub-MemTable pool size (Exp#7), respectively.

Exp#5 (Impact of number of background flush threads):
We then measure the write throughput under different number
of background flush threads, which are responsible for flushing
the sub-ImmMemTables from the CPU caches to the Optane
PMem (Section III-C). We vary the number of the background
flush threads from one to six and show the results in Figure 14.

We can find that with more background flush threads, the
write throughput climbs at first and then stabilizes. For exam-
ple, when there are two user threads, CacheKV can improve
the write throughput by 97.4% via increasing the number
of background flush threads from one to four; furthermore,
the write throughput merely increases 1.7% even we further
launch two additional background flush threads (i.e., from four
to six). The underlying reason is that the constant number of
user threads will gradually become the performance bottleneck
with the increase of the background flush threads.

On the other hand, we can observe that the numbers of
the user threads and background flush threads collectively
determine the write throughput of CacheKV. Usually, when
there are more user threads, CacheKV can achieve higher
write throughput by accordingly dispatching more background
flush threads. For example, when there are two user threads,
CacheKV can reach the peak write throughput (around
3,797.7 Kops/s) via running six background flush threads;
moreover, the peak write throughput in this experiment comes
to 6,455.0 Kops/s when the numbers of the user threads and
the background flush threads are both six.

Exp#6 (Impact of sub-MemTable size): We further study
the impact of the sub-MemTable size. We fix the size of
the sub-MemTable pool to 12 MB and vary the size of the
sub-MemTable from 0.25 MB (i.e., with 48 sub-MemTables)
to 2 MB (i.e., with six sub-MemTables). We then measure
the throughput of the random reads and the random writes.
We launch 12 user threads and 4 background flush threads.
Figure 15 shows the results.

11

510.7

657.9

803.8

929.3

0

250

500

750

1000

0.25 0.5 1 2
sub-MemTable Size (MB)

R
ea

d
T

hr
pt

 (
K

op
s/

s)

2949.1

4117.8 4180.5

3669.8

0

1000

2000

3000

4000

0.25 0.5 1 2
sub-MemTable Size (MB)

W
rit

e
T

hr
pt

 (
K

op
s/

s)

(a) Random reads. (b) Random writes.
Figure 15: Exp#6 (Impact of sub-MemTable size).

785.9 752.6 737.3
652.8 640.0

0

200

400

600

800

3 6 12 24 30
sub-MemTable Pool Size (MB)

R
ea

d
T

hr
pt

 (
K

op
s/

s)

3153.9

3813.1 3930.9
4216.3 4270.1

0

1000

2000

3000

4000

3 6 12 24 30
sub-MemTable Pool Size (MB)

W
rit

e
T

hr
pt

 (
K

op
s/

s)

(a) Random reads. (b) Random writes.
Figure 16: Exp#7 (Impact of sub-MemTable pool size).

Figure 15(a) shows that the read throughput of CacheKV
increases with the size of the sub-MemTable. The reason is
that a read operation has to scan all the sub-skiplists to fetch
the freshest value. Hence, given a sub-MemTable pool with the
constant size, fewer sub-skiplists are scanned when the sub-
MemTable becomes larger, reducing the search complexity.

Figure 15(b) further indicates that with the increase of
the sub-MemTable size, the write throughput of CacheKV
first increases (from 2,949.12 Kops/s to 4,180.5 Kops/s) and
then declines (from 4,180.5 Kops/s to 3,669.8 Kops/s). This
is because when the sub-MemTable is small (e.g., 0.25 MB),
it is easily filled up by the newly written KV pairs, making
the write performance bottlenecked by the background flush.
On the other hand, when its size becomes too large (e.g.,
2 MB), only a few sub-MemTables can be supplied at this
time, which in turn restricts the performance improvement of
the write operations. Based on this experiment, we suggest
configuring the size of the sub-MemTable to 1 MB when
deploying CacheKV in the write-dominated scenarios.

Exp#7 (Impact of sub-MemTable pool size): We finally
assess the impact of the sub-MemTable pool size. We set
the sub-MemTable size as 1 MB and vary the pool size from
3 MB (with three sub-MemTables) to 30 MB (with 30 sub-
MemTables). We use the same configurations as in Exp#6.
Figure 16 depicts the throughput of the random reads and the
random writes. We have two findings.

First, when the sub-MemTable pool becomes larger, the read
throughput of CacheKV gradually declines (Figure 16(a)).
The reason still lies in the increased sub-skiplists to go through
when there are more sub-MemTables used in CacheKV.

Second, the write throughput of CacheKV increases with
the size of the pool size (Figure 16(b)). This is because when
the pool size increases, more sub-MemTables can be used
to accommodate the KV pairs in parallel. The improvement
becomes marginal especially when the pool size exceeds
6 MB, since the background flush becomes the performance
bottleneck. To summarize, we suggest allocating six sub-

MemTables to balance the read and write throughput.

V. RELATED WORK

LSM-tree-based KV stores: A massive number of LSM-
tree-based KV stores [2], [3], [7], [14]–[20], [43] propose to
aggregate random writes into sequential writes for improving
the write performance of block storage. However, they require
an additional on-disk log for data durability.

The release of the PMem also attracts a number of studies
[15], [32]–[36] to build efficient KV stores with the PMem.
Most of the time, they simply treat the PMem as an al-
ternative of DRAM with persistence guarantee. NoveLSM
[32] maintains large mutable MemTables in PMem, such
that the in-place updates can be realized without incurring
additional expensive compactions. SLM-DB [33] maintains a
B+-tree for accelerating read performance and persists the
inserted key-value pairs in the PMem buffer for achieving
high write throughput. Instead of entirely replacing traditional
DRAM with the PMem, MatrixKV [15] organizes the L0

level of LSM-trees in PMem to throttle the compaction traffic.
As a comparison, CacheKV redesigns the high-concurrent
MemTable to fully utilize the persistent CPU caches.

Some studies also leverage the write unit size of the Optane
PMem in system designs. FlatStore [38] decouples a KV store
into a volatile index (kept in DRAM) and a persistent data
log (kept in PMem) to deliver high-throughput performance.
ChameleonDB [37] employs LSM-tree to aggregate writes and
uses an in-DRAM hash table to enable fast reads. While both
FlatStore and ChameleonDB still batches KV pairs in DRAM,
CacheKV chooses to cope with them with the persistent CPU
cache, thereby avoiding additional consistency overhead.
Studies on eADR-enable Optane PMem: Gugnani et al.
[52] present a performance characterization study to categorize
the idiosyncratic behavior of ADR- and eADR-enable PMem
systems. Zardoshti et al. [65] compare the performance of
five persistent transactional memory applications on ADR
and eADR persistent domains. PACTree [66] propose packed
asynchronous concurrency (PAC) guidelines on their findings
of the PMem hardware and system software for designing
high-performance persistent index structures. NBTree [67] is
a lock-free PM-friendly B+-Tree to deliver high scalability
with low PMem overhead. Different from previous studies,
CacheKV constructs high-performance KV stores based on
the characteristics of the eADR-enabled Optane PMem.

VI. CONCLUSION

We present CacheKV, the first KV store running atop the
Optane PMem with persistent CPU caches. CacheKV allo-
cates a sub-MemTable pool in the CPU caches to dynamically
assign a dedicated sub-MemTable to each CPU core, so as
to parallelize the concurrent writes. It then lazily updates
the sub-skiplists and flushes the full sub-ImmMemTables to
the PMem for further reducing the write latency. CacheKV
finally compacts the sub-skiplists for improving the read
efficiency. Extensive testbed experiments show the efficiency
of CacheKV under real-world benchmarks.

12

REFERENCES

[1] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A Distributed
Storage System for Structured Data,” ACM Transactions on Computer
Systems, vol. 26, no. 2, pp. 1–26, 2008.

[2] “LevelDB,” https://github.com/google/leveldb, 2021.
[3] “RocksDB,” https://github.com/facebook/rocksdb, 2021.
[4] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and S. Shah,

“Serving Large-Scale Batch Computed Data with Project Voldemort.”
in Proc. of USENIX FAST, 2012.

[5] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,
J. Ferris, A. Giardullo, S. Kulkarni, H. Li et al., “TAO: Facebook’s
Distributed Data Store for the Social Graph,” in Proc. of USENIX ATC,
2013.

[6] N. Elyasi, C. Choi, and A. Sivasubramaniam, “Large-Scale Graph
Processing on Emerging Storage Devices,” in Proc. of USENIX FAST,
2019.

[7] Y. Matsunobu, S. Dong, and H. Lee, “MyRocks: LSM-Tree Database
Storage Engine Serving Facebook’s Social Graph,” Proceedings of the
VLDB Endowment, vol. 13, no. 12, pp. 3217–3230, 2020.

[8] J. Shi, Y. Yao, R. Chen, H. Chen, and F. Li, “Fast and Concurrent RDF
Queries with RDMA-based Distributed Graph Exploration,” in Proc. of
USENIX FAST, 2016.

[9] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
“NetCache: Balancing Key-Value Stores with Fast In-Network Caching,”
in Proc. of ACM SOSP, 2017.

[10] Y. Zhang, Z. Liu, R. Wang, T. Yang, J. Li, R. Miao, P. Liu, R. Zhang, and
J. Jiang, “CocoSketch: High-Performance Sketch-based Measurement
over Arbitrary Partial Key Query,” in Proc. of ACM SIGCOMM, 2021.

[11] “Redis,” https://redis.io/, 2021.
[12] J. Chen, L. Chen, S. Wang, G. Zhu, Y. Sun, H. Liu, and F. Li, “HotRing:

A Hotspot-Aware In-Memory Key-Value Store,” in Proc. of USENIX
FAST, 2020.

[13] B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3: Compact and
Concurrent Memcache with Dumber Caching and Smarter Hashing,” in
Proc. of USENIX NSDI, 2013.

[14] H. Chen, C. Ruan, C. Li, X. Ma, and Y. Xu, “SpanDB: A Fast, Cost-
Effective LSM-tree Based KV Store on Hybrid Storage,” in Proc. of
USENIX FAST, 2021.

[15] T. Yao, Y. Zhang, J. Wan, Q. Cui, L. Tang, H. Jiang, C. Xie, and X. He,
“MatrixKV: Reducing Write Stalls and Write Amplification in LSM-tree
Based KV Stores with Matrix Container in NVM,” in Proc. of USENIX
ATC, 2020.

[16] Y. Li, Z. Liu, P. P. C. Lee, J. Wu, Y. Xu, Y. Wu, L. Tang, Q. Liu, and
Q. Cui, “Differentiated Key-Value Storage Management for Balanced
I/O Performance,” in Proc. of USENIX ATC, 2021.

[17] Y. Li, C. Tian, F. Guo, C. Li, and Y. Xu, “Elasticbf: Elastic Bloom
Filter with Hotness Awareness for Boosting Read Performance in Large
Key-Value Stores,” in Proc. of USENIX ATC, 2019.

[18] H. H. Chan, C.-J. M. Liang, Y. Li, W. He, P. P. C. Lee, L. Zhu, Y. Dong,
Y. Xu, Y. Xu, J. Jiang et al., “HashKV: Enabling Efficient Updates in
KV Storage via Hashing,” in Proc. of USENIX ATC, 2018.

[19] P. Raju, R. Kadekodi, V. Chidambaram, and I. Abraham, “PebblesDB:
Building Key-Value Stores using Fragmented Log-Structured Merge
Trees,” in Proc. of ACM SOSP, 2017.

[20] S. Sarkar, T. I. Papon, D. Staratzis, and M. Athanassoulis, “Lethe: A
Tunable Delete-Aware LSM Engine,” in Proc. of ACM SIGMOD, 2020.

[21] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured
merge-tree (lsm-tree),” Acta Informatica, vol. 33, no. 4, pp. 351–385,
1996.

[22] I. Absalyamov, M. J. Carey, and V. J. Tsotras, “Lightweight cardinality
estimation in lsm-based systems,” in Proc. of ACM SIGMOD, 2018.

[23] Z. Lu, Q. Cao, H. Jiang, S. Wang, and Y. Dong, “P2KVS: A Portable
2-Dimensional Parallelizing Framework to Improve Scalability of Key-
Value Stores on SSDs,” in Proc. of ACM EuroSys, 2022.

[24] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Ra-
jendran, M. Asheghi, and K. E. Goodson, “Phase change memory,”
Proceedings of the IEEE, vol. 98, no. 12, pp. 2201–2227, 2010.

[25] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase Change
Memory as a Scalable Dram Alternative,” in Proc. of ISCA, 2009.

[26] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen, R. M.
Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, and C. H. Lam,
“Phase-Change Random Access Memory: A Scalable Technology,” IBM

Journal of Research and Development, vol. 52, no. 4.5, pp. 465–479,
2008.

[27] S. Kargar and F. Nawab, “Extending the lifetime of NVM: challenges
and opportunities,” Proceedings of the VLDB Endowment, vol. 14, pp.
3194–3197, 2021.

[28] I. Baek, M. Lee, S. Seo, M. Lee, D. Seo, D.-S. Suh, J. Park, S. Park,
H. Kim, I. Yoo et al., “Highly Scalable Non-volatile Resistive Memory
using Simple Binary Oxide Driven by Asymmetric Unipolar Voltage
Pulses,” in Proc. of IEEE IEDM, 2004.

[29] H. Akinaga and H. Shima, “Resistive Random Access Memory
(ReRAM) based on Metal Oxides,” Proceedings of the IEEE, vol. 98,
no. 12, pp. 2237–2251, 2010.

[30] F. T. Hady, A. Foong, B. Veal, and D. Williams, “Platform Storage
Performance with 3D XPoint Technology,” Proceedings of the IEEE,
vol. 105, no. 9, pp. 1822–1833, 2017.

[31] “Intel® Optane™ Persistent Memory,” https://www.intel.com/
content/www/us/en/architecture-and-technology/optane-dc-persistent-
memory.html, 2021.

[32] S. Kannan, N. Bhat, A. Gavrilovska, A. Arpaci-Dusseau, and R. Arpaci-
Dusseau, “Redesigning LSMs for Non-Volatile Memory with Nov-
eLSM,” in Proc. of USENIX ATC, 2018.

[33] O. Kaiyrakhmet, S. Lee, B. Nam, S. H. Noh, and Y.-r. Choi, “SLM-
DB: Single-Level Key-Value Store with Persistent Memory,” in Proc. of
USENIX FAST, 2019.

[34] F. Xia, D. Jiang, J. Xiong, and N. Sun, “HiKV: A Hybrid Index Key-
Value Store for DRAM-NVM Memory Systems,” in Proc. of USENIX
ATC, 2017.

[35] Y. Huang, M. Pavlovic, V. Marathe, M. Seltzer, T. Harris, and S. Byan,
“Closing the Performance Gap between Volatile and Persistent Key-
Value Stores using Cross-Referencing Logs,” in Proc. of USENIX ATC,
2018.

[36] L. Benson, H. Makait, and T. Rabl, “Viper: An Efficient Hybrid
PMem-DRAM Key-Value Store,” Proceedings of the VLDB Endowment,
vol. 14, no. 9, pp. 1544–1556, 2021.

[37] W. Zhang, X. Zhao, S. Jiang, and H. Jiang, “ChameleonDB: A Key-
Value Store for Optane Persistent Memory,” in Proc. of ACM EuroSys,
2021.

[38] Y. Chen, Y. Lu, F. Yang, Q. Wang, Y. Wang, and J. Shu, “FlatStore:
An Efficient Log-Structured Key-Value Storage Engine for Persistent
Memory,” in Proc. of ACM ALSPLOS, 2020.

[39] S. Lee, A. Lerner, A. Ryser, K. Park, C. Jeon, J. Park, Y. H. Song, and
P. Cudré-Mauroux, “X-SSD: A storage system with native support for
database logging and replication,” in Proc. of ACM SIGMOD, 2022.

[40] H. Liu, L. Huang, Y. Zhu, and Y. Shen, “LibreKV: A Persistent In-
Memory Key-Value Store,” IEEE Transactions on Emerging Topics in
Computing, vol. 8, no. 4, pp. 916–927, 2017.

[41] L. Lersch, I. Schreter, I. Oukid, and W. Lehner, “Enabling Low Tail
Latency on Multicore Key-Value Stores,” Proceedings of the VLDB
Endowment, vol. 13, no. 7, pp. 1091–1104, 2020.

[42] “Third Generation Intel® Xeon® Processor Scalable Family Technical
Overview,” https://www.intel.com/content/www/us/en/developer/
articles/technical/intel-xeon-processor-scalable-family-overview.html,
2021.

[43] W. Zhong, C. Chen, X. Wu, and S. Jiang, “REMIX: Efficient Range
Query for LSM-trees,” in Proc. of USENIX FAST, 2021.

[44] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz,
“ARIES: A Transaction Recovery Method Supporting Fine-Granularity
Locking and Partial Rollbacks using Write-Ahead Logging,” ACM
Transactions on Database Systems, vol. 17, no. 1, pp. 94–162, 1992.

[45] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson,
“An Empirical Guide to the Behavior and Use of Scalable Persistent
Memory,” in Proc. of USENIX FAST, 2020.

[46] P. Zuo, Y. Hua, and J. Wu, “Write-Optimized and High-Performance
Hashing Index Scheme for Persistent Memory,” in Proc. of USENIX
OSDI, 2018.

[47] “eADR: New Opportunities for Persistent Memory Applications,”
https://www.intel.com/content/www/us/en/developer/articles/technical/
eadr-new-opportunities-for-persistent-memory-applications.html, 2021.

[48] J. Liu, S. Chen, and L. Wang, “Lb+ trees: Optimizing persistent
index performance on 3dxpoint memory,” Proceedings of the VLDB
Endowment, vol. 13, no. 7, pp. 1078–1090, 2020.

[49] “Intel® Xeon® Processor Scalable Family Technical Overview,”
https://www.intel.com/content/www/us/en/developer/articles/technical/
xeon-processor-scalable-family-technical-overview.html, 2021.

13

https://github.com/google/leveldb
https://github.com/facebook/rocksdb
https://redis.io/
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-xeon-processor-scalable-family-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-xeon-processor-scalable-family-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html

[50] “Intel® PMWatch,” https://github.com/intel/intel-pmwatch, 2021.
[51] S. Han, D. Jiang, and J. Xiong, “LightKV: A Cross Media Key Value

Store with Persistent Memory to Cut Long Tail Latency,” in Proc. of
IEEE MSST, 2020.

[52] S. Gugnani, A. Kashyap, and X. Lu, “Understanding the Idiosyncrasies
of Real Persistent Memory,” Proceedings of the VLDB Endowment,
vol. 14, no. 4, pp. 626–639, 2020.

[53] L. Xiang, X. Zhao, J. Rao, S. Jiang, and H. Jiang, “Characterizing the
Performance of Intel Optane Persistent Memory: a Close Look at its
on-DIMM Buffering,” in Proc. of ACM EuroSys, 2022.

[54] Z. Cao, S. Dong, S. Vemuri, and D. H. Du, “Characterizing, Modeling,
and Benchmarking RocksDB Key-Value Workloads at Facebook,” in
Proc. of USENIX FAST, 2020.

[55] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” in Proc. of ACM
SIGMETRICS/Performance, 2012.

[56] P. J. Shetty, R. P. Spillane, R. R. Malpani, B. Andrews, J. Seyster, and
E. Zadok, “Building Workload-Independent Storage with VT-Trees,” in
Proc. of USENIX FAST, 2013.

[57] “User Interface for Resource Control feature,” https://www.kernel.org/
doc/html/v5.9/x86/resctrl ui.html#cache-pseudo-locking, 2016.

[58] “Introduction to Cache Allocation Technology in the Intel® Xeon®
Processor E5 v4 Family,” https://www.intel.com/content/www/
us/en/developer/articles/technical/introduction-to-cache-allocation-
technology.html?wapkw=intel%20cat, 2016.

[59] Y. Zhang and S. Swanson, “A study of application performance with
non-volatile main memory,” in Proc. of IEEE MSST, 2015.

[60] D. S. Rao, S. Kumar, A. S. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, “System software for persistent memory,”
in Proc. of ACM EuroSys, 2014.

[61] L. Baptiste, B. Oana, G. Karan, and Z. Willy, “Kvell: The design and
implementation of a fast persistent key-value store,” in Proc. of ACM
SOSP, 2019.

[62] R. Escriva, B. Wong, and E. G. Sirer, “Warp: Lightweight multi-key
transactions for key-value stores,” arXiv preprint arXiv:1509.07815,
2015.

[63] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” in Proc. of ACM
SOCC, 2010.

[64] J. Yang, Y. Yue, and R. Vinayak, “Segcache: A Memory-Efficient and
Scalable In-Memory Key-Value Cache for Small Objects,” in Proc. of
USENIX NSDI, 2021.

[65] P. Zardoshti, M. Spear, A. Vosoughi, and G. Swart, “Understanding and
Improving Persistent Transactions on Optane™ DC Memory,” in Proc.
of IEEE IPDPS, 2020.

[66] W.-H. Kim, R. M. Krishnan, X. Fu, S. Kashyap, and C. Min, “PACTree:
A High Performance Persistent Range Index Using PAC Guidelines,” in
Proc. of ACM SOSP, 2021.

[67] B. Zhang, S. Zheng, Z. Qi, and L. Huang, “NBTree: a Lock-free PM-
friendly Persistent B+-Tree for eADR-enabled PM Systems,” Proceed-
ings of the VLDB Endowment, 2022.

14

https://github.com/intel/intel-pmwatch
https://www.kernel.org/doc/html/v5.9/x86/resctrl_ui.html#cache-pseudo-locking
https://www.kernel.org/doc/html/v5.9/x86/resctrl_ui.html#cache-pseudo-locking
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html?wapkw=intel%20cat
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html?wapkw=intel%20cat
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html?wapkw=intel%20cat

	Introduction
	Background and Observations
	LSM-Tree-Based KV Stores
	Persistent Memory
	Analysis and Observations

	CacheKV Design
	Per-Core Sub-MemTable
	Lazy Index Update
	Copy-based Flush
	Compaction of Sub-Skiplists
	Crash Recovery

	Evaluation
	Experimental Setup
	Experiments on CacheKV Property
	Experiments on Sensitivity

	Related Work
	Conclusion
	References

